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Introduction  

The application of quantum mechanics to 

biological systems is of great interest for theoretical 

and experimental areas of biological sciences. One 

spatial case of application of quantum mechanics is to 

examine the living cells and bio-molecules as 

‘quantum clocks’. The ‘quantum clock’ is a concept 

developed by Wigner and Salecker (1957; 1972) for 

the non-living physical systems. Later this concept 

was applied for black hole (Barrow, 1996), living 

cells (Pešić, 1993) and cellular enzymes (Goel, 2008). 

The Pešić model of bacteria as ‘quantum clock’ is 

supported on inequalities of Wigner (Salecker and 

Wigner, 1958) for a smallest clock with maximum 

size ‘L’ and mass ‘M’. Based on quantum mechanical 

considerations these scientists found that the longest 

Time (T) for a clock that can remain accurate is 

presented by ‘the first inequality’: 

 
2
/T Mλ< ℏ   (1) 

 

where, ħ = 1.05×10
−34 

J·s is the Planck’s constant and λ is 

the spread in position of the clock during time T. The 

smallest time interval that a clock can accurately 

measure (τ) is presented ‘by the second inequality’: 

 
2

( / )( / )T Mcτ τ> ℏ   (2) 

 

where, ‘c’ is the speed of the light and  T/τ is the number 

of tick of the clock, during the time. 

Pešić (1993) first considered the possibility of 

extending the concept of the clock to biological 

systems. He observed that in the case of mycoplasmas 

with cell mass M = 8×10
−17

(kg) and reproduction 

(doubling) time T = 50 (min) the calculated λ is 

greater than 0.07µm. The calculated value of λ is near 

to the experimentally measured diameter of the 

mycoplasma of 0.3µm. The conclusion of Pešić was 

that the cell parameters of mycoplasmas are consistent 

with inequality (1) and the mycoplasmas actually 

behave as Wigner clocks with accuracy of 10
−16

s. 

Against this concept there is contradiction (Brualla, 

2013). Brualla concluded that the current 

experimental evidence does not support the validity of 

Wigner inequalities in a biological context. Thus, this 

problem remains open for resolution. In this work we 

support the biological application of Wigner’s 

inequalities by wide range of experimental data on 

Prokaryotes (bacteria).  

Working Hypothesis 

During growth and dividing of cells by binary the 

cellular parameters (mass, size and form) of the 

mother and the daughter cells differ slightly, because 

of the genetic program in the cells. Genetic program 

determines the cellular mass and size of the daughter 

cell, but does not determine the doubling time for 

which the mother’s cell grows and divided by binary. 

The duration of the doubling time depends on many 

external parameters (temperature, food sources, pH, 

ion composition of environment, type of power 

source) and other factors, which are not under genetic 

control of the mother’s cell. In this sense the doubling 

time of the cells appears to be non-defined and 

relatively random parameter that could be changed in 

given defined time interval. This time interval must be 

around the quantum limit of longest doubling time for 

cellular division. This is possibly as living cells work 

principally as quantum clocks. This means that during 
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bacterial growth the cell size changes continuously 

similarly to the spread ‘λ’ in position of the quantum 

clock. The calculated by Pešić (1993) maximum 

spread λ = 0.07(µm) is very near to the volume to 

surface ratio of mycoplasma, about ~0.05µm. For 

example, for spherical mycoplasma with diameter D ~ 

0.3 (µm) the volume to surface ratio is equals to D/6. 

Similarly to that in our calculations as more 

representative length we take the volume to surface 

ratio of bacterial cells (thus, we considered that 

maximum spread λ is equals to volume to surface ratio 

of bacteria). The other argument in favor of the 

volume to surface ratio as representative length is the 

relatively constant value of volume to surface ratio 

during cell growth and dividing by binary (Atanasov, 

2012). Because of that, we calculate the bacterial 

time-characteristics (T and τ) as function of bacterial 

Mass (M), size (V/S) and Planck constant (ħ), 

accordingly to Wigner equations. 

