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Abstract: The paper presents the comparison of experimental results 

obtained from tests on semi-slender columns with pinned ends made of 

steel R35 to simplifications and hypotheses of loss of stability by lateral 

buckling in elastic-plastic states of columns axially compressed by force. The 

Tetmajer-Jasiński’s and Johnson-Ostenfeld’s simplifications, as well as the 

hypotheses given by Engesser and Kármán and Shanley, Ylinen, Březina, 

Pearson and Bleich and Vol’mir and the author's one approximated, are 

analyzed. The graphs of surface functions of critical compressive stress cr(A, 

L*t) depending on a cross-section area and length times thickness product are 

presented as the theoretical examples of thin-walled cylindrical and square 

columns made of steel R35. In order to compare the experimental results 

with other simplifications and hypotheses are shown in the adequate ranges 

for elastic-plastic states as the graphs of the functions of critical 

compressive stress depending on slenderness ratio cr(). 
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Introduction 

When is considered the application of shell elements in 

load-bearing structures, accordingly, the first issue to 

analyze is their load capacity to sustain axial loads, i.e., 

their stability and susceptibility to potential buckling 

collapse mechanisms that could compromise the structure 

and occupant safety. In the case of very slender columns, 

this refers to the problem of stability in elastic states.  

The basic theory of slender rods losing stability in 

elastic states, as known, has been originally 

formulated by Euler (1744). He first introduced the 

concept of critical load Pcr and presented, according to 

his theory, the differential equation of an elastic 

deflected central line.  

The stability phenomenon of semi slender columns in 

elastic-plastic states was researched too, by (Tetmajer, 

1886; Jasiński, 1894; Engesser, 1889; 1895; Ostenfeld, 

1898; Kármán, 1908; 1910; Shanley, 1947; Stowell, 

1948; Bijlaard, 1949; Bleich, 1952; Broszko, 1953; 

Ylinen, 1956; Radhakrishnan, 1956; Gerard and Becker, 

1957; Gerard, 1957; 1962; Seide et al., 1960; Vol’mir, 

1965; Březina, 1966). 

Review of the Literature 

This phenomenon was later researched by others. 

Yiotis et al. (1982) presented a solution methodology 

for investigating the stability of rectangular box-shaped 

structures subjected to transverse uniformly distributed 

compressive loading. Nakashima et al. (1994) presented 

the results of a pilot test conducted for evaluating the 

energy dissipation behavior of shear panels made of low 

yield steel whose 0.2% offset yield stress is 120 MPa. 

Brank et al. (1997) presented a large-deformation model 

for thin shells composed of elastic-plastic material. 

Lepik (1999) considered a bifurcation of axially loaded 

elastic–plastic cylindrical shells in the case of an 

axisymmetric buckling. Papanastasiou and Durban 

(1999) presented a linear bifurcation analysis for 

pressure-sensitive elastic-plastic hollow cylinders under 

radial surface loads. Dubina and Ungureanu (2000) dealt 

with the elastic-plastic interactive buckling of thin-

walled steel compression members. Abdel-Lateef et al. 
(2001) presented the elastic stability analysis of a column 

with variable cross-section subjected to distributed and 

concentrated axial load. Lilkova-Markova and Dzhupanov 

(2001) dealt with the dynamic stability of short 

continuous pipes conveying liquid and supported by 

elastic supports. Milašinović et al. (2003) dealt with the 

buckling problem of steel columns using by Rheological-

Dynamical Analogy (RDA). Seyranian and Privalova 

(2003) dealt with the optimization and post-buckling 
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behavior of columns elastically supported at both ends. 

Alvarenga and Silveira (2006) presented a study about 

the necessary steps to qualify a second-order inelastic 

analysis as an advanced one. D’Aniello et al. (2006) 

executed two full-scale experimental tests on the lateral 

load-displacement response of a Reinforced Concrete 

(RC) structure seismically retrofitted by buckling 

restrained braces. Lolov and Lilkova-Markova (2006) 

dealt with the dynamic stability of a curved pipe bent in 

the arc of a circle on the hinge supports at the ends. 

Fraldi et al. (2008) aimed at deriving assessment and 

design formulae for determining the elastic–plastic 

response and the ultimate compressive strength of circular 

concrete columns confined by the Fiber Reinforced 

Polymers (FRP). Sanchez and Salas (2008) dealt with 

seismic ground motions that cause large deformations of 

buried pipelines. Voyiadjis and Woelke (2008) presented 

a finite element model for the elastic-plastic and damage 

analysis of thin and thick shells. Wahrhaftig et al. (2008) 

evaluated a buckling critical load of bars subjected to 

their self-weight. Wahrhaftig et al. (2016) executed a 

calculation of the natural frequency of vibration and the 

stability verification of a slender column including the 

reducing effects of stiffness both of the axial force 

and creep. Wahrhaftig et al. (2019) executed an 

analytical determination of the vibration frequencies 

and buckling loads of slender reinforced concrete 

towers. Wahrhaftig et al. (2020a) evaluated a limit state 

of stress and strain of free-fixed columns with variable 

geometry according to criteria from the Brazilian code for 

concrete structures. Wahrhaftig et al. (2020b) did an 

evaluation of mathematical solutions for the determination 

of buckling of columns under self-weight. Wahrhaftig 

(2020) did a time-dependent analysis of slender, tapered 

reinforced concrete columns. Wahrhaftig et al. (2021) 

made a stress assessment in reinforcement for columns 

with concrete creep and shrinkage through Brazilian 

technical normative. Ismail (2011) provided an analysis of 

the dynamical behavior and stability of pipes conveying 

fluid. Phungpaingam et al. (2011) presented an alternative 

model to analyze the post-buckling behavior of a hinged-

hinged column made from nonlinear material (i.e., 

Ludwick material). Beylergil et al. (2012) studied the 

buckling and compressive failure of adhesively-bonded 

stepped-lap joints (with/without composite patches) 

composed of pultruded glass fiber-reinforced polymer. 

Abed et al. (2013) presented the Finite-Element (FE) 

study of the axial load capacity of pre-twisted steel bars 

of rectangular cross-sections. Kambe et al. (2013) 

proposed a sandwich panel with plywood and steel 

members for a new structural member. Ananthi and 

Anbarasu (2014) studied the possibility of using built-up 

cold-formed steel columns composed of two-lipped 

channels interconnected using a series of batten plates. 

Ananthi et al. (2021) using the Finite Element Model 

(FEM) previously reported a parametric study, 

comprising 132 models, described for stainless steel 

battened built-up columns. Eissa et al. (2014) analyzed 

the work of a saturation-based active controller for 

vibration suppression of a four-degree-of-freedom rotor–

AMB system. Andreev and Tsybin (2015) gave the 

solution to the problem of the stability of a compressed 

rod with a variable cross-section.  

Li et al. (2015) presented a novel scrimber 

composite. The attempts were made through theoretical 

analysis to predict the buckling stress of the column 

specimens under both elastic and inelastic buckling. In 

Fig. 9e they presented the graph of strains at mid-length 

of a slender column and measured by strain gauges 

similarly like in Fig. 4a in the book (Murawski, 2011a) 

and in Fig. 4 in the paper (Murawski and Kłos, 2007) 

and in the doctor’s thesis (Murawski, 1999) as well as in 

Rys.2 in the paper (Murawski, 1992). 

Patel et al. (2015) dealt with High-strength thin-

walled Concrete-Filled Steel Tubular (CFST) columns 

widely used in modern composite structures that might 

undergo local and global buckling. Özbaşaran et al. 

(2015) presented an alternative design procedure for 

lateral–torsional buckling of the cantilever I-beams 

which aimed to simplify the calculation of critical loads 

and design moments. Al-Kamal (2016) presented the 

possible collapse mechanisms initiated by a precast 

flexural member dropping on a lower member.  

Jakab et al. (2016) focused on load-bearing glass 

columns and also on the design, the load-bearing 

capacity and the stability issues of fins. In Fig. 4 they 

presented the graph of strains set at mid-length of a 

slender glass column measured by strain gauges 

similarly like in Fig. 4a in the book (Murawski, 2011a) 

and in Fig. 4 in the paper of (Murawski and Kłos, 2007) 

and in the doctor’s thesis Murawski (1999) as well as in 

Rys.2 in the paper (Murawski, 1992). They described 

this as: “… Fig. 4 indicates the loading force vs. strains 

on the glass surface. At the beginning both outer surface 

of the glass column is in compression after that, the 

compression starts to decrease at one outer glass surface 

and tensile stresses develop. The buckling process starts 

during this phenomenon”, i.e., is according to the 

Technical Stability Theory (TSTh).  

Kalamara et al. (2016) executed an experimental 

investigation for the structural performance assessment 

of square hollow glass columns. Kukhar et al. (2016) 

formed a gradient curve of a temperature distribution of 

lengthwise of the billet by differentiated heating before 

profiling by buckling. Łukowicz et al. (2016) dealt with 

cold-formed steel sections as extensively affected the 

modern steel construction industry. Megahed (2016) 

dealt with steel-concrete composite columns used in 

modern buildings. He investigated the behavior of pin-



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

84 

ended axially and eccentrically loaded concrete encased 

steel composite columns. Tarsha and Takla (2016) 

evaluated the ultimate load of composite columns 

"steel-concrete" having square or circular steel tubes 

filled hollow section with concrete. Abbas and Awazli 

(2017) developed a numerical model in a three-

dimensional nonlinear finite element and then validated 

it against experimental results reported in the literature. 

Abdel-Karim et al. (2017) proposed a model for the 

strength analysis of High-Strength Concrete (HSC) 

columns subjected to eccentric loading. Ammash (2017) 

dealt with shape optimization of innovated cold-formed 

steel columns under uniaxial compressive loading.  

Atteya et al. (2017) dealt with an axial load capacity 

and the stiffness of a rectangular Hollow Structural 

Section (HSS) of the steel tube. In Fig. 19 they presented 

the graphs of strains set at mid-length measured by strain 

gauge similarly like in Fig. 4a in the book Murawski 

(2011a) and in Fig. 4 in the paper (Murawski and Kłos, 

2007) and in the doctor’s thesis Murawski (1999) as well 

as in Rys.2 in the paper Murawski (1992). Those graphs 

showed the way of losing stability in accordance with 

the Technical Stability Theory. 

