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Abstract: The stability of load-bearing members is a challenging issue for 

designers. The avoidance of possible stability troubles is a mandatory step of 

the overall design process. The paper presents and discusses two simplified 

methods based on the Technical Stability Theory (TSTh) of loss of stability of 

lateral buckling in elastic-plastic states of semi-slender columns axially 

compressed by force. It is assumed that in the critical elastic-plastic transverse 

cross-section there are the elastic and plastic parts of the area, keeping strength. 

To simplify the calculations, there are assumed the simplifications that the 

whole moment of inertia of a cross-section area is taken into account Jz = Jz
all, 

the plastic module equals compress module Epl = Ec taken from experimental 

researches and as the next bigger simplification, the plastic module equals 

compressing module Epl = 0. The graphs of functions of the curved axes, their 

slopes, deflections of the columns, stresses and strains in thin-walled columns 

and compressing critical stresses depending on the cross-section areas and 

slenderness ratios are presented as the theoretical examples of thin-walled 

cylindrical columns and compared to results obtained from experiments with 

columns made of steel St35. 
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Introduction 

The problem of the stability was searched and 

analyzed with a focus on many other relevant aspects for 

various engineering applications. 

Many research contributions were related to the 

stability issues of a multitude of load-bearing systems 

and members, including plates (Raheem et al., 2013; 

Hosseinpour et al., 2015; Hedayat et al., 2018; Than et al., 

2018; Civalek and Avcar, 2020; Zhang et al., 2020) and 

bracing systems (Solazzi, 2010; Alencar et al., 2018; 

Mohabeddine et al., 2020), or Functionally Graded 

Material (FGM) structures (Sofiyev et al., 2008; Sofiyev 

and Avcar, 2010; Sofiyev et al., 2012; Nam et al., 2019; 

Cuong-Le et al., 2021), etc. 

The buckling of beams was searched by  

(Maraveas et al., 2018; Wankhade and Bendine, 2017; 

Toufik et al., 2018; Mansour et al., 2019; Mondal and 

Chatterjee, 2021; Zaki, 2021) and microbeams (Demir and 

Civalek, 2017). 

Single-layer graphene sheets have been examined in 

(), while polymer-confined concrete columns have been 

discussed in () and hyperelastic tubes are analyzed by ().  

The buckling of structures composed of various 

constructional materials was searched by  

(Broujerdian et al., 2018; Rostami and Kolahdooz, 

2019; Esmaeili et al., 2020; Hassan and Al-Zaidee, 

2020; Kılıç and Çinar, 2020; Taraghi et al., 2021).  

In the case of very slender columns, this refers to the 

problem of stability in elastic states. The basic theory of 

slender columns losing stability in elastic states, as 

known, has been originally formulated by Euler (1744). 

He first introduced the concept of critical load Pcr and 

presented, according to his theory, the differential 

equation of an elastic deflected central line. Later it was 

searched by many others like (Khalil, 2004; Noaman, 2011; 

Avcar, 2014; Melo and Barbosa, 2020; Selvaraj and 

Madhavan, 2021).  

The stability phenomenon of semi slender columns in 

elastic-plastic states was researched too, by (Tetmajer, 

1886; Jasiński, 1895; Engesser, 1889; Ostenfeld, 1898; 

Kármán, 1910; Shanley, 1947). This phenomenon was 

later researched by others. 

Yiotis et al. (1982) presented a solution methodology 

for investigating the stability of rectangular box-shaped 

structures subjected to transverse uniformly distributed 

compressive loading. This investigation was concerned 

with the two-dimensional behavior of box-shaped 

structures of finite length which required an analysis of 

four interconnected plates.  
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Nakashima et al. (1994) presented the results of a 

pilot test conducted for evaluating the energy dissipation 

behavior of shear panels made of low yield steel whose 

0.2 per cent offset yield stress is 120 MPa. The six 

full-scale shear panels were tested with the loading 

condition, stiffener spacing and magnitude of axial force 

as test variables. The shear panels tested yielded by a 

shear force that was approximately 1/3 of the yield shear 

force of equivalent shear panels made of common mild 

steel. Sufficient strain hardening was observed in the 

shear panels tested, with their energy dissipation 

capacity about 1.5 times larger than that of an equivalent 

linear-elastic and perfect-plastic system. Plate buckling 

did not lead the shear panels to immediate degradation in 

their energy dissipation capacity.  

Brank et al. (1997) presented a large-deformation 

model for thin shells composed of elastic-plastic 

material. Formulation of the shell model, equivalent to 

the two-dimensional Cosserat continuum, was developed 

from the three-dimensional continuum by employing 

standard assumptions on the distribution of the 

displacement field in the shell body. An elastic-plastic 

constitutive model was developed based on the von 

Mises yield criterion and isotropic hardening.  

Lepik (1999) considered a bifurcation of axially 

loaded elastic-plastic cylindrical shells in the case of an 

axisymmetric buckling. The effect of stress waves 

travelling along the shell was taken into account. It was 

assumed that the shell material had linear strain 

hardening. The analysis was carried out for both the 

deformation and for the flow theory of plasticity. The 

numerical examples were presented. 

Papanastasiou and Durban (1999) presented a linear 

bifurcation analysis for pressure sensitive elastic-plastic 

hollow cylinders under radial surface loads. Material 

response was modeled by the flow and deformation 

theories of the Drucker-Prager solid accounting for 

arbitrary hardening. Sample calculations were given for 

cylinders that deformed in axially symmetric patterns 

under uniform radial pressure applied at the boundaries.  
Dubina and Ungureanu (2000) dealt with the elastic-

plastic interactive buckling of thin-walled steel 
compression members. The interaction formula for local 
and overall buckling modes of Thin-Walled Steel 
Compression (TWSC) members, the effect of local 
buckling was introduced by means of the effective 
strength of short members.  

Dabaon et al. (2001) presented the elastic stability 
analysis of a column with variable cross-section 
subjected to distributed and concentrated axial load.  

Lilkova-Markova and Dzhupanov (2001) dealt with 

the dynamic stability of short continuous pipes 

conveying liquid and supported by elastic supports. The 

left end of the pipe was fixed. The pipe and the spring 

crossbars (supporting the pipe) were accomplished by 

homogeneous, isotropic and linearly elastic material. The 

liquid was non-compressible, inviscid and heavy. The 

Boundary Conditions (BC) on every one of the supports 

matched the elastica describing its continuity.  

Milašinović et al. (2003) dealt with the buckling 

problem of steel columns using by Rheological-Dynamical 

Analogy (RDA).  

Seyranian and Privalova (2003) dealt with the 

optimization and post-buckling behavior of columns 

elastically supported at both ends.  

Alvarenga and Silveira (2006) presented a study 

about the necessary steps to qualify a second-order 

inelastic analysis as advanced one. A plastic-zone 

approach applied to steel plane frames (portals) and the 

numerical formulation was based on finite element 

model of a Bernoulli-Euler beam-column member called 

“slice technique”. This element was set on a Lagrangian 

updated co-rotational system. The nonlinear problem 

was solved using Newton-Raphson iterative strategy and 

a new axial force iterative integration was shown.  

D’Aniello et al. (2006) executed two full-scale 

experimental tests on the lateral load-displacement response 

of a Reinforced Concrete (RC) structure seismically 

retrofitted by buckling restrained braces. The results were 

compared to numerical modeling. The two tested buckling 

restrained braces differed for the lateral restraining system: 

One was made using two restraining rectangular tubes that 

were fully welded together; the second was detachable, 

made with two restraining rectangular tubes.  

Lolov and Lilkova-Markova (2006) dealt with a 

dynamic stability of a curved pipe bent in the arc of a 

circle on the hinge supports at the ends. The authors 

investigated curved pipes conveying fluids. The 

methods of numerical solution of the dynamic 

stability of a pipe in its plane were developed. An 

example of a curved pipe was solved.  

Fraldi et al. (2008) aimed at deriving assessment and 

design formulae for determining the elastic–plastic 

response and the ultimate compressive strength of 

circular concrete columns confined by the Fiber 

Reinforced Polymers (FRP). A constructive method for 

obtaining closed-form elastic and post-elastic solutions 

for Functionally Graded Material Cylinders (FGMCs), 

constituted by the isotropic central core and arbitrary 

cylindrically orthotropic hollow phases, was proposed.  

Sanchez and Salas (2008) dealt with seismic ground 

motions causes large deformations of buried pipelines. 

They analyzed the steel straight pipes, for the purpose of 

clarifying the deformations of the pipes with internal 

pressure under large displacement and bending. The 

effect of internal pressure on the deformability of pipe 

was investigated both under load bending. Stress 

analysis using FEM was performed in order to simulate 

the large deformations of the pipes. 

Voyiadjis and Woelke (2008) presented a finite 

element model for the elastic-plastic and damage 
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analysis of thin and thick shells. Linear elastic, inelastic 

and softening behaviors caused by damage in structural 

shells, as well as large rotations were investigated. The 

presented formulation was developed primarily for large 

scale structural analyses. Special emphasis was therefore 

placed in computational efficiency.  

Wahrhaftig et al. (2008) evaluated a buckling critical 

load of bars subjected to their self-weight. Wahrhaftig et al. 

(2016) executed a calculation of the natural frequency of 

vibration and the stability verification of a slender 

column including the reducing effects of stiffness both of 

the axial force and creep. Wahrhaftig et al. (2019) 

executed an analytical determination of the vibration 

frequencies and buckling loads of slender reinforced 

concrete towers. Wahrhaftig et al. (2020a) evaluated a 

limit state of stress and strain of free-fixed columns with 

variable geometry according to criteria from the 

Brazilian code for concrete structures. Wahrhaftig et al. 

(2020b) did an evaluation of mathematical solutions for 

the determination of buckling of columns under self-

weight. Wahrhaftig (2020) did a time-dependent analysis 

of slender, tapered reinforced concrete columns. 

Wahrhaftig et al. (2021) made a stress assessment in 

reinforcement for columns with concrete creep and 

shrinkage through Brazilian technical normative.  

Ismail (2011) provided an analysis of the dynamical 

behavior and stability of pipes conveying fluid. 

According to their dynamical similarity, pipes were divided 

into two main groups; conservative pipes including: Pinned-

pinned, clamped-pinned and clamped-clamped pipes; and 

non-conservative pipes including: Cantilever, pinned-free 

and free-free pipes. The methods of solutions were checked 

either theoretically or experimentally by comparing their 

results with the available results in the literature. A new 

experimental method for estimating the critical velocity of 

buckling of conservative pipe was suggested.  
Phungpaingam et al. (2011) presented an alternative 

model to analyze the postbuckling behavior of a hinged-
hinged column made from nonlinear material (i.e., 
Ludwick material). The continuous column was divided 
into several pieces of rigid segments connected with 
nonlinear spring joints. One end of the column was a 
hinged joint while the other end was placed on a roller 
support where an axial force was applied. The 
constitutive equation of nonlinear spring obeyed the law 
of the Ludwick’s material involving a real number 
parameter n which defined the degree of nonlinearity.  

Beylergil et al. (2012) studied the buckling and 

compressive failure of adhesively-bonded stepped-lap joints 

(with/without composite patches) composed of pultruded 

glass fiber-reinforced polymer. The composite laminates 

were investigated experimentally and numerically. Two-

component epoxy adhesive was used for bonding purposes. 

Composite patches were woven glass-epoxy layer.  

Abed et al. (2013) presented the Finite-Element (FE) 

study of the axial load capacity of pre-twisted steel bars 

of rectangular cross sections. The FE simulations were 

conducted using the software ABAQUS. The bar ends 

were gripped and embedded in cylindrical slips. 

Geometric imperfections as well as actual elastic-plastic 

behaviors had been implemented in nonlinear FE 

models. The column strengths, load-shortening curves 

as well as failure modes, were predicted. The FE 

model was initially verified by comparing the 

buckling capacity and mode of the simulated straight 

bars with the experiments and the AISC code.  

