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Abstract: The Monte Carlo Simulation method is a powerful tool for solving 

problems including random variables. The basic idea to implement a Monte 

Carlo simulation is to first generate samples of random inputs from their 

assumed distribution functions and then perform a deterministic 

calculation on the generated random inputs, based on mathematical 

modeling of the system, to obtain output results. An early version of 

Monte Carlo simulation is the famous needle experiment. The idea of 

random experiment, have been used for solving many complex problems. 

Simulation based approaches have some disadvantages. Its 

implementation needs a massive use of computational resource and long 

calculation times. Moreover, providing linkage between input to the 

system and its output is difficult. Toward remedy, the phenomenon is 

considered as the change in the state of the system. Via logical reasoning, 

concise mathematics and using real world data, the output is related to 

the input via the Persian Curve. The Persian Curve provided a simple, 

cheap and exact solution to the problem. Consequently the Persian Curve 

is proposed as a replacement for the Monte Carlo Simulation. The validity 

of the work is verified via concise mathematics and comparison of the 

results with those of the others. 
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Introduction 

The Monte Carlo Simulation (MCS) is a well-known 

statistical method which is used for analysis of 

phenomena with no clear deterministic solution, Fig. 1. 

Despite of its success in different field of human 

knowledge, the (MCS) is an expensive, time consuming 

and uncertain method (Badger, 1994; Veach, 1998; 

Bonate, 2001; Laosiritaworn, 2002; Lefebvre, 2007; 

Murray, 2007; Manohar, 2009; Wijesinghe, 2011; Du, 

2012; Bolin, 2013; Cook et al., 2013; Parkinson, 2013; 

Pollock, 2013; Romano, 2013; Zio, 2013; Goerdin, 2014; 

Poole, 2014; Rawlinson, 2015; Hahn, 2015; Wang, 2015; 

Hochuli, 2016; Sánchez, 2016; Zhao, 2016; Fadele, 2017; 

Feng, 2017; Mouawad, 2017; Schwarm, 2017a; 2017b; 

Haqiqat and Müller, 2018; Hou, 2018; Laengen, 2018; 

Albes, 2019; Huda, 2018; Pakyuz-Charrier, 2018; 

Unwin, 2018; Wang, 2018; Webster, 2019; Zhang, 

2019; Mazhdrakov et al., 2018; Corbella, 2019;             

de Freitas, 2019; Berg, 2019; Alamri, 2020; 

Apostolopoulou, 2019; Bhatia, 2020; Cumberworth, 

2021; Ead, 2020; Ketron, 2020; Cosgrove, 2020; Dash, 

2020; Debrot, 2020; Diniz, 2020; Eagle, 2020; Guijarro 

Gámez, 2020; Nilakanta, 2020; Welding, 2020; Wang, 

2021; Sheridan-Methven, 2021; Sheridan-Methven, 

2020). The Abdolrasoul Ranjbaran Team (ART) 

conducted an intensive research, for analysis of natural 

phenomena, in the past two decades in the Shiraz 

University, Iran (Ranjbaran et al., 2008; Ranjbaran and 

Rousta, 2009; Ranjbaran, 2010; Ranjbaran et al., 2011; 

Ranjbaran, 2012; Ranjbaran and Rousta, 2013a; 2013b; 

Ranjbaran et al., 2013a; 2013b; Ranjbaran and 

Ranjbaran, 2014; Ranjbaran, 2015; Ranjbaran and 

Ranjbaran, 2016; 2017a; 2017b; 2017c; 2018; 

Ranjbaran et al., 2020a-f; 2021a; 2021b). The result of 

her research is digested in the Persian Curve (PC), Fig. 

2. The aim of the presented paper is to show that the 

(PC) is a good and logical alternative for the (MCS) in 

analysis of natural phenomena. The content of the 

paper is managed as follows. The basic principles of 

the (MCS) is expressed first. The study is continued 

with logical derivation of the (PC) basics. 

mailto:ranjbarn@shirazu.ac.ir
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Fig. 1: Monte carlo simulation model 

 

 

 
Fig. 2: Persian curve model 

 

The work is continued with verification via analysis of 

fragility curve for structures, conclusions and list of 

references. In this study a phenomenon is considered as 

change in the state of a system. The state variable (  

[0,1]) is defined as the lifetime or identification parameter 

of systems. Every system is expressed by its specific (). 