Baru (2017) dealt with buckling, as the most 

prominent failure mode of steel column stability as well 

as the structural stability of steel structures. Johnson et al. 

(2017) reported the results of a numerical and theoretical 

study of the buckling phenomenon in elastic columns 

containing a line of holes. Bedon and Amadio (2017) did 

a unified approach for the buckling verification of 

structural glass elements. Bedon and Amadio (2018) 

they made a buckling analysis and design proposal for  

2-side supported double Insulated Glass Units (IGUs) in 

compression. Oliveira et al. (2017) studied the shear 

effect on the buckling of columns embedded in an elastic 

medium, evidencing the interaction of the column with 

the foundation. Silvestre et al. (2018) studied the 

influence of the nature of the deformation mode (global, 

local and distortional) on the load, carrying capacity of 

beams beyond the yield load. The five beams with 

different cross-sections, lengths, supports and loadings 

were analyzed. Słowiński and Piekarczyk (2017) dealt 

with a safe and economic design of steel cylindrical 

shells according to European Standard EN 1993-1-6 

often requiring a nonlinear analysis. Abdulazeez et al. 

(2018) presented a numerical study on the behavior of 

Hollow-Core Fiber Reinforced Polymer-Concrete-Steel 

(HC-FCS) columns under combined axial compression 

and lateral loadings. Brasil and Wahrhaftig (2018) did an 

experimental evaluation of the effect of geometric 

nonlinearities on structural resonances. Can et al. (2018) 

designed a novel crash box as a telescopic structure by 

joining coaxial tubes by using gradual bonding surface 

areas. Isleem et al. (2018) dealt with experimental and 

analytical investigations of the stress-strain behavior of 

rectangular concrete columns externally confined with 

Carbon Fiber-Reinforced Polymer (CFRP) composites 

under axial compression loading. Lilkova-Markova and 

Lolov (2018) investigated the problem of loss of stability 

of an axially compressed column. The column was fixed 

at one of its ends and on transversal linear spring support 

at the other. Massumi et al. (2018) matched the real 

behavior of the RC structures constructed based on the 

assumed specifications of the used materials. Razdolsky 

(2018) focused on elastic stability analysis of battened 

columns and laced columns with crosswise, fir-shaped 

and serpentine lattices. Saeed and Eissa (2018) analyzed 

bifurcations of periodic motion of a horizontally 

supported nonlinear Jeffcott-rotor system having a 

transversely cracked shaft. Saeed and Eissa (2019) did a 

bifurcation analysis of a transversely cracked nonlinear 

Jeffcott-rotor system at different resonance cases. Saeed 

(2019) did an analysis of vibration behavior and motion 

bifurcation of a nonlinear asymmetric rotating shaft. 

Next (Saeed, 2020) did an analysis of the steady-state 

forward and backward whirling motion of the 

asymmetric nonlinear rotor system and (Saeed et al., 

2020a) did a nonlinear dynamic analysis of the six-pole 

rotor-AMB system under two different control 

configurations. Later (Saeed et al., 2020b) executed an 

analysis of radial versus Cartesian control strategies to 

stabilize the nonlinear whirling motion of the six-pole 

rotor-AMBs and (Saeed et al., 2020c) an analysis of 

periodic, quasi-periodic and chaotic motions diagnose a 

crack on a horizontally supported nonlinear rotor system. 

Next, (Saeed et al., 2021a) made a sensitivity analysis 

and vibration control of asymmetric nonlinear rotating 

shaft system utilizing 4-pole AMBs as an actuator and 

(Saeed et al., 2021b) did an analysis of the rub-impact 

forces between a controlled nonlinear rotating shaft 

system and the electromagnet pole legs. 

Slimani et al. (2018) dealt with the concept of the 

effective length factor of columns representing an 

important parameter with regard to the elastic buckling 

analysis. Thumrongvut and Tiwjantuk (2018) presented 

the experimental results on the strength and axial 

behavior of rectangular steel tube columns filled with 

Cellular Lightweight Concrete (CLC) under axial 

compression. Anuntasena et al. (2019) presented the 3D 

Finite Element (FE) analysis of the Concrete-Encased 

Steel (CES) columns subjected to concentric or eccentric 

loadings. Ivanov (2019) studied small vibrations of a 

cylindrical shaft caused by inertial excitation. The shaft 

was vertically situated. It was supported by a spherical 

and a cylindrical joint. Krishan et al. (2019) presented a 

theoretical study of the structural resistance of 

compressed short concrete elements in a glass-fiber 

reinforced shell. Kudryavtsev (2019) presented the study 

of the behavior of axially loaded columns that consisted 

of two flanges and a thin triangularly corrugated web, 
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connected by automatic welding. Nazarimofrad and 

Shokrgozar (2019) dealt with a Buckling‐Restrained 

Braced frame (BRB) as the seismic force‐resisting 

system used in buildings. Nonlinear time history and 

incremental dynamic analysis techniques were applied to 

investigate the behavior of the two frames with different 

stories under different ground motion records.  

Qi et al. (2019) dealt with the innovative pultruded 

Fiber Reinforced Polymer (FRP). Axial compression 

tests with both ends pinned were employed to 

investigate the columns under concentric load. Strain 

responses on specimens with different slenderness 

ratios were consistent with the observed failure 

modes. The courses of the values of the longitudinal 

strains in Fig. 10 correspond to the graph in Fig. 4 in 

the paper (Murawski and Kłos, 2007) and in Fig. 4a 

(Murawski, 2011b) - what confirms qualitatively the 

correctness of the Technical Stability Theory. 

Roy et al. (2019) dealt with a built-up box section 

popular for column members in Cold-Formed Steel 

(CFS). Simão et al. (2019) presented a study on the 

buckling behavior of slender steel columns under fire 

conditions, which depended on two main factors: The 

thermal elongation of the column and the degradation of 

the steel mechanical properties due to temperature rise. 

Virgens et al. (2019) presented the experimental study of 

eccentrically loaded reinforced concrete columns with an 

added 35 mm self-compacting concrete jacket attached 

to the column’s most compressed faces using wedge 

bolts. Zhou et al. (2019) introduced the effective length 

factor and imperfection factor to the current stability 

factor formula to calculate the ultimate load of the lattice 

boom accurately. Zucco et al. (2020) tested a 

750×640×240 mm variable-stiffness unitized integrated-

stiffener out-of-autoclave thermoplastic composite wing-

box for a combined shear-bending-torsion induced 

buckling load. Abedini et al. (2020) focused on 

investigating blast load parameters to design of 

Reinforced Concrete (RC) columns to withstand blast 

detonation. The numerical model was based on finite 

element analysis using LS-DYNA. Ahiwale et al. (2020) 

dealt with a Concrete-Filled Tubular (CFT) structure 

consisting of high strength, favorable ductility, fire 

resistance and energy absorption. Alomarah et al. (2020) 

dealt with auxetic structures that exhibit Negative 

Poisson's Ratio (NPR). Avci-Karatas (2020) dealt with 

construction in areas of high earthquake intensity, 

extreme climates and blast loading. Doan et al. (2020) 

dealt with a design of thin-walled composite columns. 

Goroshko et al. (2020) proposed a method of preventing 

the loss of Euler stability by thin rods. Kiss (2020a) 

investigated the planar stability of fixed-fixed shallow 

circular arches and (Kiss, 2020b) aimed to find the 

buckling loads for pinned-rotationally restrained shallow 

circular arches in terms of the rotational end stiffness, 

geometry and material distribution. Naseri et al. (2020) 

presented an experimental study into the buckling 

behavior of Glass Fabric-Reinforced Polymer (GFRP) 

cylindrical shells subjected to axial compression load. 

Pinarbasi et al. (2020) dealt with the Turkish Building 

Code for Steel Structures replaced with a more rational 

Specification of Design and Construction of Steel 

Structures (SDCSS), which was prepared based on the 

American steel design specification (AISC 360-16).    

Qays and Al-Zuhairi (2020) discussed the idea of using 

slender Reinforced Concrete (RC) columns with cross-

shaped (+-shaped) instead of square-shaped columns. 

Rajkannu and Sanjeevi (2020) presented the details of an 

experimental and numerical study on the effect of warping 

on the Flexural-Torsional Buckling (FTB) behavior of 

axially loaded cold-formed steel lipped channel members.    

Saberi et al. (2020) studied the cooperation of steel and 

concrete in composite columns. Saingam et al. (2020) 

dealt with a seismically retrofitting Reinforced Concrete 

(RC) building with a combination of Buckling-Restrained 

Braces (BRBs) and elastic steel frames that provided 

additional lateral stiffness and energy dissipation capacity. 

Terazawa et al. (2020) dealt with a grid-purlin system 

composed of RHS members known to be effective to 

prevent buckling of the welded beams. Viana et al. (2020) 

addressed a corotational Lagrangian formulation for 

nonlinear dynamic analysis of steel planar frames. 

Mehrabi et al. (2021) studied the dynamic response and 

mechanical performance of fiber-reinforced concrete 

columns using hybrid numerical algorithms.  

Besides, there was done the literature review of semi-

slender, thin-walled column stability (Murawski 2008a; 

2008b; 2008c; 2008d; 2008e; 2020a; 2020b; 2020c).  

Stability of Columns in Elastic-Plastic States 

An application of thin-walled columns for structures 

mainly depends on their load capacity for axial loads, 

i.e., their stability. In the case of slender columns, this 

will refer to the stability in elastic states, but more 

often in engineering practice in the elastic-plastic 

states. In an analysis of stability in practical designing 

for squat columns, the determining of critical force may 

be used by a simplification formulated by (Tetmajer, 

1886; Jasiński, 1894, 1985). 

The simplification relies on the replacement of 

Euler’s hyperbole by Tetmajer-Jasiński’s straight line. 