Kambe et al. (2013) proposed a sandwich panel with 

plywood and steel members for a new structural 

member. They studied the compressive performance of 

that whole member and analyzed the buckling strength 

of thick plywood. They conducted compression tests 

with some slenderness ratio and experimental results 

were compared with some estimation methods like the 

Southwell-method, yield-strain-criterion, Euler’s equation, 

yield-strain-criterion and Tetmajer-method. 

Ananthi and Anbarasu (2015) studied a possibility of 

using built-up cold-formed steel columns composed of 

two lipped channels interconnected using a series of 

batten plates. Spacing between the channels was chosen 

such that moment of inertia around minor axis was twice 

the moment of inertia around major axis. They investigated 

on the compressive capacity of pin-ended cold-formed steel 

built-up sections using the finite element software 

ABAQUS. A nonlinear finite element model was 

developed and verified against theoretical and experimental 

results available in the literature. Ananthi et al. (2021) 

using the Finite Element Model (FEM) previously 

reported, a parametric study, comprising 132 models, 

described for stainless steel battened built-up columns. 

Two different grades of stainless steel, that is, austenitic 

EN1.4404 and ferritic EN1.4003 had been considered. 

The effects of slenderness, different cross-sectional 

geometries and batten depth were investigated.  
Eissa et al. (2014) analyzed the work of a saturation-

based active controller for vibration suppression of a 
four-degree-of-freedom rotor–AMB system. 

Andreev and Tsybin (2015) gave the solution of the 
problem of the stability of a compressed rod with a 
variable cross-section.  

Li et al. (2015) presented a novel scrimber 

composite. The attempts were made through theoretical 

analysis to predict the buckling stress of the column 

specimens under both elastic and inelastic buckling. In 

Fig. 9e they presented the graph of strains at mid-

length of a slender column and measured by strain 

gauges similarly like in Fig. 4a in the book 

(Murawski, 2011a; 2011b) and in Fig. 4 in the paper 

(Murawski and Kłos, 2007a-b) and in the doctor’s 

thesis (Murawski, 1999) as well as in Rys.2 in the 

paper (Murawski, 1992). 
Patel et al. (2015) dealt with High-strength thin-

walled Concrete-Filled Steel Tubular (CFST) columns 
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widely used in modern composite structures which might 
undergo local and global buckling. They presented 
accurate and robust numerical models for simulating the 
behavior of normal and high strength thin-walled CFST 
columns incorporating the important effects of local 
buckling and concrete confinement. It described the 
nonlinear analysis procedures and fundamental behavior 
of circular and rectangular CFST short and slender 
columns under various design actions. 

Özbaşaran et al. (2015) presented an alternative 

design procedure for lateral-torsional buckling of the 

cantilever I-beams which aimed to simplify the 

calculation of critical loads and design moments. A 

closed-form equation was proposed to determine a 

critical lateral–torsional buckling load. The accuracy of 

the equation was validated through ABAQUS which. 

The tests were conducted on European IPE100 section 

cantilevers. The design procedure was presented for 

cantilever I-beams which considered elastic buckling, 

inelastic buckling and full plastic strength.  

Al-Kamal (2016) presented the possible collapse 

mechanisms initiated by a precast flexural member 

dropping on a lower member. The analytical and 

numerical solutions were developed to solve three 

possible collapse scenarios: Perfectly plastic, inelastic 

and elastic. The analytical solution involves using 

Fourier series and the numerical solution involves a 

developed method of converting an initial velocity 

profile to an impulse load using SAP2000.  

Jakab et al. (2016) focused on load-bearing glass 

columns and also on the design, the load-bearing capacity 

and the stability issues of fins. In Fig. 4 they presented the 

graph of strains set at mid-length of a slender glass column 

measured by strain gauges similarly like in Fig. 4a in the 

book Murawski (2011a; 2011b) and in Fig. 4 in the paper of 

Murawski and Kłos (2007a-b) and in the doctor’s thesis 

Murawski (1999) as well as in Rys.2 in the paper Murawski 

(1992). They described this as: “… Fig. 4 indicates the 

loading force vs. strains on the glass surface. At the 

beginning both outer surface of the glass column is in 

compression after that, the compression starts to decrease at 

one outer glass surface and tensile stresses develop. The 

buckling process starts during this phenomenon”, i.e., is 

according to the Technical Stability Theory (TSTh).  

Kalamara et al. (2016) executed an experimental 

investigation for the structural performance assessment 

of square hollow glass columns. 

Kukhar et al. (2016) formed gradient curve of 

temperature distribution of lengthwise of the billet by 

differentiated heating before profiling by buckling. They 

made an analysis of the main methods of forming control 

and differential heating of metal-forming processes. It is 

proved that impression-free methods of pre-profiling of 

billets for preliminary forming was rational to combine 

with their gradient heating that changed the plastic 

properties of the billet differently by the length. 

Łukowicz et al. (2016) dealt with cold-formed steel 

sections as extensively affected the modern steel 

construction industry.  

Megahed (2016) dealt with steel-concrete composite 

columns used in modern buildings. He investigated the 

behavior of pin-ended axially and eccentrically loaded 

concrete encased steel composite columns. The work was 

composed of structural design, experimental test and 

numerical analysis of concrete encased cold formed steel 

composite column composed of steel. The experimental 

program carried out on columns tested under uniaxial 

compression load. A total of thirteen specimens have been 

tested experimentally to failure.  

Tarsha and Takla (2016) evaluated the ultimate load of 

composite columns "steel-concrete" having square or 

circular steel tubes filled hollow section with concrete. The 

reinforcing steel columns were subjected to a centrical load 

and exposed to the standard fire in accordance with ISO 

834 from all sides. The thermal and mathematical analyses 

to evaluate the ultimate centrical load according to French 

National Annex of EN 1994-1-2 and comparing it with 

Euro code 4 Part 1.2 was the purpose of the research. 
Abbas and Awazli (2017) developed a numerical 

model in a three-dimensional nonlinear finite element 
and then validated against experimental results reported 
in the literatures. They investigated the behavior of 
conventionally Reinforced Concrete (RC) columns 
subjected to axial load and lateral reversal cyclic loading. 
The numerical analysis was conducted by using finite 
element program ABAQUS/Explicit. 

Abdel-Karim et al. (2017) proposed a model for the 
strength analysis of High-Strength Concrete (HSC) 
columns subjected to eccentric loading. The model was 
based on a stability analysis of pin-ended columns using 
the theoretical sinusoidal equation for the deflected 
shape of the column. The reduction in column stiffness 
as the axial load increases, representing the basic 
characteristic of the inelastic response of columns, was 
considered subject to equilibrium conditions, 
compatibility requirements and constitutive relationships 
for the concrete and reinforcement. 

Ammash (2017) dealt with shape optimization of 
innovated cold-formed steel columns under uniaxial 
compressive loading.  

Atteya et al. (2017) dealt with an axial load capacity 
and the stiffness of a rectangular Hollow Structural 
Section (HSS) of the steel tube. In Fig. 19 they presented 
the graphs of strains set at mid-length measured by strain 
gauge similarly like in Fig. 4a in the book Murawski 
(2011a; 2011b) and in Fig. 4 in the paper Murawski and 
Kłos (2007a-b) and in the doctor’s thesis Murawski 
(1999) as well as in Rys.2 in the paper Murawski (1992). 
Those graphs showed the way of losing stability in 
accordance with the Technical Stability Theory. 

Baru (2017) dealt with the buckling, as the most 

prominent failure mode of steel column stability as well 

as the structural stability of steel structures.  
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Johnson et al. (2017) reported the results of a 

numerical and theoretical study of buckling phenomenon 

in elastic columns containing a line of holes.  

Bedon and Amadio (2017) did a unified approach for 

the buckling verification of structural glass elements. In 

Bedon and Amadio (2018) they made a buckling 

analysis and design proposal for 2-side supported double 

Insulated Glass Units (IGUs) in compression. 

Oliveira et al. (2017) studied the shear effect on 

the buckling of columns embedded in an elastic 

medium, evidencing the interaction of the column 

with the foundation.  

Silvestre et al. (2018) studied the influence of the 

nature of the deformation mode (global, local and 

distortional) on the load carrying capacity of beams beyond 

the yield load. The five beams with different cross-sections, 

lengths, supports and loadings were analysed.  

Słowiński and Piekarczyk (2017) dealt with a safe and 

economic design of steel cylindrical shells according to 

European Standard EN 1993-1-6 often requiring a nonlinear 

analysis. The plastic collapse load resulting from a 

materially nonlinear analysis was to be determined then in 

many cases. The authors used the modified Southwell plot 

and also the plot between the load factor increment and the 

arc length for an evaluation of the plastic collapse resistance 

of a steel cylindrical shell.  

Abdulazeez et al. (2018) presented a numerical study 

on the behavior of Hollow-Core Fiber Reinforced 

Polymer-Concrete-Steel (HC-FCS) columns under 

combined axial compression and lateral loadings. The 

investigated HC-FCS columns consisted of an outer circular 

Fiber Reinforced Polymer (FRP) tube, an inner square steel 

tube and a concrete wall between them. Three-dimensional 

numerical models were developed and validated against 

experimental results. The presence of the concrete wall 

restrained by the outer FRP and inner steel tubes 

significantly affected the steel tube buckling.  

Brasil and Wahrhaftig (2018) did an experimental 

evaluation of the effect of geometric nonlinearities on 

structural resonances. 

Can et al. (2018) designed a novel crash box as a 

telescopic structure by joining coaxial tubes by using 

gradual bonding surface areas. The telescopic crash 

box was absorbed to impact energy by sequentially 

fracturing adhesive interfaces from the top tube to the 

back tubes. Frontal impact simulations were 

performed using Finite Element Method.  
Isleem et al. (2018) dealt with experimental and 

analytical investigations of the stress-strain behavior of 
rectangular concrete columns externally confined with 
Carbon Fiber-Reinforced Polymer (CFRP) composites 
under axial compression loading. They presented the 
results of experimental tests on 28 larger-sized 
rectangular plain and Reinforced Concrete (RC) columns 
confined with CFRP wrap. An important finding of the 
study was that the internal longitudinal and hoop steel 

reinforcement influenced the shapes of the axial stress-
strain envelope curves, the unloading and reloading 
paths and the plastic strain values.  

Lilkova-Markova and Lolov (2018) investigated the 

problem of loss of stability of an axially compressed 

column. The column was fixed at one of its ends and on 

a transversal linear spring support at the other. The 

multi-segment integration technique has been applied for 

obtaining the critical force of the column. The results 

obtained showed the dependence of the critical force for 

the column on the rigidity of the spring support.  

Massumi et al. (2018) matched the real behavior of 

the RC structures constructed based on the assumed 

specifications of the used materials. The lateral strength 

(plastic behaviors) and damage to twenty-five RC 

Moment-Resisting Frames (MRFs) were studied by 

applying the inelastic analysis. The obtained results 

indicated that there was a semi-linear relationship between 

the deviation in the strength of reinforcement and the 

changes in the lateral strength values of the MRFs.  

Razdolsky (2018) focused on elastic stability analysis 

of battened columns and laced columns with crosswise, 

fir-shaped and serpentine lattices.  

Saeed and Eissa (2018) analyzed bifurcations of 

periodic motion of a horizontally supported nonlinear 

Jeffcott-rotor system having a transversely cracked shaft. 