Consequently all derivations are finally expressed in 

terms of the ().  

The Monte Carlo Simulation  

The Monte Carlo Simulation is a powerful tool for 

analysis of complex systems via including random 

variables (Badger, 1994; Veach, 1998; Bonate, 2001; 

Laosiritaworn, 2002; Lefebvre, 2007; Murray, 2007; 

Manohar, 2009; Wijesinghe, 2011; Du, 2012; Bolin, 

2013; Cook et al., 2013; Parkinson, 2013; Pollock, 

2013; Romano, 2013; Zio, 2013; Goerdin, 2014; Poole, 

2014; Rawlinson, 2015; Hahn, 2015; Wang, 2015; 

Hochuli, 2016; Sánchez, 2016; Zhao, 2016; Fadele, 

2017; Feng, 2017; Mouawad, 2017; Schwarm, 2017a; 

2017b; Haqiqat and Müller, 2018; Hou, 2018; Laengen, 

2018; Albes, 2019; Huda, 2018; Pakyuz-Charrier, 

2018; Unwin, 2018; Wang, 2018; Webster, 2019; 

Zhang, 2019; Mazhdrakov et al., 2018; Corbella, 2019; 

de Freitas, 2019; Berg, 2019; Alamri, 2020; 

Apostolopoulou, 2019; Bhatia, 2020; Cumberworth, 

2021; Ead, 2020; Ketron, 2020; Cosgrove, 2020; Dash, 

2020; Debrot, 2020; Diniz, 2020; Eagle, 2020; Guijarro 

Gámez, 2020; Nilakanta, 2020; Welding, 2020; Wang, 

2021; Sheridan-Methven, 2021; Sheridan-Methven, 

2020). The basic idea to implement a Monte Carlo 

Simulation is to first generate samples of random inputs 

from their assumed distribution functions. Then 

perform a deterministic calculation on the generated 

random inputs, based on mathematical modeling of the 

system, to obtain numerical results. An early version of 

Monte Carlo Simulation is the famous needle 

experiment, performed by the French mathematician 

Comte de Buffon (1707-1788). Consider a plane with 

parallel lines distanced at (d) and a needle, with a 

length (L<d) that is randomly positioned on the plane. 

Note that: (1) The shortest distance from the needle 

center to the line (x), is uniformly distributed over (0, 

d/2). (2) The angle between the needle and a line () 

also follows a uniform distribution over (0, /2). (3) the 

needle crosses a line when (x  L sin /2). The two 

random variables (x and ) are independent. Therefore, 

their joint probability density function is (f(x,) = 

4/d). Let (A) denote the event that the needle lies 

across a line. The probability of (P(A) = 2L/d) is 

determined in Eq. (1) as follows: 
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Buffon verified this probability by eventually 

throwing a needle on the plane with parallel lines. This 

experiment, reflects the basic idea of Monte Carlo 

Simulation. That is, performing the experiment (n) times, 

if the needle crosses a line (m) times, then the probability 

of (A) is approximated in Eq. (2): 
 

  /P A m n  (2)  

 
As marked by Laplace in 1812, one can estimate the 

value of () by conducting the Buffon's needle experiment 

and setting Eq. (1) equal to Eq. (2), in Eq. (3): 
 

/ 2 2m n L d nL md     (3) 

 
In 1901, the Italian mathematician Lazzarini (Badger, 

1994) conducted the needle experiments and obtained an 

estimate of the () to six significant digits, as in Eq. (4): 
 

   ; ; ; ;5 / 6;3480;1808

3.14159292

d L n m d d






 (4)  

 
This experiment offered such an impression that one 

can estimate a probability of an event or a random quantity 

via random simulation. In 1946, the physicist from Los 

Alamos were working on the distance likely to be traveled 

by the neutron in different materials under the Manhattan 

Project. They were unable to solve the problem using 

conventional deterministic mathematical methods. Then 

Stainislaw Ulam proposed an idea of using random 

experiments. This idea was subsequently developed by von 

Neumann, Metropolis and others to solve many complex 

problems in making the atomic bomb. Since the work was 

secret, the random experiment method required a code name. 