For materials having the limit of plastic stress pl = R*
e 

and limit of elastic stress H = REu
H the co-ordinates of 

Tetmajer-Jasiński’s straight line are: cr = H = REu
H for 

the slenderness ratio limiting elastic states = el_lt 

(simultaneously on the Euler’s hyperbole) and cr = pl = 

R*
e for  = 0 and in that case, the formula of Tetmajer-

Jasiński’s straight line is as follows: 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

86 

*
*

  _

,
Eu

T J e H
cr e

el lt

R R
R 



 
    (1) 

 

it may be also presented as depending on (L*t) and A.  

For squat thin-walled cylindrical columns (Fig. 1) it 

is as follows: 
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and for squat thin-walled square columns (Fig. 2): 
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Tetmajer-Jasiński’s simplification was described in 

the paper of (Murawski, 2008a). 

The next simplification which may be used in the 

analysis of stability for semi-slender columns to 

determine the critical force in practical designing is the 

one formulated by Ostenfeld (1898) and Johnson. 

The simplification relies on the replacement of 

Euler’s hyperbole by Johnson-Ostenfeld’s parabola.  

For materials having the limit of plastic stress pl = Re
* 

the critical force cr = pl = Re
* for  = 0 and the formula of 

Johnson-Ostenfeld’s parabola is as follows: 
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Johnson-Ostenfeld’s parabola for squat thin-walled 

cylinder columns depending on (L*t) and A is as 

follows (Fig. 3): 
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and for squat thin-walled square columns (Fig. 4): 
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Johnson-Ostenfeld’s simplification was described in 

the paper Murawski (2008b). 

Ylinen (1956) used the approximation of the function 

Et = d/d= Et() and obtained the equation: 
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For cylindrical columns, the critical stress according to 

Ylinen’s formula depending on (L*t) and A equals (Fig. 5): 
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and for square columns (Fig. 6) is equal to:  
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Ylinen’s theory was described in the paper of (Murawski, 2008c). 

Březina (1966) used the function () according to the DIN 4114 standard and obtained the equation: 
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Fig. 1: Surface function cr
T-J

cylin(L*t, A) based on the Tetmajer-Jasiński formula of the cylindrical columns made of steel R35 
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Fig. 2: Surface function cr

T-J
square(L*t, A) based on the Tetmajer-Jasiński formula of the square-shaped columns made of steel R35 
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Fig. 3: Surface function cr
J-O

cylin(L*t, A) based on the Johnson-Ostenfeld formula of the cylindrical columns made of steel R35 
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Fig. 4: Surface function cr
J-O

square(L*t, A) based on the Johnson-Ostenfeld formula of the square columns made of steel R35 
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Fig. 5: Surface function cr
Ylinen

cylin(L*t, A) based on the Ylinen’s formula of the cylindrical shaped columns made of steel R35 
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Fig. 6: Surface function cr
Ylinen

 square(L*t, A) based on the Ylinen’s formula of the square columns made of steel R35 
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For cylindrical columns the critical stress according 

to Březina (Fig. 7): 
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

 (11) 

 

For the square columns, the critical stress according 

to Březina depending on (L*t) and A is equal to (Fig. 8): 
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 (12) 

 

Březina’s hypothesis was described in the paper of 

(Murawski, 2008d).  

Pearson (1950; Bleich, 1952; Vol’mir, 1965) 

employed in their research the combination of the 

tangent modulus Et and the modulus E. Using the 

function () according to the standard DIN 4114, they 

obtained the formula as follows: 
 

 
 

 

2 4
22 2

4 2

Pearson-Bleich-Vol’mir 

2 4

4 2

1

.

1

e x

x x x e x

cr

e x

R R
R R R R R

E

R R

E










 
       
   


 

 
  

 (13) 

 
For the cylindrical columns, the critical stress 

according to Pearson-Bleich-Vol’mir’s formula depending 

on (L*t) and A is equal to (Fig. 9):  
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and for the square columns (Fig. 10): 
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The loss stability theory of axially compressed 

slender columns in elastic-plastic states, based on the 

concept of the tangent modulus, was formulated by 

(Engesser, 1889; 1895; Kármán, 1908; 1910;  

Shanley, 1947). 

Engesser-Kármán-Shanley’s theory with the 

author’s analysis of stability of thin-walled columns 

was described in the papers and books: Murawski 

(1999; 2002a; 2002b; 2003; 2008e; 2011a; 2011b; 

2011c; 2017a; 2018). 

In the case of stability of columns in elastic-plastic 

states, the author assumed that the loss of stability 

occurs already at minimum loads, whereas the 

position of the resultant neutral layer is changing what 

was caused by the superposition of pure compression 

and bending of the central line of the column.  

This author’s theory can be also named as the 

modified Engesser-Kármán-Shanley’s theory and was 

described in the books: Murawski (2008e; 2011a; 2011b; 

2011c; 2017a; 2018) 

According to the assumption the state of stresses in 

the critical cross-section after the loss of stability and 

before the loss of carrying capacity results from the 

superposition of pure compression and bending. The 

formulas for the modified Engesser-Kármán-Shanley’s 

critical stress are as follows: 
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In the case of cylindrical columns according to the 

Engesser-Kármán-Shanley modified theory, the formula 

for the stress limiting elastic states is as (Fig. 12): 
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and the critical stress (Fig. 11):  
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Fig. 7: Surface function cr

Březina
 cylin(L*t, A) based on the Březina’s formula of the cylindrically-shaped columns made of steel R35 
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Fig. 8: Surface function cr
Březina

square(L*t, A) based on the Březina’s formula of the square-shaped columns made of steel R35 
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Fig. 9: Surface function cr
P-B-V

cylin(L*t, A) based on the Pearson-Bleich-Vol’mir’s formula of the cylindrical columns made of steel R35 
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Fig. 10: Surface function cr
P-B-V

square(L*t, A) based on the Pearson-Bleich-Vol’mir’s formula of the square columns made of steel R35 
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Fig. 11: Surface function cr

KM
cylin(L*t, A) based on the modified Engesser-Kármán-Shanley’s formula of the cylindrical columns 

made of steel R35 
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Fig. 12: Surface function H

KM
cylin(L*t, A) based on the modified Engesser-Kármán-Shanley’s formula of the cylindrical columns 

made of steel R35 
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Fig. 13: Surface function cr

KM
square(L*t, A) based on the modified Engesser-Kármán -Shanley’s formula of the square columns made 

of steel R35 
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Fig. 14: Surface function H

KM
square(L*t, A) based on the modified Engesser-Kármán-Shanley’s formula of the square columns made 

of steel R35 
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In the case of an axially compressed square column 

by ball-and-socket joints, the elastic stress is as follows 

(Fig. 14): 
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 (20) 

 

and the critical stress (Fig. 13):  
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Experimental Research Works on Stability 

in Elastic-Plastic States of Columns 

Compressed Through Ball-and-Socket 

Joints with Friction 

The tests of compression of specimens by applying 

an axial load through the steel ball-and-socket joints with 

friction (Fig. 15) were carried out using the test machine 

ZD 40 with the range of 40 kN. As the results of tests of 

the compressions of the specimens made of the same 

material were obtained the curves P(a).  

The curve obtained for a semi-slender column in the 

elastic-plastic states together with the type of the 

deformations is schematically presented in Fig. 16.  

In order to show the differences in Fig. 17 is 

schematically presented the curve for a very slender 

column in elastic states, for which there are no latest 

deformations after relief a load. 

Photo. 1 shows the specimen made of steel R35 with 

the cross-section 281 and the slenderness ratio = 

15, compressed through ball-and-socket joints with so 

big partition of friction in the bottom joint, that part of 

the fold had appeared not in the middle of the column 

but at the upper end. 

On the base of the experimental results executed on 

specimens made of steel R35 compressed through ball-

and-socket joints with friction (Murawski, 1999; 2003; 

2011c; 2017a) were determined the compress modulus 

Ec and secant compress modulus Esc for thin-walled 

columns in elastic-plastic states (Fig. 16). They were 

determined analogically to Young’s modulus E, tangent 

modulus Et and secant modulus Es during tension (Fig. 

18). On the basis of the experimental results were 

determined the approximated functions: L() and () 

(Fig. 21 and 23), P() and () (Fig. 22, 24, 26 and 27) 

as well as Ec() and Esc() (Fig. 25). 

The approximated experimental functions exp() were 

compared to the theoretical functions KM() - Fig. 27. 

P

 
 
Fig. 15: Guidance and the fixing of the specimen during the 

compression through ball-and-socket joints with 

friction and the characteristic form of lateral buckling 

of the semi-slender cylindrical column in elastic-

plastic states (Murawski, 2011a; 2011b; 2017a; 2020a) 
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Fig. 16: Curve P(a) of 1 <<el- lt in the elastic-plastic states 

(Murawski, 2011a; 2011b; 2017a) 
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Fig. 17: Curve P(a) of > el-lt in the elastic state (Murawski, 

2011a; 2011b; 2017a) 
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Fig. 18: Young’s modulus E, tangent modulus Et and secant 

modulus Es during tension (Murawski, 2002a; 2002b; 

2011a; 2011b; 2017a) 

 

 

 

Photo 1: Specimen with the cross-section 281 and the 

slenderness ratio = 15, made of steel R35, 

compressed through ball-and-socket joints with the 

big partition of friction in the bottom joint 

(Murawski, 1999; 2011b; 2017a) 

Discussion 

The Tetmajer-Jasiński’s surface functions (2) and (3) 

showed in Figs. 1 and 2 are almost linearly increasing 

with the transverse cross-section area A and strongly 

linearly decreasing with the L*t product. 

The Johnson-Ostenfeld’s surface functions (5) and 

(6) showed in Figs. 3 and 4 are non-linearly increasing 

with the transverse cross-section area A and strongly 

non-linearly with second degree decreasing with the 

L*t product. 

The Ylinen’s surface functions (8) and (9) showed in 

Figs. 5 and 6 are strong non-linear of increasing with the 

transverse cross-section area A and very strong parabolic 

non-linearly decreasing with the L*t product, so big part 

of the surface functions are almost flat. 
The Březina’s surface functions (11) and (12) showed 

in Figs. 7 and 8 are non-linearly increasing with the 
transverse cross-section area A and strongly non-linearly 
with second degree decreasing with the L*t product. 

The Pearson-Bleich-Vol’mir’s surface functions (14) 
and (15) showed in Fig. 9 and 10 are non-linearly 
increasing with the transverse cross-section area A and 
strongly parabolic non-linearly with second degree 
decreasing with the L*t product. 