Saeed and Eissa (2019) did a bifurcation analysis of a 

transversely cracked nonlinear Jeffcott-rotor system at 

different resonance cases. Saeed (2019) did an analysis of 

vibration behavior and motion bifurcation of a nonlinear 

asymmetric rotating shaft. Next Saeed (2020) did an 

analysis of the steady-state forward and backward 

whirling motion of the asymmetric nonlinear rotor system 

and Saeed et al. (2020a) did a nonlinear dynamic analysis 

of the six-pole rotor-AMB system under two different 

control configurations. Later Saeed et al. (2020b) executed 

an analysis of radial versus Cartesian control strategies to 

stabilize the nonlinear whirling motion of the six-pole rotor-

AMBs and Saeed et al. (2020c) an analysis of periodic, 

quasi-periodic and chaotic motions diagnose a crack on a 

horizontally supported nonlinear rotor system. Next, 

Saeed et al. (2021a) made a sensitivity analysis and 

vibration control of asymmetric nonlinear rotating 

shaft system utilizing 4-pole AMBs as an actuator and 

Saeed et al. (2021b) did an analysis of the rub-impact 

forces between a controlled nonlinear rotating shaft 

system and the electromagnet pole legs. 

Slimani et al. (2018) dealt with the concept of the 

effective length factor of columns representing an important 

parameter with regard to the elastic buckling analysis.  
Thumrongvut and Tiwjantuk (2018) presented the 

experimental results on the strength and axial behavior 
of rectangular steel tube columns filled with Cellular 
Lightweight Concrete (CLC) under axial compression. A 
total of 24 specimens, including 6 Reinforced Cellular 
Lightweight Concrete (RCLC) columns and 18 cellular 
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Lightweight Concrete-Filled Steel Tube (CLCFT) 
columns were investigated. The behavior of the columns 
was nonlinear due to the crushing of the concrete core 
and local wall buckling of the steel hollow tube.  

Anuntasena et al. (2019) presented the 3D Finite 

Element (FE) analysis of the Concrete-Encased Steel 

(CES) columns subjected to concentric or eccentric 

loadings. A new simplified technique of FE modelling 

that incorporates the concrete confinement behavior of 

the composite columns was proposed. This technique 

eliminated the need of predefining zones and constitutive 

properties of the confined concrete.  

Ivanov (2019) studied small vibrations of a 

cylindrical shaft caused by inertial excitation. The shaft 

was vertically situated. It was supported by a spherical 

and a cylindrical joint. 

Krishan et al. (2019) presented a theoretical study of 

the structural resistance of compressed short concrete 

elements in a glass-fiber reinforced shell. The 

methodology was based on a nonlinear strain model of 

how this element reacts to incremental load in. The 

lateral pressure kept increasing due to changes in the 

concrete-core and glass fiber-reinforced shell lateral-

strain coefficients, causing greater stress in the material.  

Kudryavtsev (2019) presented the study of behavior 

of axially loaded columns that consisted of two flanges 

and a thin triangularly corrugated web, connected by 

automatic welding.  

Nazarimofrad and Shokrgozar (2019) dealt with a 

Buckling‐Restrained Braced frame (BRB) as the seismic 

force‐resisting systems used in buildings. Nonlinear time 

history and incremental dynamic analysis techniques were 

applied to investigate the behavior of the two frames with 

different stories under different ground motion records.  

Qi et al. (2019) dealt with the innovative pultruded 

Fiber Reinforced Polymer (FRP). Axial compression 

tests with both ends pinned were employed to 

investigate the columns under concentric load. Strain 

responses on specimens with different slenderness 

ratios were consistent with the observed failure modes. 

The courses of the values of the longitudinal strains in 

Fig. 10 correspond to the graph in Fig. 4 in the paper 

Murawski and Kłos (2007a-b) and in Fig. 4a Murawski 

(2011a; 2011b) - what confirm qualitatively the correctness 

of the Technical Stability Theory.  
Roy et al. (2019) dealt with a built-up box section 

popular for column members in Cold-Formed Steel 
(CFS). The authors presented an experimental 
investigation on an axial capacity. Tests were conducted 
for different values of slenderness.  

Simão et al. (2019) presented a study on the buckling 

behavior of slender steel columns under fire conditions, 

which depended on two main factors: The thermal 

elongation of the column and the degradation of the steel 

mechanical properties due to temperature rise. The 

column’s mechanical behavior was based on a total 

potential energy formulation, considering an elastic-plastic 

law for steel and the member’s kinematic description was 

performed by means of the Generalized Beam Theory.  

Virgens et al. (2019) presented the experimental study 

of eccentrically loaded reinforced concrete columns with an 

added 35 mm self-compacting concrete jacket attached to 

the column’s most compressed faces using wedge bolts. 

Nine columns with a 2000 mm height were tested under 

compression and one-way bending until failure.  

Zhou et al. (2019) introduced the effective length 

factor and imperfection factor to the current stability 

factor formula to calculate the ultimate load of the lattice 

boom accurately.  

Zucco et al. (2019) tested a 750×640×240 mm variable-

stiffness unitized integrated-stiffener out-of-autoclave 

thermoplastic composite wing-box for a combined shear-

bending-torsion induced buckling load. The experimental 

test results of the wing-box were also compared with the 

predictions made by a numerical study performed. 
Abedini et al. (2020) focused on investigating blast 

load parameters to design of Reinforced Concrete (RC) 
columns to withstand blast detonation. The numerical 
model was based on finite element analysis using LS-
DYNA. The couples of simulations were performed with 
changing blast parameters to study the effects of various 
scaled distances on the nonlinear behavior of RC columns. 

Ahiwale et al. (2020) dealt with a Concrete-Filled 

Tubular (CFT) structure consisted of high strength, 

favorable ductility, fire resistance and energy 

absorption. The twelve CFT columns had been tested 

under axial compression and they behavior had been 

studied in terms of axial load-carrying capacity, 

deflection and buckling effects.  
Alomarah et al. (2020) dealt with auxetic structures 

exhibit Negative Poisson's Ratio (NPR). They presented 
a combined experimental and numerical investigation of 
the out-of-plane and in-plane performances of a Re-
entrant Chiral Auxetic (RCA), under quasi-static 
uniaxial compression. Deformation mode, stress-strain 
curves and energy absorption of the three types of 
structure were studied and compared.  

Avci-Karatas (2020) dealt with a construction in 
areas of high earthquake intensity, extreme climates and 
blast loading. Considering the need for suitable analysis 
and design of mid-rise Reinforced Concrete (RC) 
buildings in hilly regions, the present deals with the 
evaluation of the response of a G+3 building on a hilly 
area subjected to earthquake and wind.  

Doan et al. (2020) dealt with a design of thin-walled 
composite columns. They provided an investigation based 
on a numerical study of the effects of the section 
dimensions, thickness ratio and slenderness ratio on 
the critical buckling load of a thin-walled composite 
strut under uniaxial compression. The linear and post-
buckling behavior analysis was performed to verify 
the results of the numerical model with the obtained 
buckling load from the experiment.  
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Goroshko et al. (2020) proposed a method of 

preventing the loss of Euler stability by thin rods.  

Kiss (2020a) investigated the planar stability of fixed-

fixed shallow circular arches and Kiss (2020b) aimed to 

find the buckling loads for pinned-rotationally restrained 

shallow circular arches in terms of the rotational end 

stiffness, geometry and material distribution. 

Naseri et al. (2020) presented an experimental study 

into the buckling behavior of Glass Fabric-Reinforced 

Polymer (GFRP) cylindrical shells subjected to axial 

compression load. The tests were conducted on six 

cylindrical shells with different height-to-radius ratios. It 

was concluded that the GFRP cylindrical shells showed the 

full-buckling strength and had local buckling failure mode.  

Pinarbasi et al. (2020) dealt with the Turkish 

Building Code for Steel Structures replaced with a more 

rational Specification of Design and Construction of 

Steel Structures (SDCSS), which was prepared based on 

the American steel design specification (AISC 360-16). 

European steel design specification (EC3) was also 

widely used in Turkey. For various steel grades, member 

lengths and 153 different European I/H sections, design 

buckling resistances and design compressive strengths 

were computed and compared.  

Qays and Al-Zuhairi (2020) discussed the idea of 

using slender Reinforced Concrete (RC) columns with a 

cross-shaped (+-shaped) instead of columns with square-

shaped. The study explored the structural response of 

slender +-shaped columns experimentally and 

numerically by nonlinear finite element analysis using 

Abaqus simulation tools.  

Rajkannu and Sanjeevi (2020) presented the details 

of an experimental and numerical study on the effect of 

warping on the Flexural-Torsional Buckling (FTB) 

behavior of axially loaded cold-formed steel lipped 

channel members.  

Saberi et al. (2020) studied the cooperation of steel 

and concrete in composite columns.  

Saingam et al. (2020) dealt with a seismically 

retrofitting Reinforced Concrete (RC) building with a 

combination of Buckling-Restrained Braces (BRBs) and 

elastic steel frames provided additional lateral stiffness and 

energy dissipation capacity. Numerical models considering 

the detailed composite behavior were developed and 

calibrated against quasi-static cyclic loading tests and a 

simplified evaluation method was proposed.  

Terazawa et al. (2020) dealt with a grid-purlin system 

composed of RHS members known to be effective to 

prevent buckling of the welded beams. The lattice dome 

composed of radial beams and welded grid purlins (Grid 

purlin shell dome) were studied. The linear, elastic and 

elastic-plastic buckling strength of Grid purlin shell 

domes were analyzed using FEM analyses. Their results 

were compared with the shell theory with continuum 

analogy and easy design approaches were investigated. 

Viana et al. (2020) addressed a corotational 

Lagrangian formulation for nonlinear dynamic analysis 

of steel planar frames. This formulation employed the 

Plastic Zone Method and is capable of considering 

second-order effects, initial geometric imperfections and 

residual stresses. The integration of stresses over the 

cross-section area was executed based on elastic-

perfectly plastic stress-strain curve.  

Mehrabi et al. (2021) studied dynamic response and 

mechanical performance of fiber-reinforced concrete 

columns using hybrid numerical algorithms. Whereas 

test data had nonlinearity, an Artificial Intelligence (AI) 

algorithm had been incorporated with different 

metaheuristic algorithms. Adaptive Neuro-Fuzzy 

Inference System (ANFIS) was carried out as an AI 

beside the combination of Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA).  

Besides, there was done the literature review of 

semi-slender, thin-walled column stability (Murawski, 

2008a-e; 2020a-c).  

Stability Experimental Research of Semi-Slender, 

Thin-Walled Column  

There were executed the experimental researches of 

the columns made of steel (Murawski, 2011a; 2011b; 

2017a; 2020a; 2020b) compressed by ball-and-socket 

joints with friction (Fig. 1).  

Figure 2 presents the curve () and Fig. 3 the graphs 

of the curved axis y(x) and its slope dy/dx of the 

cylindrical thin-walled specimen 451545 with 

dimensions R = 22 mm, t = 1 mm, L = 545 mm and the 

slenderness ratio  = 35, made of steel St35, compressed 

through ball-and-socket joints with friction.  

Stability Analysis 

The author assumed in his own analysis of very 

slender column TSTh (Murawski, 1992; 1999; 2002a-b; 

2003a-d; 2004a-f; 2005; 2007a-b; 2011a-c; 2017b; 2018; 

2019) that the loss of the stability occurs already at a 

minimum load and the loss of carrying capacity follows 

the exit of the force line from the critical cross-section.  

Consistently according to this Technical Stability 

Theory (TSTh) the state of stresses in the critical cross-

section, after the loss of stability and before the loss of 

carrying capacity, results of the superimposition of pure 

compression and bending as well as the external shear 

forces are not present. In this theory is assumed that 

internal shear forces appearing as the reaction to bending 

of the column may be missed. Consistently the shear 

stresses are missed too (Fig. 4 and 5).  