Metropolis suggested the name of Monte Carlo, which refers 

to the Monte Carlo Casino in Monaco where Ulam's uncle 

borrow money from relatives to gamble (Zhang, 2019). More 

scientific basis of the Monte Carlo simulation, is the strong 

law of numbers, which guarantees that the average of a set of 

independent and identically distributed random variables 

converges to the mean value with probability 1.  

The strong law of large numbers is expressed as 

follows. For a sequence of statistically (n) independent 

and identically distributed random variables (Xi, i = 1,n) 

with a mean value of (), then the average of the variables 

converges to () with probability 1, as in Eq. (5): 
 

1

n

i

i

O n as n


   (5)  

 
Monte Carlo simulation model is shown in Fig. 1. 

According to the strong law of large numbers, the average 

converges to certain value as (n  ). Equation (5), for a 

system with the characteristics function (h(, x)) and the 

random system output (x = (x1,…, xn)) with the probability 

distribution (fo(x)) is expressed in Eq. (6) for the system (): 

     ,MC OP h O f O dO 




   (6) 

 

The idea of random experiment, have been used for 

solving many complex problems (Badger, 1994; Veach, 

1998; Bonate, 2001; Laosiritaworn, 2002; Lefebvre, 

2007; Murray, 2007; Manohar, 2009; Wijesinghe, 2011; 

Du, 2012; Bolin, 2013; Cook et al., 2013; Parkinson, 

2013; Pollock, 2013; Romano, 2013; Zio, 2013; Goerdin, 

2014; Poole, 2014; Rawlinson, 2015; Hahn, 2015; Wang, 

2015; Hochuli, 2016; Sánchez, 2016; Zhao, 2016; Fadele, 

2017; Feng, 2017; Mouawad, 2017; Schwarm, 2017a; 

2017b; Haqiqat and Müller, 2018; Hou, 2018; Laengen, 

2018; Albes, 2019; Huda, 2018; Pakyuz-Charrier, 2018; 

Unwin, 2018; Wang, 2018; Webster, 2019; Zhang, 2019; 

Mazhdrakov et al., 2018; Corbella, 2019; de Freitas, 

2019; Berg, 2019; Alamri, 2020; Apostolopoulou, 2019; 

Bhatia, 2020; Cumberworth, 2021; Ead, 2020; Ketron, 

2020; Cosgrove, 2020; Dash, 2020; Debrot, 2020; Diniz, 

2020; Eagle, 2020; Guijarro Gámez, 2020; Nilakanta, 

2020; Welding, 2020; Wang, 2021; Sheridan-Methven, 

2021; Sheridan-Methven, 2020). Simulation based 

approaches have some disadvantages. Its implementation 

needs a massive use of computational resource and long 

calculation times. Moreover, providing linkage between 

input to the system and its output via a closed form 

solution is difficult. In view of Eq. (6) the aim is 

determination of the (PMC), which is only a function of ()! 

There is no sign of the method of solution in it. It appears 

that using the (MCS) for this job is the worst method that 

could be selected. Despite of this much of efforts, since 

the infinity is out of reach then the solution by the (MCS) 

always contains epistemic uncertainty which is added to 

the aleatory one. Toward remedy, the Abdolrasoul 

Ranjbaran Team (ART), conducted an extensive research 

toward analysis of change in the systems, called the 

Change of State Philosophy (CSP). The result of her 

research is the Persian Curve (PC) which is expressed in 

the next section. As will be observed in the next section, 

the (ART) investigations, via logical reasoning, 

concluded directly to the Persian Curve (PC()), which 

clearly can be used in place of (PMC())! As will be seen, 

the Persian Curve is equal to the expected value of the 

system output (obtained by stochastics methods including 

the (MCS) for n  ) with probability 1. All methods in 

human knowledge are approximate (since n << ) as 

compared to the Persian Curve.  