The author’s surface functions (18) and (20) for the 
limiting elastic stress showed in Figs. 12 and 14 are 
linearly decreasing with the L*t product and linearly 
increasing the transverse cross-section area A, so the 
surface functions are flat.  

The author’s surface functions (19) and (21) for the 

critical compressive stress showed in Fig. 11 and 13 are 

slightly non-linearly decreasing with the L*t product 

and slightly non-linearly increasing with the transverse 

cross-section area A, so a part of the surface function is 

almost flat. 

In order to compare the experimental results to the 

results obtained from simplifications and hypotheses – 

the results in the case of columns with the transverse 

cross-section 501 and 281 made of the steel R35 

were determined and showed for adequately ranges for 

elastic-plastic states as the graphs of the functions cr() 

in Figs. 27-33. 

The maximal departures from the experimental 

results of those obtained from simplifications and 

hypotheses are presented in Table 1 and 2. 
The biggest maximal differences are between the 

experimental results and Ylinen’s: -69,90 MPa and -21,63% 
for 501 and -68,93 MPa and -25,94% for 281. 

The least maximal differences are between the 

experimental results and the author’s approximated 

hypothesis: 7,06 MPa and 2,41% for 501 and -5,21 

MPa and -2,01% for 281. 

For the columns 501 on the base of the tests were 

assumed: E*= 195 533 MPa, el-lt = 102.69, Re
*= 358.56 

MPa, RH
*= 247,34 MPa, RH

Eu = 202.875 MPa. 
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Fig. 21: Approximated functions: (a) L() and (b) () of the specimens with cross-section 28x1 made of steel R35, compressed 

through ball-and-socket joints with friction 
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Fig. 22: Approximated functions: (a) P() and (b) () of the specimens with cross-section 281 made of steel R35, compressed 

through ball-and-socket joints with friction 
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Fig. 23: Approximated functions: (a) L() and (b) () of the specimens with cross-section 501 made of steel R35, compressed 

through ball-and-socket joints with friction 
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Fig. 24: Approximated functions: (a) P() and (b) () of the specimens with cross-section 501 made of steel R35, compressed 

through ball-and-socket joints with friction 
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Fig. 25: Approximated functions Ec() and Esc() of the specimens with cross-section (a) 261 and (b) 501 made of steel R35, 

compressed through ball-and-socket joints with friction 
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Fig. 26: Sets of the approximated functions: (a) P() and (b) () of the specimens made of steel R35, compressed through ball-and-

socket joints with friction 
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Fig. 27: Sets of the functions: approximated experimental exp() and theoretical () of the specimens made of steel R35: (a) 

281 and (b) 501, compressed through ball-and-socket joints with friction 
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Fig. 28: Functions cr() according to the modified Engesser-Kármán -Shanley’s hypothesis and approximated curves obtained from 

experiments for columns 501 and 281 made of steel R35 
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Fig. 29: Functions cr() according to the (Tetmajer, 1886; Jasiński, 1894) simplification and approximated curves obtained from 

experiments for columns 501 and 281 made of steel R35 
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Fig. 30: Functions cr() according to Johnson-Ostenfeld’s (1898) simplification and approximated curves obtained from 

experiments for columns 501 and 281 made of steel R35 
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Fig. 31: Functions cr() according to Ylinen’s hypothesis (1956) and approximated curves obtained from experiments for columns 

501 and 281 made of steel R35 
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Fig. 32: Functions cr() according to the Březina’s hypothesis (1966) and approximated curves obtained from experiments for 

columns 501 and 281 made of steel R35 
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Fig. 33: Functions cr() according to the (Pearson, 1950; Bleich, 1952; Vol’mir’s, 1965) hypothesis and approximated curves from 

experiments for columns 501 and 281 made of steel R35 
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Table 1: Maximal differences [%] between results obtained according to the author’s approximated hypothesis and results obtained 

from of the tests on the columns 501 made of steel R35 

   35_ 50 1: exp exp

_ max max
MPaR x KM KM

cr cr cr      
exp

35 _ 50 1: exp/

_ max exp

max

% 100%
KM

R x KM cr cr
cr

cr

 



 
   

 

   

7,06 2,41 

     exp35_ 50 1: exp

_ max max
MPa

T JR x T -J

cr cr cr 
 

    
   

exp
exp/35 _ 50 1:

_ max exp

max

% 100%
T - J

T - JR x cr cr
cr

cr

 



 
   

 
  

18,17 6,19 

     exp35_ 50 1: exp

_ max max
MPa

J OR x J -O

cr cr cr 
 

    
   

exp
exp/35 _ 50 1:

_ max exp

max

% 100%
J -O

J -OR x cr cr
cr

cr

 



 
   

 
   

-16,70 -5,38 

   35_ 50 1: exp exp

_ max max
MPaR x Ylinen Ylinen

cr cr cr       
exp

35 _ 50 1 exp/

_ max exp

max

% 100%
Ylinen

R x Ylinen cr cr
cr

cr

 



 
   

 
 

-59,90 -21,63 

   35_ 50 1 exp exp

_ max max
MPaR x Brezina Brezina

cr cr cr       
exp

35 _ 50 1: exp/

_ max exp

max

% 100%
Brezina

R x Brezina cr cr
cr

cr

 




 

   
 

 

24,33 11,99 

     exp P-B-V35_ 50 1 exp P-B-V 

_ max max
MPaR x

cr cr cr 


       
exp P-B-V 

exp/ P-B-V35 _ 50 1:

_ max exp

max

% 100%R x cr cr
cr

cr

 



 
   

 

 

- 42,06 -14,42 

 

Table 2: Maximal differences  [%] between results obtained according to the author’s approximated hypothesis and results 

obtained from of the tests on the columns 281 made of steel R35 

   35_ 28 1: exp exp

_ max max
MPaR x KM KM

cr cr cr       
exp

35 _ 28 1: exp/

_ max exp

max

% 100%
KM

R x KM cr cr
cr

cr

 



 
   

 

   

-5,21 -2,01 

     exp35_ 28 1: exp

_ max max
MPa

T JR x T -J

cr cr cr 
 

    
   

exp
exp/35 _ 28 1:

_ max exp

max

% 100%
T - J

T - JR x cr cr
cr

cr

 



 
   

 
 

21,46 8,26 

     exp35_ 28 1: exp

_ max max
MPa

J OR x J -O

cr cr cr 
 

    
   

exp
exp/35 _ 28 1:

_ max exp

max

% 100%
J -O

J -OR x cr cr
cr

cr

 



 
   

 
 

33,06 22,67 

   35_ 28 1: exp exp

_ max max
MPaR x Ylinen Ylinen

cr cr cr      
exp

35 _ 28 1 exp/

_ max exp

max

% 100%
Ylinen

R x Ylinen cr cr
cr

cr

 



 
   

 
 

-68,93 -25,94 

   35_ 28 1 exp exp

_ max max
MPaR x Brezina Brezina

cr cr cr      
exp

35 _ 28 1: exp/

_ max exp

max

% 100%
Brezina

R x Brezina cr cr
cr

cr

 



 
   

 

 

16,82 11,51 

     exp P-B-V35_ 28 1 exp P-B-V 

_ max max
MPaR x

cr cr cr 


       
exp P-B-V 

exp/ P-B-V35 _ 28 1:

_ max exp

max

% 100%R x cr cr
cr

cr

 



 
   

 

 

-44,09 -15,45 

 

For the columns 281 on the base of the tests were 

assumed: E* = 143 230 MPa, el-lt = 104.331, Re
* = 

354.05 MPa, RH
* = 252,68 MPa, RH

Eu = 145.803 MPa. 

The average values were assumed: E* = 166 614 

MPa, el-lt = 102.6, Re
* = 346.54 MPa, RH

* = 268.24 MPa, 

RH
Eu = 156.0 MPa. 
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The tests were executed by ball-and-sockets joints 

what caused increasing partition of friction between balls 

and sockets with increasing load.  

Conclusion 

For Johnson-Ostenfeld’s, Ylinen’s, Březina’s and 
Pearson-Bleich-Vol’mir’s theories the surface functions 
are almost flat in the most part-the bronze parts of the 
surface functions in Figs. 3 to 10.  

The formulas given by those theories don’t allow 

presenting them depending on the transverse cross-

section area A and slenderness ratio  together - for what 

allows the technical stability theory for columns in 

elastic-plastic states. That proves that those theories are 

simplified and limited. 

They don’t allow presenting the functions for the 

shell stresses and strains-for what allows the technical 

stability theory for columns in elastic-plastic states. 

Besides, it was concluded that: 

 

 For increasing value of a slenderness ratio  the values 

of the compress modulus Ec and secant compress 

modulus Esc were also increasing: Ec(i) < Ec(i+1) < 

Ec(i+2) and Esc(i) < Esc(i+1) < Esc(i+2) - Fig. 1 to 25 

 For the slenderness ratio limiting elastic states el-lt 

the compress modulus Ec and secant compress 

modulus Esc were equal and that value was signed as 

E* = Ec(el-lt) = Esc(el-lt) ≈ E - Figs. 1 to 25 

 With increasing of the transverse cross-section area 

A the shortness LH() is increasing too, but Lcr() 

is decreasing and they meet together at el-lt - Fig. 

21a and 23a 

 The strains () are decreasing exponentially-Fig. 

21b and 23b 

 With increasing of the transverse cross-section area 

A the forces Pcr
* and PH

* are increasing too, but the 

stresses Re
* and RH

* are almost constant-Fig. 26 

 With increasing of the transverse cross-section area 

A the stresses cr() and RH() are increasing too 

and the stress RH
Eu is also increasing-Fig. 26. The 

stress RH() is changing because its values were 

measured from the curves () obtained from the 

experiments and they consisted the change of an 

elastic part in the critical transverse cross-sections A 

with the changing slenderness ratio 

 With increasing of transverse cross-section area A 

the slenderness ratios limiting the elastic states el_lt 

are almost the same-Fig. 26 

 

It was also concluded that the approximated theory 

of technical stability for columns in the elastic-plastic 

states gives the possibility to determine the stress 

RH() as well as cr(). 