The Aim of the Study 

 

• The aim of the study is to calculate the smallest (τ) 

and the longest (T) times, accordingly to Wigner 

equations, using data for bacterial mass, size and 

doubling time 

• To identify the real bacterial time-parameters, 

that correspond to this calculated smallest (τ) and 

longest (T) Time 

• To show that the real bacterial parameters satisfy the 

Wigner equations for quantum clock 

 

Methods and Data 

We calculated the longest time interval ‘T’ for a 

quantum clock, accordingly to Equation 1, taken     

the equality: 

 
2
/T Mλ= ℏ   (3) 

 

The calculated values of T were compared with the 

doubling time Tdt of bacterial cells, taken from the 

reported sources.  

We calculated the smallest time interval ‘τ’ for a 

clock accordingly Equation 2, using the data for the 

longest time T, bacterial mass M, the speed of light c = 

3×10
8
m/s and the Planck constant ħ = 1.05×10

−34 
J·s: 

 
2

( / )( / )T Mcτ τ= ℏ   (4) 

 

For this purpose, the formula (4) can be presented as 

the equation: 

 
2 2

/T Mcτ = ℏ   (5) 

On Table 1 are given the data for 18 bacteria with 

small, middle and big body mass. The doubling time, size 

and shape of bacteria are given too. The data for bacterial 

mass, size and doubling time were taken from scientific 

publications and sources (Furness and de Maggio, 1972; 

Waites and Talkington, 2004; Boatman and Kenny, 

1970;  Razin and Cosenza, 1966; Stemler et al., 1987;  

Gusev and Mineeva, 1985; Schlegel, 1985;  Salser et al., 

1968; Gouin et al., 1999; Finster et al., 1992; La Riviere 

and Schmidt, 2006; Bock, 1976; Starr and Schmidt, 

1981; Higgins et al., 1973).  

The bacterial volume to surface ratio (V/S = λ) was 

calculated using the data for the size and shape of 

bacteria, accordingly to the standard formulas, used for 

algal cells (Hillebrand et al., 1999; Sun and Liu, 2003). 

On Fig. 1 are given the main bacterial shapes, the 

geometric parameters and formulas for calculation of 

volume and surface of bacterial cells. The shape of 

bacteria was present as sphere, short cylinder, long 

cylinder and disk. The small bacteria have 

predominantly spherical shape until the longest bacteria 

have the form of long cylinder.  

 If we replace λ with V/S ratio, the Equation 3 takes 

the form: 

 
2

( / ) /T M V S= ℏ   (6)  

 

The smallest time interval was calculated by       

the equation: 

 
2 2

/T Mcτ = ℏ   (7) 

 

where, T is calculated by the Equation 6. Thus, the 

Equation 6 and 7 represent the working formulas. 

 

 
 
Fig. 1. Geometric shape and equations for Volume (V) and 

Surface area (S) of bacteria. Legend:  Sphere: V = 
πD3/6, S = πD2; short cylinder: V = πD2L/4, S = 

πD(D/2+L), where D ≈ L or L/D ≤ 3.0; long cylinder: 

V = πD2L/4 , S = πDL, where D � �  L or L/D >3.0; 

disk: V = πD2h/4 , S = πD(D/2+h), where D > h
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Results  

On Table 1 the bacterial mass varied about 10
3
 folds 

from 1×10
−17 

kg in Mycoplasma mycoides to 7×10
−15

 kg 

in Spirohaeta lutea. The size varied about 2×10
3
 folds 

from smallest Mycoplasma with diameter 0.3 µm to 

longest Spirohaeta with length 50 µm. The doubling 

time varied about 3.6×10
2
 folds from 20 min in 

Escherichia coli to 30 h in Thiobacillus thioparus.  