The Persian Curve Basics 

For a change in a system (e.g., structure) the survived 

capacity and the fled capacity are important (Ranjbaran et al., 

2008; Ranjbaran and Rousta, 2009; Ranjbaran, 2010; 

Ranjbaran et al., 2011; Ranjbaran, 2012; Ranjbaran and 
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Rousta, 2013a; 2013b; Ranjbaran et al., 2013a; 2013b; 

Ranjbaran and Ranjbaran, 2014; Ranjbaran, 2015; 

Ranjbaran and Ranjbaran, 2016; 2017a; 2017b; 2017c; 

2018; Ranjbaran et al., 2020a-f; 2021a; 2021b). The 

capacity (kS), called system stiffness, is defined as a 

positive entity which has a finite specified value at the 

beginning of the lifetime (origin) and reduces to zero at the 

end of systems lifetime (destination). The inverse of the 

system stiffness is called system flexibility (fS). The concept 

of stiffness and flexibility are used for better understanding! 

They are general and are not necessarily those used in the 

structural mechanics! For a system with a given lifetime, the 

survived stiffness (kSS = kS-kC) and the survived flexibility (fSS 

= fS+fC) are obviously inverse of each other, where (kC) is the 

change stiffness and (fC) is the change flexibility. This 

obvious relation is defined in Eq. (7) and shown in Fig. 3 and 

is used for reliable analysis of changing systems as follows: 
 

   1S C S Ck k f f    (7)  

 
Note that although the (kS and fS) are known at the 

origin, the (kC and fC) at each point along the lifetime 

should be determined. This is done as follows. 

There is only one Eq. (7) at hand for solution. 

Therefore, for the time being, let the (kS, fS and fC) as 

known and solve Eq. (7) for (kSS and kC) in Eq. (8). Where 

(-;-) denotes a vector: 
 

   ; ;SS C R R Sk k S F k  (8) 

 
In Eq. (8) the phenomenon functions (the survived 

function (SR) and the fled function (FR)) are defined in 

Eq. (9): 
 

     ; ;R R S C S CS F f f f f   (9) 

 
Note that the phenomenon functions are ratios in a unit 

interval. Since construction of functionals in terms of two 

functions is not possible, then the phenomenon functions 

are customized to the state functions as follows.  

For (fS = 1), the phenomenon functions are renamed 

as the state functions (collection of the Origin function 

(O) and the destination function (D)) and the state Ratio 

(R) in Eq. (10): 

 

   ; ; ; 1; ; ;S C R Rf f S F R O D  (10) 

 

In view of Eq. (10), the state functions are defined as 

ratios in unit intervals in Eq. (11): 

 

     ; 1; 1O D R R   (11) 

 

Eq. (11) may be rewritten as boundary value problems 

in Eq. (12), in which (min and max) denote (minimum and 

maximum) respectively: 

 
   

   

max;min 1;0 ,@ 0
;

min;max 0;1 ,@

R
O D

R

 

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Since, from Eq. (11) the state ratio (R = D/O) is defined 

in a semi-infinite interval (R  [0, ]) and it is a function, 

then it cannot be used as an independent variable, Fig. 4! 

Toward remedy, a state variable in a unit interval (  [0,1]), 

with a zero value at the origin ( = 0) and a one value at the 

destination ( = 1) is defined. In view of the artifice used and 

in terms of the state variable, Eq. (12) is rewritten as Eq. (13): 
 

 
   

   

max;min 1;0 ,@ 0
;

min;max 0;1 ,@ 1
O D





 


 
 (13) 

 
Make use of the expertise of the authors the state 

functions are defined as explicit functions of the (), in Eq. 

(14) where each function is an averages of a polynomial- and 

a trigonometric-function, as in Eq. (15), Fig. 5: 
 

 

 

2 3

2 3

4 2 1 6 4 cos

4 2 1 6 4 cos

O

D

  

  

    

    
 (14) 

 

   

   

2 3

2 3

4 1 1 6 4 1 cos

4 1 1 6 4 1 cos

O

D

  

  

     

     
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At this stage, attention is paid to enhance the 

construction of the phenomenon functions. Via the 

definition of the (kSS and fSS) in Eq. (7) and concept of 

crack compliance (fC) in fracture mechanics (Anderson, 

2017), the authors detected a fact that, the (fC) is directly 

proportional to the (kS). This detection is called, the 

Persian Principle of Change (PPC). In view of the (PPC) 

the (fC) is innovatively defined in Eq. (16): 
 

 / ; /1; /C C S Sf R f k k D O  (16) 

 
Substitution of Eq. (16) into Eq. (9), concluded into 

the generalized definition for the phenomenon functions 

in Eq. (17). 
 