Hence, in the elastic states, the surely loss of stability, as 

the conservative assumption in an engineering practice, 

follows the entry of the resultant neutral layer in the critical 

transverse section, however here is assumed the loss of 

carrying capacity following the exit of the force line from 
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the critical cross-section. Therefore, the normal strain n of 

any fibre at the distance y from the central layer of very 

slender columns in elastic states is (Murawski, 2004b; 

2004d; 2011a; 2011b; 2017b; 2018; 2019): 
 

 
,n

y y   


  

    
  


 (1) 

 
Where: 

: Denotes the radius of the curved central line 

: The angle of the central line slope, in relation to the 

force line 
 

The normal stress in this fibre equals: 
 

,n g c

y P
E

A
  


        (2) 

 
Where:  

E: Denotes the Young’s modulus of elasticity of a column 

n: Represents the normal stress 

g: The bending stress 

c: The compressive stress 

P: The imposed axial force 

A: The area of the critical cross-section 
 

Assuming, unlike Euler, that the displacement of the 

column axis is determined by the small deformation 

theory and due to the forces equilibrium (Murawski, 2003d; 

2004b; 2004d; 2011a; 2011b; 2017b; 2018; 2019), that is: 
 

 
2

2

1
, .g c

d y y P
dP dA E dA

dx A
 

 

 
         

 
 (3) 

 
After integrating were obtained the differential 

equation of the elastic line in the elastic states and in the 

elastic-plastic states.  

On the assumption that the state of strains is the result 

of a superposition of bending and pure compression the 

state of strains is as follows: 
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y P
E E

A

y L
E E
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 
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 

 (4) 

 
with: 
 

.n g c       (5) 

 
Where: 

g: Denotes the bending strain  

c: The compressive strain 
 

From the equilibrium of the moments for 

symmetric transverse cross-section profiles, the 

formulas of the normal stress in the elastic state 

n
el(x,y) (Murawski, 2018) and in the elastic-plastic 

states n
el-pl(x,y) were obtained. 

The formulas of n
el, y

el and y
el in the elastic state 

are as follows: 
 

 
 ,

, ,

el

nel

n

x y
x y

E


   (6) 

 

   , , ,el el

n nx y x y v     (7) 

 

   , ,el el

y nx y x y v     (8) 

 

Where: 

y: Denotes the orthogonal stress 

y: The orthogonal strain 

 
For columns axially compressed by ball-and-socket 

joints (Fig. 4 and 5) without friction, with the boundary 
conditions: dy/dx = 0 when x = L/2 and y = 0 when x = 
0, the equations of the slope in the elastic state (dy/dx)el 
(Murawski, 2011a; 2011b; 2018) and in the elastic-plastic 
states (dy/dx)el-pl as well as the elastic line in the elastic state 
y(x)el (Murawski, 2011a; 2011b) and in the elastic-plastic 
states y(x)el-pl after integrating were obtained.  

For the column pinned at both ends, the equations 
of the maximal deflection, in the critical cross-section 
x = L/2, in the elastic state y(P)el

x=L/2 (Murawski 
2011a; 2011b; 2018) as well as in the elastic-plastic 
states y(P)el-pl

x=L/2 were obtained.  
Figure 6a shows the curve, stress - strain , obtained 

from the tensile test with determined Young’s modulus 
E, secant modulus Es and tangent modulus Et.  

When the position of the force line determines (Fig. 
6b) the middle radius of the thin-walled column R and 
angle - the coordinate of this line equals: 
 

  cos .Py R    (9) 

 
When the position of the plastic zone determines 

(Fig. 6b) the middle radius of the thin-walled column R 

and angle - the coordinate of the plastic zone border is: 
 

  cos .ply R    (10) 

 
For the cylindrical thin-walled column, according to 

Fig. 6b the plastic and elastic areas, static moments and 
moments of inertia of elastic and plastic areas of the 
critical transverse cross-section in dependence on the 
angle  were determined.  

Figure 7 shows how various with a slenderness ratio  

the curves, stress - strain  obtained from the compressive 

tests, with determined compress modulus Ec and secant 

compress modulus Esc for thin-walled columns in elastic-

plastic states. It was assumed that in the elastic transverse 

cross-section area Ael, with the static moment Sz
el, there is 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 134.194 

DOI: 10.3844/sgamrsp.2021.134.194 

 

142 

the elastic Young’s module E>0 and in the plastic 

transverse cross-section area Apl, with the static moment Sz
pl, 

the plastic module equals compressing module Epl = Ec.  

On the assumption that in the critical elastic-plastic 

transverse cross-section area, strength keep both parts, 

i.e., elastic and plastic and by simplifications that whole 

moment of inertia of a cross-section area is taken into 

account Jz = Jz
all, the equation of the elastic lines y(x)el, 

elastic slopes (dy/dx)el (Fig. 8) and function of maximal 

deflection yL/2(P)el in the elastic state (Fig. 9), for the 

cylindrical column in the elastic states with both pinned 

ends, according to Murawski (2018), were determined. 

On the assumption that the loss of carrying capacity 

occurs when the line of forces gets into the plastic zone 

(what is the simplification and what would be true for Epl 

= 0, Fig. 6b): 

 

cr       (11) 

 

for a critical situation (when  =  = cr) the equation of 

the central elastic-plastic line y(x)cr
el-pl, its elastic-plastic 

slopes (dy/dx)cr
el-pl (Fig. 8) and equation of maximal elastic-

plastic deflection yL/2(P)el-pl (Fig. 9) of the central line for the 

cylindrical column in the elastic-plastic states with both 

pinned ends at the critical situation were determined.  

Figures 8 and 9 present the stability analysis: the 

elastic line y(x), its slope dy/dx and dependence yL/2(P) 

with Epl = Ec of the cylindrical column made of St35 with 

R = 22 mm, t = 1 mm, L = 545 mm compressed by 

ball-and-socket joints without friction (E = 202 768, 28 

MPa was assumed). On the base of the assumption that 

the angle of the plastic zone depends directly 

proportionally on the slenderness ratio: 

_

_ 2

el lt

cr

el lt

  





   (12) 

 
The moments of inertia of those plastic areas of the 

critical transverse cross-section were neglected, what 

was the simplification. Figure 10 presents the surface 

functions of the cylindrical thin-walled half-column as 

the theoretical example. 
 

P

 
 
Fig. 1: Guidance and the fixing of the specimen during the 

compression through ball-and-socket joints with 

friction and the characteristic form of lateral buckling 

of the semi-slender cylindrical column in elastic-plastic 

states (Murawski, 2011a; 2011b; 2020) 
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Fig. 2: Curve () of the specimen with dimensions 451545 and the slenderness ratio  = 35, made of steel St35, compressed 

through ball-and-socket joints with friction 
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Fig. 3: Experimental graphs of the: (a) Curved axis y(x) and (b) its slope dy/dx of the cylindrical column made of St35 with R = 22 

mm, t = 1 mm, L = 545 mm compressed by ball-and-socket joints without friction. 

 

 

 
Fig. 4: Schematic figure (a) and the scheme of forces (b) in the critical transverse cross-section for a pinned slender column 
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Fig. 5: Stresses in the critical transverse section of a pinned cylindrical column axially compressed after the loss of stability, 

according to the TSTh (Murawski, 2003c; 2004b) 
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Fig. 6: Young’s modulus E, tangent modulus Et and secant modulus Es during tension (a) (Murawski, 1992; 1999; 2002a; 2002b; 

2003a) and the critical cross-section at the moment of the loss of stability of a cylindrical column in elastic-plastic states (b) 
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Fig. 7: Compress modulus Ec and secant compress modulus Esc for thin-walled columns in elastic-plastic states (Murawski, 2020b, Fig. 25) 
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Fig. 8: Graphs of the: (a) Curved axis y(x) and (b) its slope dy/dx with Epl = Ec of the cylindrical column made of St35 with R = 22 

mm, t = 1 mm, L = 545 mm compressed by ball-and-socket joints without friction 
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Fig. 9: Graph of the function yL/2(P) with Epl = Ec of the cylindrical column made of steel St35 with R = 22 mm, t = 1 mm, L = 545 

mm compressed by ball-and-socket joints without friction 
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Fig. 10: Surface functions of the pinned cylindrical thin-walled half-column: (a) straight, (b) buckled 
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Stress and Strain Analysis  

Like in the stress analysis, the author assumed the 

state of strains as the result of the superposition of 

bending and of pure compression-Fig. 11 (Murawski, 

2003d; 2004b; 2004d; 2011a; 2011b; 2017b; 2018; 

2019). From the equilibrium of moments, the normal 

shell stresses n
el(x,y) in the thin-walled cylindrical column 

pinned at both ends, without friction in the elastic state, 

depending on x and y, were taken from (Murawski, 2018) 

and, taking into account the conditions of the elastic-plastic 

states, the normal shell stresses n
el-pl(x,y) depending on the 

plastic angle  were determined, too.  

From the assumption that the limit of the elastic state 

follows the exit the force line from the elastic zone in the 

critical transverse cross-section, the compressing elastic 

limited stress in the elastic state lt
el was determined.  

On the assumption that the critical situation follows the 

entrance of the force line into the plastic zone, where the 

normal stress equals the yield stress (n = R*
e – determined 

like in Murawski, 2020c, Fig. 16), the compressive critical 

stress ()cr
el-pl in the elastic-plastic states for the cylindrical 

column, with the plastic zone determined by the middle 

radius of the thin-walled column R and angle  in the 

critical cross-section, was determined with a simplification 

that in a critical transverse cross-section, the coordinate of 

line of forces equals the coordinate of the plastic zone 

border  =  = cr (true for Epl = 0): 

 

  cos ,cr cry R    (13) 

 

Where: 

cr: Denotes the angle coordinate of a plastic zone 

boundary, while 

: Angle coordinate of an external force line, like in 

Eq. (9) 

 

On the base of the assumption that the angle of the 

plastic zone  depends directly proportionally on the 

slenderness ratio-Eq. (12), the normal shell stresses 

n
cr(x,y) in the thin-walled cylindrical column pinned 

without friction at both ends, in the critical state, 

depending on the coordinates x and y and slenderness 

ratio, were determined, as well as the critical 

compressing stress ()cr
el-pl, when in the plastic zone the 

normal stress got the yield stress (n = R*
e). 

On the assumption that in the critical elastic-plastic 

transverse cross-section area keep a resistance both parts, 

i.e., elastic and plastic (in the elastic transverse cross-

section area Ael, with the static moment Sz
el, there is the 

elastic Young’s module E>0 and in the plastic transverse 

cross-section area Apl, with the static moment Sz
pl, the 

plastic module equals compressing module Epl = Ec), 

with simplification that in elastic-plastic states the 

moment of inertia is taken of whole transverse critical 

cross-section Jz = Jz
all, the graphs of the stresses n, 

y(x,y), strains n, y(x,y) and extensions L,2t(x,y) with 

Epl = Ec = 118 115,5 MPa and Jz= Jz
all for x = 0÷L and y 

= ± 0.2÷1.0 R in the pinned cylindrical column made of 

steel St35 with dimensions: R = 22 mm, t = 1 mm, L= 545 

mm compressed for the column with both pinned ends in 

the elastic-plastic states, are presented in Fig. 12÷23 as 

the theoretical example.  

From Fig. 12a and 12c for the analyzed case of 

compression with P = 0.25∙ Pcr = 9 373.0 N and bending, 

computed with Epl = Ec, results that the courses of the 

normal stresses n(x,y), strains n(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis, in which the stresses are equal to the 

pure compressive stresses (R = 0), but their values are 

bigger on the concave side. The values of the transverse 

strains n are analogous to the course of normal stresses 

n, but with values decreased by the inverse 1/E- of 

Young's modulus. All values have the minus signs (are 

negative), i.e., all fibers are compressed and shortened.  

From Fig. 12b and 12d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive), what 

proves the existence of the tension in the transverse 

direction, orthogonal to the longitudinal axis. The values 

of the transverse stresses y are decreased by Poisson's 

ratio . The values of the strains y are decreased by 

Poisson’s ratio -v.  