On Table 2 are given the calculated smallest and 

longest time intervals of the bacteria, accordingly to 

Equations 3-5. The smallest time interval ‘τ’ gives the 

accuracy of bacterial clocks, whereas the longest time 

‘T’ gives the running time of bacterial clock. 
On Fig. 2 are presented the data for T(s), Tdt (s) and τ 

(s) as function of bacterial body mass M (kg). 
On Fig. 2 the calculated values of bacterial clock 

accuracy ‘τ’ lies below the line of ATP time (tATP = 
1.1×10

−14
-1.1×10

−13
s). This time corresponds to the 

energy of one ATP molecule, calculated by the time-
energy uncertainty principle:  
 

ATP ATP
t hε× ≥   (8) 

 

where, εATP = 6.0×10
−21

-6.0×10
−20 

(J) is the free energy of 

one ATP molecule (Minkov, 1991) and h = 

6.6262×10
−34

(J·s) is the Planck constant. The mean 

accuracy of the bacterial clock τmean= 6.65×10
−16

(s) lies 

near to the time of τATP = 1.1×10
−16

(s), corresponding to 

the energy of EATP = 6.0×10
−18

J, calculated by time-

energy uncertainty principle: 

 

ATP ATP
E hτ × ≥   (9) 

 

In this case the equality τATP ≈ τmean is valid (with 

error less than one order of magnitude), where any given 

value of τ satisfied the second Wigner’s inequality in the 

form of τ > τATP. 

On Fig. 2 the calculated mean value of the longest 

(running) time Tmean = 6.88×10
4 

(s) is near to the mean 

value of the bacterial doubling time Tdt mean = 2.82×10
4 

(s). The minimum and maximum values of the doubling 

time (Tdt min, Tdt max) are given by two dashed lines. The 

more of the calculated values for T falls between Tdt min 

and Tdt max lines. Between the mean value of doubling 

time Tdt mean and the mean value of the calculated running 

time Tmean almost equality  (Tdt mean ≈ Tmean) is valid, 

where any given value of T satisfied first Wigner’s 

inequality in the form of T < Tdt max. In additional, 

between the calculated longest time T and the 

experimental values of Tdt , a relatively good correlation 

(with correlation coefficient R = 0.47) exists. 

 
Table 1. Data for mass (M), size (D, h, L), shape and doubling time (Tdt) of bacteria 

  Size (µm) 
  D-diameter 
  h-width 
Bacteria (t °C) Mass M(kg) L-length Shape Doubling time Tdt (min) 