Ethics 

The content of this study is the changed preprint 

(Murawski, 2020b) according to the issuer requirements 

and reviewers’ and own author’s corrections. 

References 

Abbas, R., & Awazli, A. (2017). Behavior of Reinforced 

Concrete Columns Subjected to Axial Load and 

Cyclic Lateral Load. University of Baghdad 

Engineering Journal, 23, 21-40. 
https://joe.uobaghdad.edu.iq/index.php/main/article/

view/69 

Abdel-Karim, M., Abdel-Rahman, G., Said, M., & 

Shaaban, I. (2017). Proposed Model for Strength 

Analysis of HSC Eccentrically Loaded Slender 

Columns. Magazine of Concrete Research, 70. 

https://doi.org/10.1680/jmacr.17.00137 

Abdel-Lateef, T. H., Dabaon, M. A., Abdel-Moez, O. 

M., & Salama, M. I. (2001, April). Buckling loads 

of columns with gradually changing cross-section 

subjected to combined axial loading. In Fourth 

Alexandria International Conference on Structural 

and Geotechnical Engineering (pp. 2-4).  

Abdulazeez, M., ElGawady, M., & Abdelkarim, O. 

(2018). Bending and Buckling Behavior of Hollow-

Core FRP-Concrete-Steel Columns. Journal of 

Bridge Engineering, 24. 

https://doi.org/10.1061/(ASCE)BE.1943-

5592.0001419 
Abed, F., AlHamaydeh, M., & Barakat, S. (2013). 

Nonlinear Finite-Element Analysis of Buckling 
Capacity of Pretwisted Steel Bars. Journal of 
Engineering Mechanics, ASCE, 139, 791-801. 
https://doi.org/10.1061/(ASCE)EM.1943-
7889.0000528 

Abedini, M., Mutalib, A., Zhang, C., Mehrmashhadi, J., 
Raman, S. N., Alipour, R., Momeni, T., & Mussa, 
M. (2020). Large deflection behavior effect in 
reinforced concrete columns exposed to extreme 
dynamic loads. Frontiers of Structural and Civil 
Engineering, 14. https://doi.org/10.1007/s11709-
020-0604-9 

Ahiwale, D., Khartode, R., Bhapkar, A., Narule, G., & 

Sharma, K. (2020). Influence of compressive load 

on concrete filled steel tubular column with 

variable thickness. Innovative Infrastructure 

Solutions, 6, 1-14. 

https://doi.org/10.1007/s41062-020-00390-z 

Al-Kamal, M. (2016). Design for Prestressed Concrete 

Flexural Members against Progressive Collapse. 

Thesis for PhD. 

https://www.researchgate.net/publication/32084011

3_Design_For_Prestressed_Concrete_Flexural_Me

mbers_Against_Progressive_Collapse  

https://www.researchgate.net/publication/320840113_Design_For_Prestressed_Concrete_Flexural_Members_Against_Progressive_Collapse
https://www.researchgate.net/publication/320840113_Design_For_Prestressed_Concrete_Flexural_Members_Against_Progressive_Collapse
https://www.researchgate.net/publication/320840113_Design_For_Prestressed_Concrete_Flexural_Members_Against_Progressive_Collapse


Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

109 

Alomarah, A., Masood, S., & Ruan, D. (2020). Out-

of-plane and in-plane compression of additively 

manufactured auxetic structures. Aerospace 

Science and Technology, 106, 106107. 

https://doi.org/10.1016/j.ast.2020.106107 

Alvarenga, A. R., & Silveira R. A. (2006). 

Considerations on advanced analysis of steel 

portal frames. In Proceedings of ECCM III 

European Conference on Computational 

Mechanics–Solids, Structures and Coupled 

Problems in Engineering (p.2119). 
https://doi.org/10.1007/1-4020-5370-3_103 

Ammash, H. (2017). Shape optimization of innovation 

cold-formed steel columns under uniaxial 

compressive loading. Jordan Journal of Civil 

Engineering, 11, 473-489. 
https://search.proquest.com/openview/1c4bf82daa05

41434070c902473cba42/1?pq-

origsite=gscholar&cbl=2035891 

Ananthi, G. B., & Anbarasu, M. (2014). A Study on 

Cold-formed Steel Lipped Built up Channel 

Sections Subjected to Axial Compression. Structural 

Engineering Convention, New Delhi. 

Ananthi, G. B., Roy, K., & Lim, J. B. P. (2021). Non-

linear behaviour and design of web stiffened 

battened built-up stainless steel channel sections 

under axial compression. Structures, 30. 

https://doi.org/10.1016/j.istruc.2021.01.014 

Andreev, V. I., & Tsybin, N. Y. (2015). On the Stability 

of Rod with Variable Cross-section. Procedia 

Engineering. 111. 42-48. 

https://doi.org/10.1016/j.proeng.2015.07.033 

Anuntasena, W., Lenwari, A., & Thepchatri, T. (2019). 

Finite Element Modelling of Concrete-Encased 

Steel Columns Subjected to Eccentric Loadings. 

Engineering Journal. 

https://doi.org/10.4186/ej.2019.23.6.299 

Atteya, M., Shaat, A., & Sayed-Ahmed, E. Y. (2017). 

Effect of CFRP Bonded Length on the Strength of 

Axially Loaded HSS. Al-Azhar University Civil 

Engineering Research Magazine (CERM), 39, 2, 

89-96. 

Avci-Karatas, C. (2020). Time History Analysis of a 

Reinforced Concrete (RC) Building in Hilly Terrain 

Subjected to Earthquake. 6th International Congress 

on Engineering, Architecture and Design, 

Istanbul/Turkey. 

Baru, A. (2017). An Investigation of Buckling Phenomenon 

in Steel Elements. Heriot Watt University, School of 

Energy, Geoscience, Infrastructure and Society. 

https://doi.org/10.13140/RG.2.2.36815.48803  

Bedon, C., & Amadio C. (2017). Structural glass 

elements: Unified approach for the buckling 

verification. Structural, 212. 

https://doi.org/10.12917/STRU212.18 

Bedon, C., & Amadio C. (2018). Buckling analysis and 

design proposal for 2-side supported double 

Insulated Glass Units (IGUs) in compression. 

Engineering Structures, 168, 23-34. 

https://doi.org/10.1016/j.engstruct.2018.04.055 

Beylergil, B., Aktaş, A., & Cunedioglu, Y. (2012). 

Buckling and compressive failure of stepped lap 

joints repaired with composite patches. Journal of 

Composite Materials, 26, 3213. 

https://doi.org/10.1177/0021998312437001 

Bijlaard, P. P. (1949). Theory and tests on the plastic 

stability of plates and shells. Journal of the 

Aeronautical Sciences, 16(9), 529-541. 

https://doi.org/10.2514/8.11851 

Bleich, F. (1952). Buckling strength of metal structures. Mc 

Graw-Hill Book Company, Inc., Cardnr. 51-12588. 

https://repository.tudelft.nl/islandora/object/uuid:b3

915fc7-3a82-48ad-956b-29fbcceb46ae 

Brank, B., Perić, D., & Damjanić, F. B. (1997). On 

Large Deformations of Thin Elasto-Plastic Shells: 

Implementation of a Finite Rotation Model for 

Quadrilateral Shell Element. International Journal 

for Numerical Methods in Engineering. 40. 689-726. 

https://doi.org/10.1002/(SICI)1097-

0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7 

Brasil, R., & Wahrhaftig, A. d. M. (2018). Experimental 

Evaluation of the Effect of Geometric Nonlinearities 

on Structural Resonances. Lecture Notes in Civil 

Engineering, 611-618. https://doi.org/10.1007/978-

3-319-67443-8_53 

Březina, V. (1966). Stateczność prętów konstrukcji 

metalowych. Arkady. Warszawa. 
https://archiwum.allegro.pl/oferta/statecznosc-

pretow-konstrukcji-metalowych-spis-

i6211673367.html 

Broszko, M. (1953). Über die unelastische Knickung 

prismatischer Stäbe. 

Can, Y., Güçlü, H., Kasar, İ., & Yazici, M. (2018). Finite 

Element Simulation of The Telescopic Crash Boxes 

Designing by Adhesively Bonded Coaxial 

Aluminum Tubes. In 5th International Conference 

on Computational and Experimental Science and 

Engineering (ICCESEN-2018), 12-16 October, 

Antalya-Turkey. 
D’Aniello, M., Della Corte, G., & Mazzolani, F. M. 

(2006, August). Seismic upgrading of RC buildings 
by buckling restrained braces: experimental results 
vs. numerical modeling. In Proceedings of Fifth 
International Conference on Behavior of Steel 
Structures in Seismic Areas (STESSA 2006). 

Doan, Q. H., Thai, D.-K., & Tran, N. L. (2020). A 
Numerical Study of the Effect of Component 
Dimensions on the Critical Buckling Load of a 
GFRP Composite Strut under Uniaxial 
Compression. Materials, 13, 931. 
https://doi.org/10.3390/ma13040931 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

110 

Dubina, D., & Ungureanu, V. (2000). Elastic-plastic 
interactive buckling of thin-walled steel 
compression members. 
https://scholarsmine.mst.edu/isccss/15iccfss/15iccfss
-session4/2/ 

Eissa, M, Saeed, N. A, & El-Ganini, W.A. (2014). 
Saturation-based active controller for vibration 
suppression of a four-degree-of-freedom rotor–
AMB system. Nonlinear Dynamics 76(1), 743-764. 
https://doi.org/10.1007/s11071-013-1166-3 

Engesser, F. (1889). Ober Die Knickfestigkeit Gerader 
Stabe (On the Buckling Strength of Straight Struts) 
Zeitschrift fur Architektur und Ingenieurwesen.  

Euler, L. (1744). Methodus inveniendi lineas curvas 
maximi minimive proprietate gaudentes. Apud 
Marcum-Michaelem Bousquet. 