From Fig. 13a, 13c for the analyzed case of 

compression with P = 0.5∙ Pcr
 = 18 745.9 N and bending, 

computed with Epl = Ec, results that the courses of the 

normal stresses n(x,y), strains n(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis, in which the stresses are equal to the 

pure compressive stresses (R = 0), but their values are 

bigger on the concave side. The values of the transverse 

strains n are analogous to the course of normal stresses 

n. All values have the minus signs (are negative), i.e., all 

fibers are compressed and shortened.  

From Fig. 13b and 13d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive), what 

proves the existence of the tension in the transverse 

direction, orthogonal to the longitudinal axis.  

From Fig. 14a and 14c for the analyzed case of 

compression with P = 0.629∙Pcr = 23 595.5 N and 

bending, computed with Epl = Ec, results that the courses 
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of the normal stresses y(x,y), strains y(x,y) and 

extensions L(x,y) are symmetrical in relation to the layer 

with geometrical axis, in which the stresses are equal to the 

pure compressive stresses (R = 0), but their values are bigger 

on the concave side. All values, except the edge fibre on the 

convex side, have the minus signs (are negative), i.e., all 

fibers are compressed and shortened, except the edge fibre, 

which is unloaded and unextended.  

From Fig. 14b and 14d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs. The edge fibre also 

is unloaded and unextended. 

From Fig. 15a and 15c for the analyzed case of 

compression with P = 0.872∙Pcr = 32 701.53 N and 

bending, computed with Epl = Ec, results that the courses of 

the normal stresses n(x,y), strains n(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis (R = 0), in which the stresses are equal to 

the pure compressive stresses, but their values are bigger on 

the concave side. The values have the minus signs (are 

negative) in the internal fibers on the concave side-i.e., 

fibers are compressed and shortened and the plus signs are 

(positive) on the opposite convex side-fibers are tensed and 

extended. All fibers are in the elastic state yet. 

From Fig. 15b and 15d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer with 

geometrical axis (R = 0) with values bigger on the concave 

side but with the plus signs (are positive) of the tension in 

the transverse direction. The values have the plus signs 

(are positive) in the transverse internal fibers on the 

concave side - i.e., fibers are tensed and extended and 

the minus signs (are negative) on the opposite convex 

side-fibers are compressed and shortened. All fibers 

are in the elastic state yet. 

From Fig. 16a and 16c for the analyzed case of 

compression with P = 0.936∙Pcr = 35 096.7 N and 

bending, computed with Epl = Ec, results that the courses 

of the normal stresses n(x,y), strains n(x,y) and 

extensions L(x,y) are symmetrical in relation to the 

layer with geometrical axis (R = 0), in which the stresses 

are equal to the pure compressive stresses, but their 

values are bigger on the concave side. The values have 

the minus signs (are negative) in the internal fibers on 

the concave side -i.e., fibers are compressed and 

shortened and the plus signs are (positive) on the 

opposite convex side-fibers are tensed and extended. A 

part of fibers are in the plastic state. The angle of plastic 

area is  = cr /2 = 24.60 deg. 

From Fig. 16b and 16d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive) of the 

tension in the transverse direction. The values have the 

plus signs (are positive) in the transverse internal fibers 

on the concave side-i.e., fibers are tensed and 

extended and the minus signs (are negative) on the 

opposite convex side-fibers are compressed and 

shortened. A part of fibers are in the plastic state. The 

angle of plastic area is  = cr /2 = 24.60 deg. 

From Fig. 17a and 17c for the analyzed case of 

compression with P = 1.0∙Pcr
 = 37 491.88 N and bending 

results, computed with Epl = Ec, that the courses of the 

normal stresses n(x,y), strains n(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis (R = 0), in which the stresses are equal to 

the pure compressive stresses, but their values are bigger on 

the concave side. The values have the minus signs (are 

negative) in the internal fibers on the concave side-i.e., 

fibers are compressed and shortened and the plus signs are 

(positive) on the opposite convex side-fibers are tensed and 

extended. A part of fibers are in the plastic state. The angle 

of plastic area is  = cr = 49.20 deg. 

From Fig. 17b and 17d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive) of the 

tension in the transverse direction. The values have the 

plus signs (are positive) in the transverse internal 

fibers on the concave side-i.e., fibers are tensed and 

extended and the minus signs (are negative) on the 

opposite convex side-fibers are compressed and 

shortened. A part of fibers are in the plastic state. The 

angle of plastic area is  = cr = 49.20 deg. 

Figure 18 and 19 show the surface functions of the 

normal stresses n(x,y) in the cylindrical pinned column 

made of steel St35 with dimensions: R = 22 mm, t = 1 

mm, L= 545 mm loaded with the force Pcr = 37 491.88 N 

and computed with Epl = Ec. 

Figure 20 shows the surface functions of the normal 

stresses n(x,y) [MPa], strains n and extensions L 

[mm], related to the straight and Fig. 21 -related to the 

buckled, cylindrical column, loaded with the force Pcr = 

37 491.88 N and computed with Epl = Ec. 

Figure 22 shows the surface functions of the 

transverse stresses y [MPa], strains y and extensions 

2t [mm] related to the straight and Fig. 23 -related to 

the buckled, cylindrical column, loaded with the force Pcr 

= 37 491.88 N and computed with Epl = Ec. 
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Fig. 11: Strains in the critical transverse section of a cylindrical column axially compressed by ball-and-socket joints, after the loss 

of stability and before the loss of carrying capacity, according to the author’s own hypothesis (Murawski, 2003d; 2004b) 

 

 n ,  n ,  L (x, y = ±0.2÷1.0 R, 0.25 P cr )

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

-660 -550 -440 -330 -220 -110 0 110

x
 [

m
]

-0,0033 -0,0027 -0,0022 -0,0016 -0,0011 -0,0005 0,0000 0,0005
 n

Sigma_n(x,y=1.0 R)

Sigma_n(x,y=0.8 R)

Sigma_n(x,y=0.6 R)

Sigma_n(x,y=0.4 R)

Sigma_n(x,y=0.2 R)

Sigma_n(x,y= 0.0 R)

Sigma_n(x,y=-0.2 R) 

Sigma_n(x,y=-0.6 R)

Sigma_n(x,y=-0.4 R)

Sigma_n(x,y=-0.8 R)

Sigma_n(x,y=-1.0 R) 

 L  [mm]

-67,807 MPa 

 n [MPa]  

-1,774         -1,478        -1,183         -0,887        -0,591         -0,296         0,000          0,296

       

 y ,  y ,  2t (x, y = ±0.2÷1.0 R, 0.25 P cr )

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

-4004080120160200

x
 [

m
]

-0,00020,00000,00020,00040,00060,00080,0010  y

Sigma_y(x,y=1.0 R)

Sigma_y(x,y=0.8 R)

Sigma_y(x,y=0.6 R)

Sigma_y(x,y=0.4 R)

Sigma_y(x,y=0.2 R)

Sigma_y(x,y=0.0 R)

Sigma_y(x,y=-0.2 R)

Sigma_y(x,y=-0.4 R)

Sigma_y(x,y=-0.6 R)

Sigma_y(x,y=-0.8 R)

Sigma_y(x,y=-1.0 R)

 2t  [mm]

20.342 MPa 

 y [MPa]  

0,0020           0,0016           0,0012            0,0008           0,0004            0,0000          -0,0004

 
 (a) (b) 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 134.194 

DOI: 10.3844/sgamrsp.2021.134.194 

 

150 

 n ,  n ,  L (x=L/2, y, 0.25 P cr )

-660

-550

-440

-330

-220

-110

0

110

-22,0-17,6-13,2-8,8-4,40,04,48,813,217,622,0
y  [mm]


n
(x

,y
)

 [
M

P
a

]

-0,00326

-0,00271

-0,00217

-0,00163

-0,00109

-0,00054

0,00000

0,00054
 n


L

 [
m

m
]

0,296

0,000

-0,296

-0,591

-0,887

-1,183

-1,478

-1,774

 y ,  y ,  2t (x=L/2, y, 0.25 P cr )

-40

0

40

80

120

160

200

-22,0-17,6-13,2-8,8-4,40,04,48,813,217,622,0

y  [mm]


y
(x

,y
)

 [
M

P
a

]

-0,0002

0,0000

0,0002

0,0004

0,0006

0,0008

0,0010

 y


2

t
 [

m
m

]

0,0020           

0,0016           

0,0012            

0,0008           

0,0004            

0,0000          

-0,0004

 
 (c) (d) 

 

Fig. 12: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L, 2t(x,y) with Epl = Ec and Jz = Jz all for x = 0÷L and y 

= ±0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.25∙Pcr = 9 373.0 N in the longitudinal (a, b) and transverse cross-section (c, d) for  x = L/2 =  272.5 mm 
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Fig. 13: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L, 2t(x,y) with Epl = Ec and Jz = Jz all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.5∙Pcr = 18 745.9 N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2 =  272.5 mm 
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Fig. 14: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L, 2t(x,y) with Epl = Ec and Jz = Jz all for x = 0÷L and y =± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.629∙Pcr = 23 595.5 N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2 =  272.5 mm 
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Fig. 15: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L, 2t(x,y) with Epl = Ec and Jz = Jz all for x = 0÷L and y =± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.872∙Pcr = 32 701.53 N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2 = 272.5 mm 
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Fig. 16: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L, 2t(x,y) with Epl = Ec and Jz = Jz all for x = 0÷L and 

y =± 0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm 

compressed with the force P = 0.936∙Pcr = 35 096.7 N by  = cr /2 = 24.60 deg in the longitudinal (a, b) and transverse 

cross section (c, d) for  x = L/2= 272.5 mm 
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Fig. 17: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl= Ec and Jz= Jz

all for x = 0÷L and y= ±0.2÷1.0 R in 

the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed with the force P 

=1.0∙Pcr
  = 37 491.88 N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2 = 272.5 mm 
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Fig. 18: Values of the stresses n(x,y) with Epl = Ec and Jz = Jz all in the axially loaded with the force Pcr cylindrical pinned column 

made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm 
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Fig. 19: Values of the stresses n(x,y) with Epl= Ec and Jz= Jz

all
 in the axially loaded with the force Pcr cylindrical pinned column made 

of steel St35 with dimensions: R= 22 mm, t= 1 mm, L= 545 mm 
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Fig. 20: Surface functions of the normal stresses n [MPa], strains n and extensions L [mm] with Epl = Ec and Jz = Jz
all related to 

the buckled pinned cylindrical column, compressed with the force Pcr 

0 

 
55 

 
109 

 
164 

 
218 

 
273 

 
327 

 
382 

 
436 

 
491 

 
545 

-22 -13 -4 4 13 22 

y [mm] 

n [MPa] 

0-110 
 

-110-0 
 

-220--110 
 

-330--220 
 

-440--330 
 

-550--440 
 

-660--550 

 

0,0000-0,0005 

 
-0,0005-0,0000 

 
-0,0011--0,0005 

 
-0,0016--0,0011 

 
-0,0022-0,0016 

 
-0,0027--0,0022 

 
-0,0033--0,0027 

0,000-0,296 
 

-0,296-0,000 
 

-0,591--0,296 
 

-0,887--0,591 
 

-1,183--0,887 
 

-1,478--1,183 
 

-1,774--1,478 

L [mm] 

n 

x 
[m

m
] 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 134.194 

DOI: 10.3844/sgamrsp.2021.134.194 

 

158 

 

 

Fig. 21: Surface functions of the normal stresses sn [MPa], strains en and extensions DL [mm] with Epl = Ec and Jz= Jz
all

 related to the 

buckled pinned cylindrical column, compressed with the force Pcr 
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Fig. 22: Surface functions of the transverse stresses σy [MPa], strains εy and extensions ∆2t [mm] with Epl = Ec and Jz = 

Jz all related to the straight, pinned cylindrical column, compressed with the force Pcr 
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Fig. 23: Surface functions of the transverse stresses y [MPa], strains y and extensions 2t [mm] with Epl = Ec and Jz= Jz
all related to 

the buckled cylindrical pinned column, compressed with the force Pcr 
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Figure 24 presents the values of the coordinate yn=0, 

x=L/2(P) with Epl = Ec= 118 115,5 MPa and Jz=Jz
all of the 

null normal stress n=0 (the resultant neutral layer) in 

the critical cross-section (x = L/2) depending on the force 

P compressing the pinned cylindrical column made of 

steel St35 with R = 22 mm, t = 1 mm, L = 545 mm as the 

theoretical example computed with Epl = Ec. 