     2 2; ;R R S SS F O k D O k D   (17) 

 
The (kS) can not be directly determined from the real 

world data (e.g., reliable test results). Toward better 

definition and providing the condition for using real world 

data, Eq. (17) is rewritten in Eq. (18) in terms of two 

positive control parameters (aM) and (b) (Ranjbaran et al., 

2020b). Flexibility for translation and rotation of 

phenomenon functions in the (1  1) working space, which 

lets the experts to enforce their will, is provided by the form 

of phenomenon functions in Eq. (18) and selection of two 

control parameters from reliable real world data: 
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 
 ;

;

b b

M

R R b b

M

O a D
S F

O a D



 (18) 

 
To this end the system identification flag (state variable) 

and the mathematical basis for determination of the capacity 

is proposed, separately, in abstract form. Consequently the 

work is certain and universal, in a sense that it is independent 

of geometry, size, material property and etc. Therefore, it 

equally applies to all natural phenomena as change in 

systems. The system identification flag and the basic 

mathematical formulation are connected via the Persian 

Curve as follows. 

 

 
 

Fig. 3: Change of state philosophy basic equation 
 

 
 

Fig. 4: State Functions versus the state ratio 
 

 
 

Fig. 5: State Functions versus the state variable 
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Persian Curve Birth 

The basic formulation for determination of capacity 

ratio is derived independent of real world data. In order to 

be able to apply the proposed formulation to natural 

phenomena (change in real systems), it must be connected 

to the system identification flag. This is done via 

construction of Persian Curve as follows. The 

phenomenon functions are mapped onto the real world 

data. The ratios at the beginning (PO) and at the termination 

(PT) of the phenomenon is selected from the reliable real 

world data, Fig. 6. For real natural phenomenon the (SR) is 

renamed as Shiraz curve (PS) and the (FR) is renamed as Fasa 

curve (PF) and collection of the two is called Persian Curve 

(PC) as defined in Eq. (19). Note that Eq. (19) for (PO = 1 and 

PT = 0) and (PO = 0 and PT = 1) converges to (SR) and (FR) in 

Eq. (18) respectively: 

 
b b

O T M
C b b

M

P O P a D
P

O a D





 (19) 

 

In comply with common practice in the literature, the 

derivative of phenomenon functions with respect to () is 

called the Zahedan curve (PZ) as defined in Eq. (20), in 

which (D(1)) is derivative of (D) with respect to (): 
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Note that, the (PZ) corresponds to the Probability Density 

Function (PDF) in the literature. To this end the formulation 

is complete. What remained is determination of the control 

parameters (aM and b) for a real world data. This is done as 

follows. To prepare for simple and user friendly 

analysis, Eq. (19) is rewritten in Eq. (21), in which (PC) is 

coordinate of a point on real world data along the lifetime: 

 

 
 
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The aim is determination of (aM and b) from nonlinear 

Eq. (21). Toward the aim, the coordinates of the middle 

point (M) with (DM/OM = 1) and the next point (N) (a point 

between O, M ant T) are used in Eq. (21) to determine (aM 

and b) from Eq. (22). Eq. (22) introduces the simplest 

method for analysis of nonlinear Eq. (21) and is the best 

tool for construction of a smooth curve to go through the 

key points (O, N, M and T) and with the extremum points 

at the ends, which is made with the expert will: 

 
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The Key Points (KPS) are defined as the origin point (O), 

the middle point (M), the termination point (T) and the next 

point (N) (a point between the other three), in Eq. (23) and 

shown in Fig. 6 for both of increasing and decreasing data: 
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Unified Persian Curve 

Extensive review of literature (ANSI/AISC 360-16, 

2016; AS 4100, 1998; Gardner, 2002; Ranawaka, 2006; 