1. Mycoplasma mycoides (37°) 1.55×10−17 D = 0.3 sph 60 

2. Mycoplasma pneumoniae (37°) 6.91×10−17 D×L = 0.2×2.0 l cyl 73 

3. Mycoplasma felis (37°) 4.32×10−17 D×h = 0.5×0.2 disc 60-87 

4. Mycoplasma hominis (35°) 3.88×10−17 D = 0.40 sph 60 

5. Mycoplasma arthritidis (37°) 1.55×10−17 D = 0.30 sph 20-120 

6. Ureaplasma urealyticum (37°) 2.75×10−17 D = 0.22 sph 74 

7. Bdelovibrio bacteriovorus (35°) 7.77×10−17 D×L = 0.3×1.0 sh cyl 20-300 

8. Walbachia melophagi (35°) 4.62×10−17 D×L = 0.3×0.6 sh cyl 25.2-300 

9. (a) Staphylococcus aureus (37°) 1.24×10−16 D = 0.6 sph 23-120 

   (b) Staphylococcus aureus (37°) 5.76×10−16 D = 1.0 sph 309 

10. (a) Bacillus subtilis (37°) 2.16×10−16 D×L = 0.5×1.0 sh cyl 225 

    (b) Bacillus subtilis (37°) 3.45×10−16 D×L = 1.0×4.0 l cyl 225 

11. Escherichia coli (37°) 1.38×10−16 D×L = 0.4×1.0 sh cyl 20-150 

12. Ricketsia prowazeki (37°) 6.22×10−17 D×L = 0.3×0.8 sh cyl 480 

13. Ricketsia conorii (37°) 6.22×10−16 D×L = 0.6×2.0 l cyl 480 

14.Thiobacillus thioparus (30°) 6.47×1016 D×L = 0.5×3.0 sh cyl 2000 

15. (a) Spirochaeta lutea (35°) 4.32×10−16 D×L = 0.1×50 l cyl 240 

      (b) Spirohaeta lutea (35°) 7.0×10−15 D×L = 0.2×200 l cyl 240 

16. (a) Nitrobacter agilis (35°) 1.3×10−16 D×L = 0.5×0.6 sh cyl 420 

      (b) Nitrobacter agilis (35°) 5.53×10−16 D×L = 0.8×1.0 sh cyl 420 

17. Lactobacillus acidophilus (37°) 9.1×10−17 D×L = 0.5×1.5 sh cyl 45 

* sph-sphere; sh cyl - short cylinder; l cyl - long cylinder 
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Table 2. Calculated data for volume to surface ratio (λ), longest time interval (T) and smallest time interval (τ) of bacteria. Data for 
the doubling time (Tdt) are taken from Table 1 and recalculated in seconds  

Bacteria (t °C) λ (µm) T(s) Tdt(s) τ (s)        

1. Mycoplasma mycoides 0.0500 3.690×102 3.60×103 1.67×10−16  

2. Mycoplasma pneumonia 0.0500 1.645×103 4.38×103 1.67×10−17  

3. Mycoplasma felis 0.0555 1.267×103 5.22×103 1.84×10−16  

4. Mycoplasma hominis 0.0670 5.910×104 3.60×103 1.33×10−15  

5. Mycoplasma arthritidis 0.0500 3.690×102 7.20×103 1.67×10−16  

6. Ureaplasma urealyticum 0.0370 3.580×102 4.44×104 1.23×10−16  

7. Bdelovibrio bacteriovorus 0.7500 4.16×105 1.80×104 6.6×10−17  

8. Walbachia melophagi 0.0594 1.55×103 1.8×104 2.0×10−16  

9. (a) Staphylococcus aureus 0.1000 1.18×104 7.2×103 3.33×10−16 

   (b) Staphylococcus aureus 0.1700 1.58×105 1.84×104 5.65×10−16 

10. (a) Bacillus subtilis 0.1000 2.06×104 1.35×104 3.16×10−16 

    (b) Bacillus subtilis 0.2500 1.87×105 1.35×104 7.94×10−16 

11. Escherichia coli 0.0830 9.05×103 9.0×103 2.76×10−16 

12. Ricketsia prowazeki 0.1300 1.0×105 2.88×104 1.40×10−15 

13. Ricketsia conorii 0.0630 2.35×103 2.88×104 1.40×10−15 

14. Thiobacillus thioparus 0.1250 9.6×104 1.2×105 4.16×10−16 

15. (a) Spirochaeta lutea 0.0250 2.57×103 1.44×104 0.83×10−16 

      (b) Spirohaeta lutea 0.0500 1.70×105 1.44×104 1.67×10−16  

16. (a) Nitrobacter agilis 0.0880 9.587×103 2.52×104 2.93×10−16  

      (b) Nitrobacter agilis 0.1430 1.07×105 2.52×104 1.40××10−15  

17. Lactobacillus acidophilus 0.0325 9.154×104 2.77×103 3.42×10−15  

 

 
 
Fig. 2. Comparison between the running time (T), accuracy (τ), bacterial doubling time (Tdt) and ATP times (tATP and τATP) of 

bacterial clock. The times Tmean = 6.88×104 s, Tdt mean = 2.82×104s, τmean = 6.65×10−16s and τATP = 1.1×10−16s are marked with 

horizontal continuous line. The time of tATP = 1.1×10−14s is marked by dashed line. Standard deviations (±SD) for Tmean  