Fraldi, M., Nunziante, L., Carannante, F., Prota, A., 
Manfredi, G., & Cosenza, E. (2008). On the 
prediction of the collapse load of circular concrete 
columns confined by FRP. Engineering Structures, 
30(11), 3247-3264. 
https://doi.org/10.1016/j.engstruct.2008.04.036 

Gerard, G. (1957). Plastic stability theory of thin shells. 
J. Aeron. Sci. 24 (4), 269-274. 
https://doi.org/10.2514/8.3828 

Gerard, G. (1962). Plastic stability theory of 

geometrically orthotropic plates and cylindrical 

shells. Journal of the Aerospace Sciences, 29(8), 

956-962. https://doi.org/10.2514/8.9666 

Gerard, G., & Becker, H. (1957). Handbook of structural 

stability: part I, buckling of flat plates, NACA Tech 

(No. 3781). Note. 

Goroshko, A., Royzman, V., & Petraschuk, S. (2020). 

Simulation of a thin long rod that does not have 

critical forces and does not lose stability to Euler. 

Problems of Tribology, 25, 3/97-2020, 25-3 I. 

https://doi.org/10.31891/2079-1372-2020-97-3-25-31 

Isleem, H., Wang, Z., Wang, D., & Smith, S. (2018). 

Monotonic and Cyclic Axial Compressive Behavior 

of CFRP-Confined Rectangular RC Columns. 

Journal of Composites for Construction, 22. 

https://doi.org/10.1061/(ASCE)CC.1943-

5614.0000860 

Ismail, M. R. (2011). Evaluating the Dynamical 

Behavior and Stability of Pipes Conveying Fluid 

(Doctoral dissertation, Ph. D. Thesis AL-Nahrain 

University, mechanical engineering). 

Ivanov, A. I. (2019). Vibrations of Shaft Caused by 

Inertial Excitations. Journal of Mining and 

Geological Science, 62, 19-24. 
Jakab, A., Nehme, K., & Nehme, S. G. (2016, April). 

Fracture behaviour of glass columns experimental 
study of axial loaded glass columns. In IOP 
Conference Series: Materials Science and 
Engineering (Vol. 123, No. 1, p. 012056). IOP 
Publishing. https://doi.org/10.1088/1757-
899X/123/1/012056 

Jasiński, F.  (1894). On Longitudinal Bending Strength 

(in Russian), St. Petersburg. 
https://pl.wikipedia.org/wiki/Feliks_Jasi%C5%84ski

#cite_note-6 

Jasiński, F. (1895). Badania nad sztywnością prętów 

ściskanych (in Polish). Przegląd Techniczny, 

Warszawa. 

Johnson, C. G., Jain, U., Hazel, A. L., Pihler-Puzović, 

D., & Mullin, T. (2017). On the buckling of an 

elastic holey column. Proceedings of the Royal 

Society A: Mathematical, Physical and Engineering 

Sciences, 473(2207), 20170477. 

https://doi.org/10.1098/rspa.2017.0477 

Kalamara, R., Bedon, C., & Eliášová, M. (2016). 

Experimental investigation for the structural 

performance assessment of square hollow glass 

columns. Engineering Structures 113(4), 1-15. 

https://doi.org/10.1016/j.engstruct.2016.01.028 

Kambe, W., Takahashi, S., Ito, T., & Aoki, K. (2013). 

An experimental study on compression resistant 

performance of thick plywood as an axial member. 

Journal of Structural and Construction Engineering 

(Transactions of AIJ). 78. 355-361. 

https://doi.org/10.3130/aijs.78.355 

Kármán, T. (1908). Die knickfestigkeit gerader stäbe. 

Physikalische zeitschrift, 9(4), 136-140. 

Kármán, T. (1910). Untersuchungen über 

Knickfestighkeit. Mitteilungen über 

Forschungsarbeiten auf dem Gebiete des 

Ingenieurwesens, 81, Berlin. 

https://link.springer.com/chapter/10.1007%2F978-3-

662-01994-8_1  

Kiss, L. (2020a). Stability of fixed-fixed shallow arches 

under arbitrary radial and vertical forces. Magazine 

of Civil Engineering, 95, 31-41. 

https://doi.org/10.18720/MCE.95.3 

Kiss, L. (2020b). Stability of pinned-rotationally 

restrained arches. Theoretical and Applied 

Mechanics, 10-10. 

https://doi.org/10.2298/TAM200402010K 

Krishan, A. L., Chernysova, E. P., & Astafyeva, M. A. 

(2019, December). Behavior of compressed concrete 

in a glass fiber-reinforced shell. In IOP Conference 

Series: Materials Science and Engineering (Vol. 

687, No. 3, p. 033034). IOP Publishing.  

Kudryavtsev, S. (2019). Buckling behavior of steel 

column with triangularly corrugated web. MATEC 

Web of Conferences, 279 (23-26), 02007. 
https://doi.org/10.1051/matecconf/201927902007 

Kukhar, V., Artiukh, V., Serduik, O., & Balalayeva, E. 

(2016). Form of Gradient Curve of Temperature 

Distribution of Lengthwise the Billet at 

Differentiated Heating before Profiling by Buckling. 

Procedia Engineering, 165, 1693-1704. 

https://doi.org/10.1016/j.proeng.2016.11.911 

https://doi.org/10.1088/1757-899X/123/1/012056
https://doi.org/10.1088/1757-899X/123/1/012056
https://link.springer.com/chapter/10.1007%2F978-3-662-01994-8_1
https://link.springer.com/chapter/10.1007%2F978-3-662-01994-8_1


Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

111 

Lepik, Ü. (1999). Bifurcation analysis of elastic–plastic 

cylindrical shells. International journal of non-linear 

mechanics, 34(2), 299-311. 
https://doi.org/10.1016/S0020-7462(98)00032-8 

Li, Z., He, M., Tao, D., & Li, M. (2015). Experimental 

buckling performance of scrimber composite 

columns under axial compression. Composites Part 

B Engineering 86. 

https://doi.org/10.1016/j.compositesb.2015.10.023 

Lilkova-Markova, S., & Dzhupanov, V. (2001). Dynamic 

Stability of Cantilevered Pipes Supported by 

Additional Structural Spring Supports. Part 1, Short 

Pipes. National Congress of TAM, 528-534. 

Lilkova-Markova, S., & Lolov, D. (2018). Multi-Segment 

Integration Technique for Solving the Stability 

Problem of an Axially Compressed Column. In XVIII 

Anniversary International Scientific Conference by 

Construction and Arhitecture VSU'2018. 

Lolov, D., & Lilkova-Markova, S. (2006). Dynamic 

stability of a curved pipe bent in the arc of a circle 

on hinge supports at the ends. Sadhana, 31, 537-541. 

https://doi.org/10.1007/BF02715912 

Łukowicz, A., Deniziak, P., Migda, W., Gordziej-

Zagórowska, M., & Szczepański, M. (2016). 

Innovative cold formed GEB section under 

compression. In Proceedings of the XIII 

International Conference on Metal Structures-ICMS 

2016 Zielona Góra, Recent Progress in Steel and 

Composite Structures (pp. 76-77). Balkema: CRC 

Press. https://doi.org/10.1201/b21417-14 

Massumi, A., Sadeghi, K., & Moshtagh, E. (2018). 

Effects of Deviation in Materials’ Strengths on the 

Lateral Strength and Damage of RC Frames. 

Structural Engineering & Mechanics, 68, 289-297. 

https://doi.org/10.12989/sem.2018.68.3.289 

Megahed, K. (2016). Experimental and Theoretical 

Analysis of Concrete Encased Cold Formed Steel 

Composite Column. Thesis for Master Degree. 

https://doi.org/10.13140/RG.2.2.20548.48005 

Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S., & 

Bidgoli, M. A. (2021). Seismic response prediction of 

FRC rectangular columns using intelligent fuzzy-based 

hybrid metaheuristic techniques. Journal of Ambient 

Intelligence and Humanized Computing, 1-19. 

https://doi.org/10.1007/s12652-020-02776-4 

Milašinović, D. D., Vlajić, L. M., & Miličić, I. M. 

(2003). Prediction of buckling curves of steel 

columns using by rheological analogy. Materials 

and Structures, 46, 3-13. 

http://scindeks.ceon.rs/article.aspx?artid=0543-

07980304008M 

Murawski, K. (1992). Stability of thin shell columns in 

elasto-plastic states. 14 Międzynarodowe Sympozjum 

Naukowe Studentów i Młodych Pracowników Nauki. 

Mechanika, Zielona Góra, 38-43. 

Murawski, K. (1999). The Modelling of Energy 

Consuming Process in Layered Vehicles Bumper 

(Doctoral dissertation, Doctor’s thesis. Poznan 

University of Technology, Faculty of 

Hardworking Machines and Vehicles). 

https://www.researchgate.net/publication/324557

765_Modelowanie_procesu_pochlaniania_energii

_w_warstwowych_zderzakach  

Murawski, K. (2002a). The Engesser-Shanley 

modified theory of stability of thin-walled 

cylindrical rods with example of use for steel 

St35. Acta Scientiarum Polonorum Architectura-

Budownictwo, 1-2. 

Murawski, K. (2002b). Stability analysis of a thin-

walled plywood cylindrically shaped element. 

Annals of Warsaw Agricultural University, 

Forestry and Wood Technology, Special Number I, 

Warsaw Agricultural University Press, Warsaw, 

230-234.  

Murawski, K. (2003). Theory of stability of layered 

cylindrical rods in elasto-plastic states exemplified 

by steel R35. Electronic Journal of Polish 

Agricultural Universities. Civil Engineering, 6(2). 

http://www.ejpau.media.pl/articles/volume6/issue2/c

ivil/art-02.pdf 

Murawski, K. (2007a). Movement of the neutral layer 

during lose of stability in the critical cross section of 

very slender cylindrical shaped plywood 

compressed by ball-and socket joints, Annals of 

Warsaw University of Life Sciences – SGGW 

Forestry and Wood Technology, 62, 67-69. 

Murawski, K. (2008a). Critical stress of squat cylindrical 

and square shaped plywood compressed by ball-and-

socket joints according to the Tetmajer-Jasiński 

hypothesis. Annals of Warsaw University of Life 

Sciences – SGGW Forestry and Wood Technology 

No 64, 2008: 113-115.  