Figure 25 presents the values of the extensions 

Lx=L/2,y=0,±R(P) with Epl = Ec= 118 115.5 MPa and 

Jz=Jz
all on the two opposite and one central generating 

lines (y = 0,±R) in the critical (middle) cross-section 

(x = L/2) depending on the force P compressing the 

pinned cylindrical column made of steel St35 with R= 

22 mm, t = 1 mm, L= 545 mm.  

For computing were assumed the values of the steel 

St35 parameters (as the average for tubes 26x1 and 

45x1, Murawski, 2020a): E* = 198 272.52 MPa, Re
*= 

603.68 MPa, v = 0.3, el-lt= 78.86.  

On the assumption that n(x = L/2,y = Rcos ) = Re
* 

was determined the critical compressive stress cr
el-pl_ TSTh. 

Figure 26 shows the graphs of the theoretical functions 

calculated like pinned without friction: cr()TSTh_Epl=Ec, for 

the columns made of steel St35: 451 (E* = 

202 768.28 MPa, Re
*= 607.35 MPa, ltd = 77.194) and 

261 (E* = 193 776.75 MPa, Re
*= 600.01 MPa, ltd = 

80.528) as well as the surface function cr
el-pl (, 

A)TSTh_Epl=0
 of cylindrical columns made of steel St35 

with Epl = Ec= 118 115.5 MPa and Jz=Jz
all. 
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Fig. 24: Graph of the function yn=0, x=L/2(P) with Epl = Ec= 118 115.5 MPa and Jz= Jz

all of of the coordinate of the null normal stress 

n=0 (the resultant neutral layer) in the critical cross-section (x= L/2) depending on the force P compressing the pinned 

cylindrical column made of steel St35 with R = 22 mm, t = 1 mm,  L= 545 mm 
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Fig. 25: Values of the extensions Lx=L/2,y=0,±R(P) with Epl = Ec = 118 115.5 MPa and Jz= Jz

all on the two opposite and one central 

generating lines (y = 0,±R) in the critical (middle) cross-section (x = L/2) depending on the force P compressing the pinned 

cylindrical column made of steel St35 with R =  22 mm, t =  1 mm, L =  545 mm 
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Fig. 26: Graphs of the theoretical functions calculated like pinned without friction (a): cr()TSTh_Epl= Ec, for the columns made of 

steel St35: 45x1 (E*= 202 768.28 MPa, Re
*= 607.35 MPa, ltd = 77.194) and 26x1 (E*= 193 776.75 MPa, Re

*= 600.01 

MPa, ltd = 80.528), (b)  surface function cr
el-pl(,A)TSTh_Epl=Ec

 with Epl
 = Ec

 with Epl
 = 0 (and average values E* = 198 272.52 

MPa, Re
*= 603.68 MPa, v = 0.3, el-lt= 78.86) 
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Discussion 

A. Assumption: The Plastic Module Equals Zero Epl 

= 0 

To check the possibility of a bigger simplification of a 

computing, next to the assumption that in the critical 

elastic-plastic transverse cross-section area keep a 

resistance both parts, i.e., elastic and plastic (in the elastic 

transverse cross-section area Ael, with the static moment 

Sz
el, there is the elastic Young’s module E>0 and in the 

plastic transverse cross-section area Apl, with the static 

moment Sz
pl, the plastic module equals compressing 

module Epl = Ec), with simplification that in elastic-plastic 

states the moment of inertia is taken of whole transverse 

critical cross-section Jz = Jz
all, was also taken the 

assumption that the plastic module equals zehro Epl = 0. 

On those assumptions were determined the equation 

of the elastic lines y(x)el, elastic slopes (dy/dx)el (Fig. 27) 

and function of maximal deflection yL/2(P)el in the elastic 

state were determined and (Fig. 28) for the cylindrical 

column in the elastic states with both pinned ends 

according to (Murawski, 2018).  

Also the equation of the central elastic-plastic line 

y(x)cr
el-pl, its elastic-plastic slopes (dy/dx)cr

el-pl (Fig. 27) 

and equation of maximal elastic-plastic deflection 

yL/2(P)el-pl (Fig. 28) of the central line for the cylindrical 

column in the elastic-plastic states with both pinned ends 

at the critical situation were determined. 

Figure 27 and 28 present the stability analysis: The 

elastic line y(x), its slope dy/dx and dependence yL/2(P) with 

Epl = 0 of the cylindrical column made of St35 with R = 22 

mm, t = 1 mm, L = 545 mm compressed by ball-and-socket 

joints without friction (E = 202 768,28 MPa was assumed).  

Figure 29-40 show the graphs of the stresses 

n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) 

with Epl = 0 and Jz = Jz
all for x = 0÷L and y = ±0.2÷1.0 R 

in the pinned cylindrical column made of steel St35 with 

dimensions: R = 22 mm, t = 1 mm, L = 545 mm 

compressed for the column with both pinned ends in the 

elastic-plastic states, as the theoretical example. 

From Fig. 29a and 29c for the analyzed case of 

compression with P= 0.25∙ Pcr
 = 8 810.615 N and 

bending, computed with Epl = 0, results that the courses 

of the normal stresses y(x,y), strains y(x,y) and 

extensions L(x,y) are symmetrical in relation to the 

layer with geometrical axis, in which the stresses are equal 

to the pure compressive stresses (R = 0), but their values are 

bigger on the concave side. All values have the minus signs 

(are negative), i.e., all fibers are compressed and shortened.  

From Fig. 29b and 29d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive), what 

proves the existence of the tension in the transverse 

direction, orthogonal to the longitudinal axis.  

From Fig. 30a and 30c for the analyzed case of 

compression with P = 0.5∙ Pcr
 = 17 621.23 N and bending, 

computed with Epl = 0, results that the courses of the 

normal stresses y(x,y), strains y(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis, in which the stresses are equal to the 

pure compressive stresses (R = 0), but their values are 

bigger on the concave side. The values of the transverse 

strains n are analogous to the course of normal stresses n, 

but with values decreased by the inverse 1/E – of Young's 

modulus of column elasticity in the parallel direction to 

the axis. All values have the minus signs (are negative), 

i.e., all fibers are compressed and shortened.  

From Fig. 30b and 30d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive), what 

proves the existence of the tension in the transverse 

direction, orthogonal to the longitudinal axis.  

From Fig. 31a and 31c for the analyzed case of 

compression with P = 0.67∙Pcr = 23 608.460 N and 

bending, computed with Epl = 0, results that the courses of 

the normal stresses y(x,y), strains y(x,y) and extensions 

2t(x,y) are symmetrical in relation to the layer with 

geometrical axis, in which the stresses are equal to the pure 

compressive stresses (R = 0), but their values are bigger on 

the concave side. All values, except the edge fibre on the 

convex side, have the minus signs (are negative), i.e., all 

fibers are compressed and shortened, except the edge fibre, 

which is unloaded and unextended.  

From Fig. 31b and 31d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs. The edge fibre also 

is unloaded and unextended.  

From Fig. 32a and 32c for the analyzed case of 

compression with P = 0.813∙Pcr = 28 652.120 N and 

bending, computed with Epl = 0, results that the courses 

of the normal stresses y(x,y), strains y(x,y) and 

extensions L(x,y) are symmetrical in relation to the 

layer with geometrical axis (R = 0), in which the stresses 

are equal to the pure compressive stresses, but their 

values are bigger on the concave side. The values have 

the minus signs (are negative) in the internal fibers on 

the concave side-i.e., fibers are compressed and 

shortened and the plus signs are (positive)  on the 

opposite convex side-fibers are tensed and extended. 

All fibers are in the elastic state yet. 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2021, Volume 5: 134.194 

DOI: 10.3844/sgamrsp.2021.134.194 

 

164 

From Fig. 32b and 32d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R = 0) with values bigger on the 

concave side but with the plus signs (are positive) of the 

tension in the transverse direction. The values have the 

plus signs (are positive) in the transverse internal fibers 

on the concave side - i.e., fibers are tensed and extended 

and the minus signs (are negative) on the opposite 

convex side - fibers are compressed and shortened. All 

fibers are in the elastic state yet. 

From Fig. 33a and 33c for the analyzed case of 

compression with P = 0.907∙Pcr
 = 31 964.911 N and 

bending, computed with Epl = 0, results that the courses of 

the normal stresses y(x,y), strains y(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis (R = 0), in which the stresses are equal to 

the pure compressive stresses, but their values are bigger on 

the concave side. The values have the minus signs (are 

negative) in the internal fibers on the concave side - i.e., 

fibers are compressed and shortened and the plus signs are 

(positive) on the opposite convex side - fibers are tensed and 

extended. A part of fibers are in the plastic state. The angle 

of plastic area is   = cr /2 = 24.60 deg. 

From Fig. 33b and 33d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer 

with geometrical axis (R= 0) with values bigger on the 

concave side but with the plus signs (are positive) of the 

tension in the transverse direction.  

The values have the plus signs (are positive) in the 

transverse internal fibers on the concave side - i.e., fibers 

are tensed and extended and the minus signs (are negative) 

on the opposite convex side - fibers are compressed and 

shortened. A part of fibers are in the plastic state. The angle 

of plastic area is   = cr /2 = 24.60 deg. 

From Fig. 34a and 34c for the analyzed case of 

compression with P= 1.0∙Pcr
 = 35 242,46 N and bending, 

computed with Epl = 0, results that the courses of the 

normal stresses y(x,y), strains y(x,y) and extensions 

L(x,y) are symmetrical in relation to the layer with 

geometrical axis (R = 0), in which the stresses are equal to 

the pure compressive stresses, but their values are bigger on 

the concave side. The values have the minus signs (are 

negative) in the internal fibers on the concave side - i.e., 

fibers are compressed and shortened and the plus signs are 

(positive) on the opposite convex side - fibers are tensed and 

extended. A part of fibers are in the plastic state. The angle 

of plastic area is  = cr = 49.20 deg. 

From Fig. 34b and 34d results that the courses of the 

transverse stresses y(x,y), strains y(x,y) and extensions 

2t(x,y), orthogonal to the normal stresses, strains and 

extensions, are also symmetrical in relation to the layer with 

geometrical axis (R = 0) with values bigger on the concave 

side but with the plus signs (are positive) of the tension in 

the transverse direction. The values have the plus signs (are 

positive) in the transverse internal fibers on the concave 

side - i.e., fibers are tensed and extended and the minus 

signs (are negative) on the opposite convex side - fibers are 

compressed and shortened. A part of fibers are in the plastic 

state. The angle of plastic area is  = cr = 49.20 deg. 

Figure 35 and 36 show the surface functions of the 

normal stresses n(x,y) in the cylindrical pinned column 

made of steel St35 with dimensions: R = 22 mm, t = 1 

mm, L= 545 mm loaded with the force Pcr = 35 242.46 N 

and computed with Epl = 0. 

Figure 37 shows the surface functions of the normal 

stresses n(x,y) [MPa], strains n and extensions L 

[mm], related to the straight and Fig. 38 -related to the 

buckled, cylindrical column, loaded with the force Pcr = 

35 242.46 N and computed with Epl = 0. 