(±9.89×104s),  for Tdt mean (±4.7×104s ), and for τmean (±7.2×10−16s ) are shown 
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Model of Bacteria as Quantum Clock  

The operation of the bacterial cell as a quantum clock 
can be illustrated with the model represented on Fig. 3. 
The clock starts to work with the starting growth of the 
bacteria-mothers. In the end of the growth of the mother 
cell (after Tdt) appears the bacteria-daughter. There is an 
understanding that the enzyme machines only received ATP 
energy for time tATP  or τATP, but the utilization of the full 
ATP energy occurs during the time (tE) of the enzyme 
reaction (Mohseni et al. 2014; Davies, 2004). In the model 
we take the mean enzyme reaction-time to be tE 
≈1.0×10

−5
(s) (Metzler, 1977) and one enzyme reaction-time 

to cause one clockwise movement. For mean total 
metabolic energy per one doubling time (TME≈1.0×10

−10
J) 

and mean basal metabolic rate per bacteria (Pmet ≈ 
1.0×10

−13
J/s), the bacterial cell consumes EATP =10

−18 
(J) for 

one enzyme reaction-time (10
−5 

s) (Atanasov, 2005). The 
energy of 10

−18
J corresponds to energy of 10

2
-10

3
 ATP 

molecules i.e., EATP = (10
2
-10

3
) ×εATP, where εATP is the 

energy of a single ATP molecule. The time corresponding 
to the mean value of EATP = 6×10

−18
(J), calculated by the 

time-energy inequality (EATP×τATP ≥ h), is τATP = 1.1×10
−16 

(s). This time is very close to the mean calculated accuracy 
of the bacterial clocks τmean=6.65×10

−16
(s). Thus, in the 

model the accuracy of bacterial clock is defined from the 
total ATP energy (EATP) exhausted from whole bacterial cell 
for one enzyme reaction-time. The same total ATP energy 
(EATP) causes one clockwise movement. The ratio between 
the total metabolic energy TME ≈ 10

−10
(J) and the energy of 

EATP =10
−18

(J) gives the number of all EATP quanta: 
TME/EATP = N = 10

8
. Product between the number of these 

quanta (N) and mean enzyme-time (tE) gives the clock 
running time (T), nearly equals to the doubling time T ≈ Tdt 
= N×tE of given cell- Fig.3. 
 

 
 
Fig. 3. A hypothetic model of bacterial clocks (Bm -bacteria-

mother, Bd - bacteria-daughter). Legend: The mean enzyme 
reaction-time (tE ≈ 10-5 s) determines one clockwise 
moving. The ATP energy consumption (EATP) from whole 
bacteria, per one enzyme reaction time (tE) determines the 
accuracy of bacterial clock. The doubling time of bacteria 
(Tdt) determines the running Time (T) of the clock 

Discussion 

In our case the calculated smallest time interval ‘τ’ 

gives the accuracy of the bacterial clock, while the 

longest time (T) gives the time for which a clock can 

remain accurate. In our hypothesis we accept that the 

time parameters of bacteria (Tdt, Tdt min, Tdt max, tATP, τATP) 

are more random in comparison to the genetically 

determined bacterial mass and size. Because of that, we 

calculate the bacterial time-characteristics (T and τ) as 

function of bacterial Mass (M), size (V/S) and Planck 

constant (ħ), accordingly to Wigner equations, taken as 

equalities. In our model we compare τ with time τATP for 

which ATP energy goes to the enzyme molecules and T 

with doubling time Tdt of bacterial cells, taken as 

maximum bacterial time-intervals. The received results 

have showed that the smallest time τ correspond to the 

real bacterial time-characteristics τATP i.e., statistically 

τATP ≈ τmean. The individual bacterial values for τ satisfied 

the Wigner equation because of τ > τATP (Fig. 2). 