Murawski, K. (2008b). Critical stress of squat cylindrical 

and square shaped plywood compressed by ball-and-

socket joints according to the Johnson-Ostenfeld 

hypothesis, Krzysztof Murawski, Annals of Warsaw 

University of Life Sciences – SGGW Forestry and 

Wood Technology No 64, 2008: 127-129. 

Murawski, K. (2008c). Critical stress of squat cylindrical 

and square shaped plywood made of birch 

compressed by ball-and-socket joints according to 

the Ylinen hypothesis Annals of Warsaw University 

of Life Sciences – SGGW Forestry and Wood 

Technology, 64, 120-123 

Murawski, K. (2008d). Critical stress of squat cylindrical 

and square shaped plywood made of birch 

compressed by ball-and-socket joints according to 

the Březina’s hypothesis, Annals of Warsaw 

University of Life Sciences – SGGW Forestry and 

Wood Technology, 64, 124-126. 

https://www.researchgate.net/publication/324557765_Modelowanie_procesu_pochlaniania_energii_w_warstwowych_zderzakach
https://www.researchgate.net/publication/324557765_Modelowanie_procesu_pochlaniania_energii_w_warstwowych_zderzakach
https://www.researchgate.net/publication/324557765_Modelowanie_procesu_pochlaniania_energii_w_warstwowych_zderzakach


Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

112 

Murawski, K. (2008e). Critical stress of squat cylindrical 

and square shaped plywood made of birch 

compressed by ball-and-socket joints according to the 

Engesser-Kármán-Shanley’s modified hypothesis, 

Annals of Warsaw University of Life Sciences – 

SGGW Forestry and Wood Technology, 64, 116-119 

Murawski, K. (2011a). Teoria technicznej stateczności 

smukłych prętów sklejkowych. Oficyna Wydawnicza 

Politechniki Warszawskiej. ISBN 978-83-7207-959-6 

Murawski, K. (2011b). Theory of Technical Stability of 

Slender Plywood Rods. Publishing House of Warsaw 

University of Technology. ISBN 978-83-7207-968-8 

Murawski, K. (2011c). Modelowanie procesu pochłaniania 

energii w warstwowych zderzakach. Oficyna 

Wydawnicza Politechniki Warszawskiej. ISBN: 

978-83-7207-973-2 

Murawski, K. (2017a). Modelling of the Energy-

absorptive Process in Layered Bumpers. ISBN 978-

1-387-37333-8.  

Murawski, K. (2018). Technical Stability of Very 

Slender Thin-walled Orthotropic Columns. ISBN 

978-0-359-01937-3.  

Murawski, K. (2020a). Lateral Buckling in Elastic-

plastic States of Thin-walled Semi-slender Columns 

Made of Steel R35 According to Known 

Hypotheses. DOI: 10.13140/RG.2.2.23578.59845 

Murawski, K. (2020b). Experimental Results of Lateral 

Buckling of Thin-walled Semi-slender Columns 

with Pinned Ends Made of Steel R35 in the Elastic-

plastic States in Comparison to the Known 

Hypotheses. DOI: 10.13140/RG.2.2.21559.75688 

Murawski, K. (2020c). Comparison of the Known 

Hypotheses of Lateral Buckling in the Elastic-

Plastic States of Thin-Walled Semi-Slender 

Columns. International Journal of Structural Glass 

and Advanced Materials Research, 4(1), 233-253. 

https://doi.org/10.3844/sgamrsp.2020.233.253 

Murawski, K., & Kłos, R. (2007). Experimental 

determining of extensions during test of stability of 

the rode 870xφ12 mm made of pine compressed by 

ball-and-socket joints. Annals of Warsaw University 

of Life Sciences–SGGW Forestry and Wood 

Technology, (62), 70-72. 

Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., 

Konomi, S., Akazawa, T., & Saburi, K. (1994). 

Energy dissipation behavior of shear panels made of 

low yield steel. Earthquake Engineering & 

Structural Dynamics, 23, 1299-1313. 

https://doi.org/10.1002/eqe.4290231203 

Naseri, R., Showkati, H., & Firouzsalari, S. E. (2020). 

Buckling behaviour of GFRP cylindrical shells 

subjected to axial compression load. Composite 

Structures. 

https://doi.org/10.1016/j.compstruct.2020.113269 

Nazarimofrad, E., & Shokrgozar, A. (2019). Seismic 

performance of steel braced frames with self-

centering buckling-restrained brace utilizing 

superelastic shape memory alloys. The Structural 

Design of Tall and Special Buildings, 28. 

https://doi.org/10.1002/tal.1666 

Oliveira, T. V., Dias, C. A. C., Sousa, R. A., 

Pasquetti, E., & Souza, R. M. D. (2017). 

Analytical study of the shear effect on the 

buckling of columns on elastic medium. 

https://doi.org/10.20906/CPS/CILAMCE2017-0274 

Ostenfeld, A. (1898). Exzentrische und zentrische 

Knickfestigkeit. VDI-Z, 94, 1462-1470. 

Özbaşaran, H., Aydın, R., & Dogan, M. (2015). An 

alternative design procedure for lateral–torsional 

buckling of cantilever I-beams. Thin-Walled 

Structures, 90, 235-242. 

https://doi.org/10.1016/j.tws.2015.01.021 

Papanastasiou, P., & Durban, D. (1999). Bifurcation of 

elastoplastic pressure-sensitive hollow cylinders. 

https://doi.org/10.1115/1.2789138 

Patel, V., Liang, Q., & Hadi, M. (2015). Nonlinear 

Analysis of Concrete-Filled Steel Tubular Columns. 

Scholar's Press. ISBN: 978-3-639-66536-9 

Pearson, C. E. (1950). Bifurcation criterion and plastic 

buckling of plates and columns. Journal of the 

Aeronautical Sciences, 17(7), 417-424. 
https://doi.org/10.2514/8.1674 

Phungpaingam, B., Athisakul, C., & Chucheepsakul, S. 

(2011). Alternative Model for Postbuckling Analysis 

of a Nonlinearly Elastic Column. 16th National 

Convention in Civil Engineering. Chonburi, 

Thailand, Volume: STR0038. 

Pinarbasi, S., Genc, T., Akpinar, E., & Okay, F. (2020). 

Comparison of Design Guidelines for Hot-Rolled I-

Shaped Steel Compression Members according to 

AISC 360-16 and EC3. Advances in Civil 

Engineering, 1-20. 

https://doi.org/10.1155/2020/6853176 
Qays, S., & Al-Zuhairi, A. (2020). Structural Performance 

of Slender RC Columns with Cross and Square-Shaped 
under Compression Load. IOP Conference Series: 
Materials Science and Engineering, 881, 012040. 
https://doi.org/10.1088/1757-899X/881/1/012040 

Qi, Y., Xie, L., Bai, Y., Liu, W., & Fang, H. (2019). Axial 
Compression Behaviours of Pultruded GFRP–Wood 
Composite Columns. Sensors, 19(4), 755. 
https://doi.org/10.3390/s19040755 

Radhakrishnan, S. (1956). Plastic buckling of circular 

cylinders. Journal of the Aeronautical Sciences, 23(9), 

892-894. 
Rajkannu, S., & Sanjeevi, A. J. (2020). Flexural-torsional 

buckling strength of thin-walled channel sections with 
warping restraint. Journal of Constructional Steel 
Research, 169, 106041. 
https://doi.org/10.1016/j.jcsr.2020.106041 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

113 

Razdolsky, A. G. (2018). Determination of Slenderness 
Ratio for Laced and Battened Columns. Practice 
Periodical on Structural Design and Construction, 
23(4). https://doi.org/10.1061/(ASCE)SC.1943-
5576.0000383 

Roy, K., Ting, T. C. H., Lau, H. H., & Lim, J. B. P. (2019). 
Experimental and numerical investigations on the axial 
capacity of cold- formed steel built-up box sections. 
Journal of Constructional Steel Research. 
https://doi.org/10.1016/j.jcsr.2019.05.0388  

Saberi, H., Kolmizadeh, V., Mokhtari, A., & Saberi, V. 
(2020). Investigating of the Effect of Concrete 
Confinement on the Axial Performance of Circular 
Concrete Filled Double-Skin Steel Tubular (CFDST) 
Long Columns.  
https://doi.org/10.22075/JRCE.2020.19167.1362 

Saeed, N. A. (2019). On vibration behavior and motion 
bifurcation of a nonlinear asymmetric rotating shaft. 
Arch Applied Mech 89, 1899–1921. 
https://doi.org/10.1007/s00419-019-01551-y 

Saeed, N. A. (2020). On the steady-state forward and 
backward whirling motion of asymmetric nonlinear 
rotor system. European Journal of Mechanics- 
A/Solids 80, 103878. 
https://doi.org/10.1016/j.euromechsol.2019.103878 

Saeed, N. A., & Eissa, M. (2018). Bifurcations of 
periodic motion of a horizontally supported 
nonlinear Jeffcott-rotor system having transversely 
cracked shaft. International Journal of Non-Linear 
Mechanics, 101, 113-130. 
https://doi.org/10.1016/j.ijnonlinmec.2018.02.005 

Saeed, N. A., & Eissa, M. (2019). Bifurcation Analysis 
of a Transversely Cracked Nonlinear Jeffcott-rotor 
System at Different Resonance Cases. International 
Journal of Acoustics and Vibration, 24(2), 284-302. 
https://doi.org/10.20855/ijav.2019.24.21309 

Saeed, N. A, Mahrous, E., & Awrejcewicz, J. (2020a). 
Nonlinear dynamics of the six-pole rotor-AMB 
system under two different control configurations. 
Nonlinear Dynamics, 101 (4), 2299-2323. 
https://doi.org/10.1007/s11071-020-05911-0 

Saeed, N. A., Awwad, E. M., El-Meligy, M. A., & 
Abouel-Nasr, E. (2020b). Radial versus Cartesian 
control strategies to stabilize the nonlinear whirling 
motion of the six-pole rotor-AMBs. IEEE Access, 8, 
138859-138883. 
https://doi.org/10.1109/ACCESS.2020.3012447 

Saeed, N.A., Mohamed, M.S., & Elagan, S. K. (2020c). 
Periodic, Quasi-Periodic and Chaotic Motions to 
Diagnose a Crack on a Horizontally Supported 
Nonlinear Rotor System. Symmetry, 12(12), 2059. 
https://doi.org/10.3390/sym12122059 

Saeed, N. A., Awwad, E. M., El-Meligy, M. A., & 
Abouel-Nasr, E. (2021a) Analysis of the rub-impact 
forces between a controlled nonlinear rotating shaft 
system and the electromagnet pole legs. Applied 
Mathematical Modelling. (Accepted). 
https://doi.org/10.1016/j.apm.2021.01.008 

Saeed, N. A., Awwad, E. M., El-Meligy, M. A., & Abouel-

Nasr, E. (2021b).Sensitivity analysis and vibration 

control of asymmetric nonlinear rotating shaft system 

utilizing 4-pole AMBs as an actuator. European 

Journal of Mechanics - A/Solids, 86, 104145. 

https://doi.org/10.1016/j.euromechsol.2020.104145 

Saingam, P., Sutcu, F., Terazawa, Y., Fujishita, K., Lin, 

P.-C., Celik, O., & Takeuchi, T. (2020). Composite 

behavior in RC buildings retrofitted using buckling-

restrained braces with elastic steel frames. 