Figure 39 shows the surface functions of the 

transverse stresses y [MPa], strains y and extensions 

2t [mm] related to the straight and Fig. 40 -related to 

the buckled, cylindrical column, loaded with the force Pcr 

= 35 242,46 N and computed with Epl = 0. 

Figure 41 presents the values of the coordinate y n=0, 

x=L/2(P) of the zero normal stress in the critical cross-

section for the analyzed cylindrical column compressed 

by ball-and-socket joints depending on the external load 

P compressing the pinned cylindrical column made of 

steel St35 with R = 22 mm, t = 1 mm, L = 545 mm as the 

theoretical example computed with Epl = 0. 

Figure 42 presents the values of the elongations 

Lx=L/2,y=±R,0(P) in the critical (middle) cross-section of 

the cylindrical column on the two opposite generate lines 

and the central one (y = 0, ± R) depending on the external 

load P and computed with Epl = 0. 

For computing were assumed the values of the steel 

St35 parameters (as the average for tubes 261 and 

451, Murawski, 2020a): E* = 198 272.52 MPa, Re
*= 

603.68 MPa,  = 0.3, el-lt= 78.86. 

On the assumption that n(x = L/2,y = Rcos ) = Re
* 

was determined the critical compressive stress n
ei-pl.  

Figure 43 shows the graphs of the theoretical 

functions calculated like pinned without friction: 

cr()TSTh_Epl=0, for the columns made of steel St35: 

451 (E*= 202 768.28 MPa, Re
*= 607.35 MPa, ltd = 

77.194) and 261 (E*= 193 776.75 MPa, Re
*= 600.01 

MPa, ltd = 80.528) as well as the surface function cr
el-pl 

(, A)TSTh_Epl=0
 of cylindrical columns made of steel St35 

with Epl = 0 and Jz=Jz
all. 

B. Comparison of the Results 

In order to appreciate the theoretical results 

obtained from the TSTh they are compared to the 

experimental findings. 
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Fig. 27: Graphs of the: (a) curved axis y(x) and (b) its slope dy/dx with Epl

 = 0 of the cylindrical column made of St35 with R = 22 mm, 

t = 1 mm, L = 545 mm compressed by ball-and-socket joints without friction 
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Fig. 28: Graph of the function yL/2(P) with Epl = 0 of the cylindrical column made of steel St35 with R= 22 mm, t= 1 mm, L= 545 mm 

compressed by ball-and-socket joints without friction 
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Fig. 29: Values of the stresses n, y(x,y), strains n, y(x,y) and extensions L,2t(x,y) with Epl =  0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R = 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.25∙Pcr = 8 810.615 N in the longitudinal (a, b) and transverse cross section (c, d) for  x= L/2=  272.5 mm 
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Fig. 30: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl =  0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R= 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.5∙Pcr
 = 17 621.23  N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2=  272.5 mm 
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Fig. 31: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl =  0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R= 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P = 0.67∙Pcr = 23 608.460 N in the longitudinal (a, b) and transverse cross section (c, d) for x = L/2=  272.5 mm 
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Fig. 32: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl =  0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R= 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P= 0.813∙Pcr=  28 652.120 N in the longitudinal (a, b) and transverse cross section (c, d) for  x = L/2= 272.5 mm 
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 n ,  n ,  L(x, y = ±0.2÷1.0 R, 0.907 P cr ,  =  cr /2)
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Fig. 33: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl =  0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R= 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P= 0.907∙Pcr =31 964.911 N by  = cr/2=24.60 deg in the longitudinal (a, b) and transverse cross section (c, d) 

for  x = L/2= 272.5 mm 
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Fig. 34: Values of the stresses n,y(x,y), strains n,y(x,y) and extensions L,2t(x,y) with Epl = 0 and Jz= Jz
all for x = 0÷L and y = ± 

0.2÷1.0 R in the pinned cylindrical column made of steel St35 with dimensions: R= 22 mm, t = 1 mm, L = 545 mm compressed 

with the force P= 1.0∙Pcr
 = 35 242.46 N by  = cr/2=49.20 deg in the longitudinal (a, b) and transverse cross section (c, d) for  

x = L/2=  272.5 mm 
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Fig. 35: Values of the stresses n(x,y) with Epl
 = 0 and Jz = Jz

all in the axially loaded with the force Pcr
 cylindrical pinned column made 

of steel St35 with dimensions: R = 22 mm, t = 1 mm, L= 545 mm 
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Fig. 36: Values of the stresses n(x,y) with Epl = 0 and Jz = Jz
all

 in the axially loaded with the force Pcr cylindrical pinned column made 

of steel St35 with dimensions: R = 22 mm, t = 1 mm, L= 545 mm 
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Fig. 37: Surface functions of the normal stresses n [MPa], strains n and extensions L [mm] with Epl = 0 and Jz = Jz
all related to the 

straight, pinned cylindrical column, compressed with the force  Pcr  
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Fig. 38: Surface functions of the normal stresses n [MPa], strains n and extensions L [mm] with Epl = 0 and Jz =  Jz
all

 related to the 

buckled pinned cylindrical column, compressed with the force Pcr  
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Fig. 39: Surface functions of the transverse stresses y
 [MPa], strains y

 and extensions 2t [mm] with Epl = 0 and Jz = Jz
all

 related to the 

straight, pinned cylindrical column, compressed with the force Pcr 
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Fig. 40: Surface functions of the transverse stresses y [MPa], strains y and extensions 2t [mm] with Epl = 0 and Jz = Jz
all related to 

the buckled cylindrical pinned column, compressed with the force Pcr 
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Fig. 41: Graph of the function y n=0, x=L/2(P) with Epl = 0 and Jz = Jz

all of the coordinate of the null normal stress n = 0 (the resultant 

neutral layer) in the critical cross-section (x = L/2) depending on the force P compressing the pinned cylindrical column 

made of steel St35 with R = 22 mm, t = 1 mm, L = 545 mm 
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Fig. 42: Values of the extensions pin-pin:Lx=L/2,y=0,±R(P) with Epl = 0 and  Jz =  Jz

all on the two opposite and one central generating 

lines (y = 0,±R) in the critical (middle) cross-section (x = L/2) depending on the force P compressing the pinned cylindrical 

column made of steel St35 with R =  22 mm, t = 1 mm, L =  545 mm 
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Fig. 43: Graphs of the theoretical functions calculated like pinned without friction: (a) cr()TSTh_Epl=0, for the columns made of steel 

St35: 451 (E*= 202 768.28 MPa, Re
* = 607.35 MPa, ltd = 77.194) and 26x1 (E*= 193 776.75 MPa, Re

* = 600.01 MPa, 

ltd = 80.528), (b) surface function cr
el-pl(,A)TSTh_Epl=0 with Epl = 0 (and average values E*= 198 272.52  MPa, Re

* = 603.68 

MPa,  = 0.3, el-lt = 78.86) 
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Fig. 44: Graphs of the: (a) curved axis y(x) and (b) its slope dy/dx of the cylindrical column made of St35 with R = 22 mm, t = 1 mm, L = 

545 mm obtained from experiment, TSTh with Epl
 = Ec, and Epl

 = 0 
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Fig. 45: Set of the graphs of the function yL/2(P) with Epl = Ec and Epl = 0 of the cylindrical column made of steel St35 with R = 22 

mm, t = 1 mm, L = 545 mm compressed by ball-and-socket joints without friction 
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Fig. 46: Set of graphs of the functions yn=0, x=L/2(P) with Epl = Ec and Epl = 0 by Jz = Jz

all of the coordinate of the null normal stress 

n=0 (the resultant neutral layer) in the critical cross-section (x=L/2) depending on the force P compressing the pinned 

cylindrical column made of steel St35 with R = 22 mm, t = 1 mm, L = 545 mm 
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Fig. 47: Set of curves () of  the column with dimensions 45x1x545 made of steel St35: from the experiment (pinned with 

friction), obtained according to TSTh from the function Lx=L/2,y=0 (P) with Epl = Ec = 118 115.5 MPa (from Fig. 25: The 

middle curve L(y = 0)) and with Epl =0 (from Fig.42: the middle curve L(y = 0)) 
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Fig. 48: Sets of the curves: approximated experimental cr()exp of columns pinned with friction and theoretical cr()TSTh_Epl=Ec as 

well as cr()TSTh_Epl=0 calculated like pinned without friction, for the columns made of steel St35: (a) 45x1 (E* = 

202 768.28 MPa, Re
* = 607.35 MPa, ltd = 77.194) and (b) 26x1 (E* = 193 776.75 MPa, Re

* = 600.01 MPa, ltd = 80.528) 
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Fig. 49: Graph of the surface function cr

el-pl(,A)TSTh_E*=var_Epl=Ec
 with Epl =  Ec

 and Jz = Jz
all of the thin-walled cylindrical columns made of 

steel St35 compressed by ball-and-socket joints without friction but with varying module E*, as the theoretical example 
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Fig. 50: Graph of the surface function cr

el-pl(,A)TSTh_E*=var_Epl=0
  with Epl =  0 and Jz = Jz

all of the thin-walled cylindrical columns made of 

steel St35 compressed by ball-and-socket joints without friction but with varying module E*, as the theoretical example 
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The experimental test of compressing was executed 

by ball-and-socket joints with friction between the balls and 

sockets. During test with so kind of joints made of steel the 

coefficient of friction is changing from fsteel
P≈0≈ 0.1 like for 

pair of lubricated steel elements, till fsteel
 P≈Pcr≈ 1.0, thus the 

joints are changing their boundary condition, i.e., their 

Degree of Freedom (DOF) are changing from almost free 

Rz
~Free till constrained or almost constrained Rz

~Constr.  

Naturally, that cause a certain additional increase of 

the needed force P during compressing: at beginning 

about 10% and later more, so at the end it is already like 

a clamped joint. However, one is certain that the 

compressive critical force for a pinned column at both 

ends should not be bigger than for column clamped at 

both ends: Pcr
pinned < Pcr

clamped.  

So using ball-and-socket joints we need to remember 

that at the start of loading we have almost pinned joints 

at both ends of a column, but later with bigger loading 

the joints are going to be clamped and ends are fixed and 

to rotate them an additional part of the load is needed.  

That causes that a column compressed in a test stand 

by ball-and-socket joints gets a bigger value of the 

critical compressing force than calculated theoretically, 

but not bigger than a critical force for a column with 

clamped both ends. 

From Fig. 8 and 27 result that the deflection of the 

axis line of the column and its slope, increases linearly in 

the elastic state. Later, in the elastic-plastic state, the 

deflection of the column and the angle of deflection 

increase nonlinearly progressively, i.e., with every step 

of load the deflection is bigger than for a previous step.  

Figure 44 shows the graphs of the curved axis y(x) and 

its slope dy/dx of the cylindrical column made of St35 

with R= 22 mm, t= 1 mm, L = 545 mm obtained from 

experiment, TSTh with Epl
 = Ec and TSTh with Epl

 = 0. 

The maximal departures between the curved axes 

y(x)Epl=Ec
TDTh_deformed and y(x)exper_deformed are ymax= 1.8 

mm and ymax = 30.35% as well as between the curved 

axes y(x)Epl=0
TDTh_deformed and y(x)exper_deformed are ymax = 

4.25 mm and ymax = 71.67 %. 

The maximal departures between the slopes of the 

curved axes (dy/dx)Epl=Ec
TDTh_deformed and 

(dy/dx)exper_deformed are (dy/dx)max = 2.52 deg and 

(dy/dx)max = 31.38% as well as between the curved axes 

(dy/dx)Epl=0
TDTh_deformed and (dy/dx)exper_deformed are 

(dy/dx)max = 5.56 deg and (dy/dx)max = 69.24%. 

In Fig. 9 and 28 shows the set of graphs of the 

function yL/2(P). There is shown that the deflection of the 

column increases linearly in the elastic state and 

nonlinearly progressively with the assumed linear 

increase of the angle of the plastic area - (P).  