However, more than 70% of calculated values for τ were 

bigger than τATP. On the other hand the longest time T 

corresponds to real bacterial characteristics (doubling 

time Tdt) i.e., Tmean ≈ Tdt mean.  Between the values of 

calculated longest time T and experimental data of Tdt 

exists a relatively good correlation (with R = 0.47). This 

is an additional argument in favor that the bacterial 

doubling time Tdt represents the calculated longest time 

T. The individual calculated values for T satisfied the 

Wigner equation because of T <Tdt max. (Fig. 2). On the 

figures is observed that nearly 70% of T-values fall in a 

narrow window between Tdt min and Tdt max and the standard 

deviations of Tmean and Tdt mean differ slightly. The results 

for the longest time T are calculated by Equation 6 (TV/S = 

M(V/S)
2 

/ħ), using data for the bacterial volume to surface 

ratio. In all living cells the volume to surface ratio is 

smaller than the length of cells (L). If we replace the 

volume to surface ratio with bacterial length (i.e., λ = L), 

the Equation 6 takes the form: 

 
2
/

L
T ML= ℏ   (10) 

 

The calculated by Equation 10 values of TL will be 

considerably larger than calculated by Equation 6 values 

of T. For example, the mass of Mycoplasma mycoides is 

1.55×10
−17 

kg, the length is 0.3µm and the doubling 

time is 3.6×10
3
s. The calculated TL is 1.3×10

6 
(s) in 

comparison to the calculated by Equation 6 value of 

TV/S = 3.69×10
2 

(s). In this case the equation from type 

of TV/S ≈ Tdt << TL is valid. Thus, in this case the 

Wigner inequality will be valid and stronger. This 

example keeps the validity for all bacteria on Table 1. 

By this fashion (using maximum length of bacterial 

cell, instead of their volume to surface ratio), the 

Wigner inequality could be valid more strictly. 
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We can compare the received results and our model 

with those of other authors. For example, Zimmerman 

(1962) point out that a clock of accuracy about 1×10
−17 

(s) and running time 1×10
−13 

(s) would have to weigh up 

to 1×10
7
 D. For 1D = 1.66×10

−27 
(kg) the mass of 10

7 

Daltons will be equals to 1.66×10
−20 

kg (mass 

corresponding to the smallest bacterial mass ~10
−17

kg). 

The calculated in our model mean value of clock 

accuracy τmean=6.65×10
−16

(s) corresponds to the 

calculated by Pešić and Zimmerman accuracy, but the 

calculated in our model longest time (T and Tdt data) 

differs drastically from Zimmerman’s running time. The 

calculated mean running time (Tmean) is close to the mean 

bacterial doubling time (Tdt mean), but far away from the 

quantum area. As a compromise, it can be considered 

that the mean enzyme reaction-time (tE ~ 10
−5

s) falls into 

the limit between the quantum and classical area of the 

physics, because this time can be presented as geometric 

mean between τmean and Tdt mean by the ratio  tE ~ (τmean × 

Tmean)
1/2

. However, it just moves the bacterial clock one 

step ahead. Only the time of accuracy (in Pešić, 

Zimmerman and in our models) falls in the quantum area 

of physics, whereas the running Time (T) falls in the 

classical area of physics. In conclusion, our calculations 

confirm the concept of Pešić (1993) that the living 

bacteria can be regarded as ‘quantum clocks’. In 

previous publication the author (Atanasov, 2014) 

presents the problem whether bacteria can be regarded 

from quantum-mechanical point of view? The answer 

of this question is more positive than negative, 

because the basic physical parameters (mass-size-

time) of bacteria and the ‘speed of bacterial growth’ 

satisfied formally the Heisenberg inequalities.  

Conclusion 

In the study we confirmed the hypothesis of Pešić 
that the bacteria appear to be the smallest quantum 
clocks in the Nature. 
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