Engineering Structures, 219, 110896. 

https://doi.org/10.1016/j.engstruct.2020.110896 

Sanchez, H., & Salas, C. C. (2008). Deformation of Steel 

Straight Pipes with Internal Pressure Under Axial 

Compression and Bending Load by Seismic Action. 

Proceedings of the International Conference on 

Offshore Mechanics and Arctic Engineering - OMAE, 

3. https://doi.org/10.1115/OMAE2008-57491 

Seide, P., Weingarten, V. I., & Morgan, E. J. (1960). The 

development of design criteria for elastic stability of 

thin shell structures (No. EM-10-26). TRW Space 

Technology Labs Los Angeles CA. 
https://doi.org/10.21236/AD0490800 

Seyranian, A. P., & Privalova, O. G. (2003). The 

Lagrange problem on an optimal column: Old and 

new results. Structural and Multidisciplinary 

Optimization, 25(5), 393-410. 

https://doi.org/10.1007/s00158-003-0333-4 

Shanley, F. R. (1947). Inelastic column theory. Journal 

of the aeronautical sciences, 14(5), 261-268. 
https://doi.org/10.2514/8.1346 

Silvestre, N., Abambres, M., & Camotim, D. (2018). 

Influence of the deformation mode nature on the 1st 

order post-yielding strength of thin-walled beams. 

Thin-Walled Structures, 128, 71-79. 
https://doi.org/10.1016/j.tws.2017.09.027 

Simão, P. D., Rodrigues, J. P., Barros, H., Ferreira, C., 

Adam, J. M., & Delatte, N. (2019). GBT Rayleigh-

Ritz analysis of slender elasto-plastic steel columns 

under fire conditions. In Proceedings of the 3rd 

International Conference on Recent Advances in 

Nonlinear Design Resilience and Rehabilitation of 

StructuresCOIMBRA (pp. 436-447). 

Slimani, A., Ammari, F., & Adman, R. (2018). The 

effective length factor of columns in unsymmetrical 

frames asymmetrically loaded. Asian Journal of 

Civil Engineering, 19(4). 

https://doi.org/10.1007/s42107-018-0038-z 

Słowiński, K., & Piekarczyk, M. (2017). 

Determination of the plastic limit load for a 

cylindrical shell under general loading conditions 

using FEA. Ce/Papers, 1(2-3), 980-989. 

https://doi.org/10.1002/cepa.138 

Stowell, E. Z. (1948). A Unified theory of plastic 

buckling of columns and plates, NACA Tech. Note. 

https://www.sciencedirect.com/science/journal/09977538
https://www.sciencedirect.com/science/journal/09977538
http://journals.sagepub.com/author/Eissa%2C+M
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
http://journals.sagepub.com/author/Eissa%2C+M
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://doi.org/10.3390/sym12122059
https://www.sciencedirect.com/science/journal/0307904X
https://www.sciencedirect.com/science/journal/0307904X
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.sciencedirect.com/science/journal/09977538
https://www.sciencedirect.com/science/journal/09977538


Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 82.114 

DOI: 10.3844/sgamrsp.2021.82.114 

 

114 

Tarsha, I., & Takla, M. (2016). Ultimate load for 

composite column subjected to ISO 834 fire. 

https://www.researchgate.net/publication/33247073

1_Ultimate_load_for_composite_column_subjected

_to_ISO_834_fire  

Terazawa, Y., Suma, K., Iwanaga, M., Maehara, S., & 

Takeuchi, T. (2020). Buckling Strength of Latticed 

Domes of Grid-Purlin with Beams. AIJ Journal of 

Technology and Design, 26, 899-904. 

https://doi.org/10.3130/aijt.26.899 

Tetmajer, L. (1886). Mittheilungen der Anstalt zur 

Prüfung von Baumaterialien am eidg. 

Polytechnikum in Zürich. 1.Heft: Methoden und 

Resultate der Prüfung natürlicher und künstlicher 

Bausteine, Zürich. 

Thumrongvut, J., & Tiwjantuk, P. (2018). Strength and 

Axial Behavior of Cellular Lightweight Concrete-

Filled Steel Rectangular Tube Columns under 

Axial Compression. Materials Science Forum. 

941. 2417-2422. 

https://doi.org/10.4028/www.scientific.net/MSF.941

.2417 

Viana, H., Lanna, R., Costa, R., & Lavall, A. (2020). 

Formulation for nonlinear dynamic analysis of steel 

frames considering the plastic zone method. 

Engineering Structures, 223. 

https://doi.org/10.1016/j.engstruct.2020.111197 

Virgens, J., Gomes, R., Trautwein, L., Guimarães, G., & 

Vaz, A. (2019). Experimental analysis of 

eccentrically loaded reinforced concrete columns 

with an added jacket of self-compacting concrete. 

Revista IBRACON de Estruturas e Materiais, 12, 

329-336. https://doi.org/10.1590/s1983-

41952019000200007 

Vol’mir, A. S. (1965). Stability of elastic systems. 

Foreign technology Division, Wright Patterson Air 

Force Base, Ohio. 
https://apps.dtic.mil/sti/citations/AD0628508 

Voyiadjis, G. Z., & Woelke, P. (2008). Elasto-plastic and 

damage analysis of plates and shells. Springer Science 

& Business Media. ISBN-10: 3540793518. 

Wahrhaftig, A. d. M. (2020). Time-dependent analysis of 

slender, tapered reinforced concrete columns. Steel and 

Composite Structures, 36(2), 229–247. 

http://dx.doi.org/10.12989/scs.2020.36.2.229 

Wahrhaftig, A. d. M., Brasi, R. M. L. R. F., & Machado, 

M.A.S. (2008). Evaluation of the Buckling Critical 

Load of Bars Subjected to their Self-Weight. The Ninth 

International Conference on Computational Structures 

Technology. https://doi.org/10.4203/ccp.88.13 

Wahrhaftig, A. d. M., Brasil, R. M. L. R. F., & César, S. 

F. (2016). Creep in the fundamental frequency and 

stability of a slender wooden column of composite 

section. https://doi.org/10.1590/0100-

67622016000600018 

Wahrhaftig, A. d. M., Magalhães, K. M. M., & 

Nascimento, L. S. M. S. C. (2021). Stress 

assessment in reinforcement for columns with 

concrete creep and shrinkage through Brazilian 

technical normative. J Braz. Soc. Mech. Sci. Eng. 

43, 6. https://doi.org/10.1007/s40430-020-02731-6 

Wahrhaftig, A. d. M., Silva, M. A., & Brasil, R. M. L. R. F. 

(2019). Analytical determination of the vibration 

frequencies and buckling loads of slender reinforced 

concrete towers. Latin American Journal of Solids and 

Structures, 16. https://doi.org/10.1590/1679-78255374 

Wahrhaftig, A. d. M., Magalhaes, K., & Siqueira, G. H. 

(2020a). Evaluation of limit state of stress and strain 

of free-fixed columns with variable geometry 

according to criteria from the Brazilian code for 

concrete structures. Latin American Journal of 

Solids and Structures, 17. 

https://doi.org/10.1590/1679-78255780 

Wahrhaftig, A. M., Magalhaes, K., Brasil, R. M. L. R. 

F., & Murawski K. (2020b). Evaluation of 

Mathematical Solutions for the Determination of 

Buckling of Columns Under Self-weight. 

https://doi.org/10.1007/s42417-020-00258-7 

Yiotis, A., Katsikadelis, J. T., & Kounadis, A. (1982). 

Stability Analysis of Box-Shaped Structures of 

Rectangular Cross-Section. Revue Roumaine des 

Sciences Techniques. Serie Mecanique Appliquee, 

27, 681-695. https://pascal-

francis.inist.fr/vibad/index.php?action=getRecordDe

tail&idt=PASCALBTP83X0241807 

Ylinen, A. (1956). A method of determining the 

buckling stress and the required cross-sectional area 

for centrally loaded straight columns in elastic and 

inelastic range. Mem Assoc Int Ponts Charpentes, 

16, 529-550. https://ci.nii.ac.jp/naid/10006136314/ 

Zhou, L., Tang, J., Wang, W., Zhao, E., Ren, S., Zhang, 

Q., & Liu, P. (2019). An accurate method for the 

calculation of ultimate load in lattice boom. Advances 

in Mechanical Engineering, 11, 168781401988677. 

https://doi.org/10.1177/1687814019886774 

Zucco, G., Oliveri, V., Rouhi, M., Telford, R., Clancy, 

G., McHale, C., ... & Peeters, D. (2020). Static test 

of a variable stiffness thermoplastic composite 

wingbox under shear, bending and torsion. The 

Aeronautical Journal, 124(1275), 635-666. 

https://doi.org/10.1017/aer.2019.161 

https://www.researchgate.net/publication/332470731_Ultimate_load_for_composite_column_subjected_to_ISO_834_fire
https://www.researchgate.net/publication/332470731_Ultimate_load_for_composite_column_subjected_to_ISO_834_fire
https://www.researchgate.net/publication/332470731_Ultimate_load_for_composite_column_subjected_to_ISO_834_fire