Figure 45 shows the set of graphs of the function yL/2(P) 

with Epl = Ec and Epl = 0 of the cylindrical column made of 

steel St35 with R = 22 mm, t = 1 mm, L = 545 mm 

compressed by ball-and-socket joints without friction.  

It is seen that the graph with Epl = 0 has bigger maximal 

deflection yel-pl_cr
x=L/2

max 
= 24.716 mm at lower critical 

compressing force Pel-pl
cr= 35 242.5 N, when the graph with 

Epl = Ec has lower maximal deflection yel-pl_cr
x=L/2

max 
= 19.402 

mm at bigger critical compressing force Pel-pl
cr= 37 491.1 N.  

Fig. 12÷23 and 29÷40 show very similar states of 

stresses n,y(x,y), strains n,y(x,y) and extensions 

L,2t(x,y), but for different characteristic forces and for 

different ranges: for column made of steel St35 with R= 

22 mm, t = 1 mm, L = 545 mm compressed by ball-and-

socket joints without friction computed with Epl = Ec the 

Pcr = 37 491.9 N and the range for the stresses n(x,y) is -

607.35 ÷ 105.5 MPa when for n(x,y) computed with Epl 

=0 the Pcr= 35 242.5 N and the range for the stresses 

n(x,y ) is -607.35÷222.09 MPa. Figure 46 shows the set 

of graph of the function yn=0,x=L/2(P) with Epl= Ec and Epl 

= 0 by Jz= Jz
all of the coordinate of the null normal stress 

n = 0 (the resultant neutral layer) in the critical cross-

section (x = L/2) depending on the force P compressing 

the pinned cylindrical column made of steel St35 with R 

= 22 mm, t = 1 mm, L = 545 mm. 

It is seen that the graph with Epl = 0 gets earlier the 

elastic-plastic states, at P = 28 667.535 N and has bigger 

coordinates of the null normal stress n = 0 in the critical 

cross-section (x = L/2) in the elastic-plastic states.  

The graph with Epl = Ec gets later the elastic-plastic 

states, at P = 32 701.534 N and has smaller coordinates 

of the null normal stress n = 0 in the critical cross-

section in the elastic-plastic states.  

Figure 47 shows the set of curves  () of the 

compressed column with dimensions 45x1x545 made 

of steel St35: From the experiment (pinned with 

friction), obtained according to TSTh from the function 

Lx=L/2,y=0 (P) with Epl = Ec = 118 115.5 MPa (Fig. 25: 

From the middle curve L(y = 0)) and with Epl = 0 (Fig. 

42: From the middle curve L(y = 0)). 

It is seen that the both graphs from the TSTh: with Epl 

= 0 and with Epl = Ec = 118 115.5 MPa gets the same 

value of the compress module Ec
TSTh

 = 202 768 MPa in 

the elastic state and different secant modules: Esc
Epl=0= 

67 271 MPa and Esc
Epl=Ec = 51 451 MPa in elastic-plastic 

states. Also stresses limiting elastic state are different 

H
Epl=0

 = 207.4 MPa and H
Epl=Ec = 236.6 MPa.  

The curve obtained from the experiment has: Ec
exper = 

136 003 MPa in the elastic state, Esc
expe r= 65 102 MPa in 

the elastic-plastic states and the stress limiting elastic 

state H
exper = 436.2 MPa. So it is seen that the experimental 

curve is quite different from the theoretical curves: the 

compress module Ec
exper is 1,5 times smaller than Ec

TSTh, 

secant modules Esc are comparable, but stress limiting 

elastic state H
exper is bigger about 2 times than H

TSTh. Those 

differences probably are caused by compressing columns 

throw ball-and-socket joints with friction, departures of 

measuring and simplifications assumed in the TSTs.  
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Figure 48 presents the sets of the curves: approximated 

experimental cr()exp of columns pinned with friction and 

theoretical cr()TSTh_Epl=Ec as well as cr()TSTh_Epl=0 

calculated like pinned without friction, for the columns 

made of steel St35: (a) 45x1 (E*= 202 768.28 MPa, Re
*= 

607.35 MPa, ltd= 77.194) and (b) 261 (E*= 193 776.75 

MPa, Re
*= 600.01 MPa, ltd = 80.528).  

It is seen that the shape of the theoretical function for 

columns pinned at both ends cr
el-pl()TSTh calculated like 

compressed through ball-and-socket joints without friction 

in dependence on the slenderness ratio  (for a constant 

value of transverse cross-section area A) is similar to the 

shape of a ski-jumping take-off runway (it has nonlinearity 

according to a third degree line with a point of changing a 

sign of an incline) when the approximated experimental 

curve cr
exp() has a parabolic shape (it has nonlinearity like 

a second degree line) as well as the experimental curve has 

bigger values for bigger slenderness ratios .  

We see also in Fig. 48 that the curves cr
el-

pl()TSTh_Epl=Ec with Epl=Ec have slightly bigger values 

than the curves cr
el-pl()TSTh_Epl=0 with Epl=0 except the 

boundary points of the range ( = 0 and  = ltd), where 

they are equal. So it is seen that the experimental curves 

are quite different from the theoretical curves and those 

differences probably are caused by compressing columns 

throw ball-and-socket joints with friction, departures of 

measuring and simplifications assumed in the TSTh.  

From the graphs we see bigger differences between 

experimental and theoretical values for bigger values of 

the slenderness ratio  what can be explained by the 

bigger structural elasticity of longer columns with the 

same transverse cross-section area A. 

To avoid or limit that phenomenon, the compressing 

in the test stand should be executed not by ball-and-

socket joints, which always have friction between ball 

and sockets, but by knife-and-plate joints with strongly 

reduced friction. 

C. Assumption: The Module E* is Varying 

In Fig. 25 in the paper (Murawski, 2020a) it is seen 

that the columns with bigger transverse cross-section 

area A have bigger values of the modules E* (the value of 

module E in the crossing of graphs of compress module 

Ec and secant compress module Esc) and in Fig. 26 

(Murawski, 2020a) as well as in Fig. 48 it is seen that 

critical compressing stresses cr
exp() are bigger for 

columns with bigger cross-section area A for the same 

slenderness ratios . But in Fig. 26b and 43b it is seen that 

according to TSTh the columns with bigger transverse 

cross-section area A have smaller values of the critical 

compressing stresses cr
TSTh () for the same slenderness 

ratios . It is seen also in Fig. 26a and 43a in which the 

graphs are made for varying values of E* (it is assumed that 

values of Re
* and ltd are almost the same). 

So to get an accordance of theoretical graphs with 

experimental it can be assumed that the module E* 

should be varying.  

In Fig. 49 is shown the surface function cr
el-pl(, 

A)TSTh_E*=var_Epl=Ec
 with Epl= Ec

 and Jz= Jz
all of the thin-

walled cylindrical columns made of steel St35 

compressed by ball-and-socket joints without friction but 

with varying module E* [MPa]=
 A [mm2]  1 600 [MPa] + 

7 000 [MPa] as the hypothetical example of the surface 

function with bigger values of the critical compressing 

stresses for bigger values of the transverse cross-section 

area A for the same slenderness ratios .  

In Fig. 50 is shown the surface function cr
el-pl(, 

A)TSTh_E* = var_Ep l = 0 with Epl = 0 and Jz = Jz
all of the thin-

walled cylindrical columns made of steel St35 

compressed by ball-and-socket joints without friction but 

with varying module E* [MPa]=
 A [mm2]  1 600 [MPa] + 

7 000 [MPa] as the hypothetical example of the surface 

function with bigger values of the critical compressing 

stresses for bigger values of the transverse cross-section 

area A for the same slenderness ratios .  

So it is seen from Fig. 49 and 50 that the surface 

function cr
el-pl(, A)TSTh_E* = var_Epl = Ec

 with Epl = Ec gets 

bigger values than the surface function cr
el-pl(, 

A)TSTh_E*=var_Epl=0 with Epl= 0 except the boundary line of 

the range ( = 0), where they are equal. 

Conclusion 

In the paper is presented the analysis of stability and 

of stress and strain states of the pinned cylindrical thin-

walled column according to the TSTh. There are 

discussed two simplified methods. 

It was assumed that in the critical elastic-plastic 

transverse cross-section there are the elastic and plastic 

parts of the area, keeping a resistance, i.e. 
 
1. In the elastic part of the transverse cross-section Ael, 

with the static moment Sz
el, there is the elastic 

Young’s module E> 0 

2. In the plastic part of the transverse cross-section Apl, 

with the static moment Sz
pl, there is the plastic 

module Epl 
 

In order to simplify calculations were assumed the 

simplifications: 
 
3. The whole moment of inertia of a cross-section area 

is taken into account Jz = Jz
all as keeping the 

resistance 

4. The plastic module equals compress module Epl = Ec 

taken from experimental researches 
 

Or as the bigger simplification: 

 

5. The plastic module equals compressing module Epl = 0. 
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Based on the presented results the following 

important remarks can be concluded: 
 
1. According to the TSTh, the evolutions of the 

functions of an elastic line y(x) and its slope dy/dx 

with Epl
 = Ec of the same column are smaller and closer 

to the experimental ones than those with Epl
 = 0 

2. The graph of the function of the maximal deflection 

yL/2 (P) with Epl = Ec has lower maximal deflection 

y(x=L/2) at bigger critical compressing force Pcr 

than with Epl = 0 of the same column 

3. The same column computed according to the TSTh 

with Epl = Ec gets the bigger critical compressive 

force Pcr and very similar states of the stresses n, 

y(x,y), strains n, y(x,y) and extensions L, 2t(x,y), 

(but the ranges of them are narrower) than for that 

one computed with Epl = 0 

4. The function yn = 0,x = L/2(P) of the coordinate of the 

null normal stress n=0 (the resultant neutral layer) 

in the critical cross-section (x = L/2) computed with 

Epl = 0 gets earlier the elastic-plastic states and has 

bigger values in the elastic-plastic states than that 

computed with Epl = Ec of the same column 

5. The graph yn = 0,x = L/2(P) results with the conclusion 

that the resultant neutral layer moves from infinity 

and goes asymptotically to the zero with an 

increasing load and while the line of forces entries 

in the plastic zone in the critical transverse section 

the resultant neutral layer moves quicker to the zero; 

6. The curve () of the pinned with friction 

compressed column obtained from the experiment 

gets bigger stress limiting elastic state H
exper, lower 

compress module Ec
exper and similar secant compress 

module Esc
exper than obtained according to TSTh 

7. The theoretical curves cr
el-pl()TSTh for columns 

pinned at both ends with Epl = Ec as well as with Epl 

= 0 calculated like compressed through ball-and-

socket joints without friction in dependence on the 

slenderness ratio  (for a constant value of 

transverse cross-section area A) is similar to the 

shape of a ski-jumping take-off runway (it has the 

nonlinearity according to a third degree line with a 

point of changing a sign of an incline) 

8. The theoretical curves cr
el-pl()TSTh with Epl = Ec gets 

slightly bigger values than those with Epl= 0 except 

the boundary points of the range (0 and   ltd), 

where they are equal 

9. The approximated experimental curves cr
exp() have a 

parabolic shape (it has nonlinearity like a second 

degree line) and the experimental curves have bigger 

values than theoretical cr
el-pl()TSTh for the same 

slenderness ratios  and the critical cross-section A 

10. The experimental curves are quite different from the 

theoretical curves and those differences probably are 

caused by compressing columns throw ball-and-

socket joints with friction, departures of measuring 

and simplifications assumed in the TSTh 

11. To avoid or limit that phenomenon, the compressing 

in the test stand should be executed not by ball-and-

socket joints, which always have friction between 

ball and sockets, but by knife-and-plate joints with 

strongly reduced friction 
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