Heva, 2009; Dolamune Kankanamge, 2010; Keerthan, 

2010; Haidarali, 2011; Shahbazian, 2013; Cheng, 2015; 

Kucukler et al., 2015; Nguyen, 2017; Qiu, 2017; 

Szalai2017; Rasmussen, 2017; Ye, 2018; Imran et al., 

2018), regarding real world data for failure of systems 

(Structures), led to the unified control parameters in 

Eq. (24) and the unified Persian curves in Eq. (25): 

 

   ; 2;1Ma b   (24) 
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In view of Eq. (25) the unified key points 

coordinates are defined in Eq. (26). The Persian Curve 

model is shown in Fig. 2, in a form to be comparable 

with the Monte Carlo model in Fig. 1: 

 

0.000 0.750 1.500 3.000

0.000 0.250 0.500 1.000

0.000 0.237 0.600 0.900

1.000 0.763 0.400 0.100

0.000 1.686 1.364 0.000
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SU
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PC O N M T

P

P

P




 (26) 

 

Comparison of the Persian Curve and the 

Monte Carlo Simulation 

Comparison of Eq. (6) and Eq. (19), that is the Monte 

Carlo curve (PMC) and the Persian Curve (PC), shown 

that both are system specific functions. Albeit the 

former is expensive and contains epistemic uncertainty, 

while the latter is cheap, simple and free of epistemic 

uncertainty. The idea behind the two are shown 
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graphically in Fig. 1 and 2. respectively. More 

comparison of the results are included as follows.  

The Persian curve is defined in terms of an abstract 

lifetime in a unit interval (  [0, 1]). In real phenomena the 

lifetime is selected in a truncated interval (  [O, T]), 

where (O) is the origin lifetime and (T) is the termination 

lifetime. In order to use the Persian Curve for real world data, 

the () should be mapped onto () as in Eq. (27): 

 

 
 

   

1 O T

O T O

   

    

  

  
 (27) 

 

In comply with the literature, the results of the Persian 

Curve is compared with that of the Monte Carlo Method 

in the following example.  

Example 1: Iervolino et al. (2016; Baltzopoulos et al., 

2017), developed a fragility curve for a six-story 

reinforced concrete moment resisting Frame (BF), via 

using the SPO2FRAG software. Compare the (BF) with 

the Persian-Fasa-curve as the proposed fragility function. 

Note that the SPO2FRAG is developed based on the 

Monte Carlo Method. 

Solution: Via hundreds of thousands of expensive non-

linear incremental dynamic analyses, the required data is 

prepared and the Fragility curve (BF) (a log-normal curve 

fitted on the data) is developed, which is scanned and 

shown in Fig. 7. The selected Key Points coordinates 

(KPF) and the corresponding control parameters (aM) and 

(b) are expressed in Eq. (28) and Eq. (29): 

 

0.00 0.25 0.50 1.00

0.00 0.237 0.60 0.90

KPF O N M T

P

  (28)  

 

   0,3 0,1 2.00 1.00

Ma b 
 (29)  

 

The unified Persian-Fasa-Curve (PFU), the unified 

Persian-Shiraz-curve (PSU) and the unified Persian-

Zahedan-curve (PZU) from Eq. (25) are also shown in 

Fig. 7. Total agreement of the results in general and at the 

key points (KPF) in specific, is used as a flag for 

verification of the validity of the unified fragility curve. 

This close agreement is a powerful reason for 

recommending the (PC) as a replacement for the (MCS) 

 

 
 

Fig. 6: Key points on persian-shiraz- and persian-fasa-curves 

 

 
 

Fig. 7: Comparison of the (BF) and the persian curves
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Conclusion 

The following conclusions are obtained from the 

present study: 
 

 The Persian Curve is equal to the expected value of 

output in (MCS) with probability 1 

 The Persian Curve is an excellent replacement for the 

Monte Carlo Simulation 

 The Persian Curve is the best method for analysis of 

real world data 

 The problems that were solved by the Monte Carlo 

Simulation is recommended to be resolved with the 

Persian Curve 

 Replacement of the Monte Carlo Simulation by the 

Persian Curve is a revolution in human knowledge 
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