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ABSTRACT 

In this article we present some results in existence and uniqueness of strong and classical solutions of the 
hydrodynamic equations modeling solar and stellar winds. The system of Navier-Stokes equations for solar 
and stellar winds is considered in its corresponding differential evolution equation form (d/dt+A)υ(t) = 
F(υ(t), t), where F is a given non-linear function and -A is the infinitesimal generator of the analytic 
semigroup arising from the hydrodynamic Stokes operator. 
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1. INTRODUCTION 

The solar corona, i.e., the outer atmosphere of the 
Sun, is in continuous hydrodynamical expansion, 
producing out through the interplanetary medium a flow 
of plasma, which is known as the solar wind. 

Parker (1958) was the first who observed that a fluid 
description is appropriate and hydrodynamic streaming is 
possible, at least out to distances at the order of 
astronomical units from the Sun. 

The fully ionized gas of the solar corona, containing 
approximately 90% hydrogen and 10% helium is plasma, 
described by Boltzmann equations concerning 
distribution functions for electrons, protons and alpha-
particles. Let N the total number density. Let also that all 
species have the same local temperature T and diffusion 
effects can be neglected, i.e., they have the same 
streaming velocity u. If g is the acceleration field, K is 
the coefficient of thermal conductivity, k is the 
Boltzmann constant, m is the mean mass per particle, 
then for a fluid with isotropic pressure, negligible 
viscous loss and no external heat source the 
hydrodynamic equations are: 
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The above equations are the Navier-Stokes equations 

for motion of a fluid with mass density Nm and a specific 
heat ratio of γ = 5/3.  

Numerical solutions for this equations, as and for 
the corresponding case including viscosity, have been 
studied  by  Noble  and Scarf (1963), Summers 
(1980a) and Whang et al., (1965) describing the 
streaming solar atmosphere. 

The heat capacity ratio γ is related straightforwardly 
to the degrees of freedom of the particles which 
constitute the specific studied population. Under the 
study of electron populations of the Solar Wind plasma 
and for a time-span of many years, by the application of 
the framework of the Tsallis entropy, that is by the use of 
kappa distributions, the number of the degrees of 
freedom of the electron populations of electrons, which 
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contribute to the internal energy of the populations, is 
observed to vary within the passage of time and this 
variation follows the characteristic periodicities of the 
Solar Wind. These degrees of freedom may vary from 
three, corresponding to the motion of the plasma 
electrons and ions in space, to two, in the case of an axial 
symmetry, or to one, in the case of spherical symmetry. 
This has as a consequence that the heat capacity ratio γ 
obtains the value γ = 5/3, for n = 3 degrees of freedom, 
the value γ = 2, for n = 2 degrees of freedom and the 
value γ = 3, for n = 1 degrees of freedom, accordingly 
(Gkountras et al. (2014) work in progress). 

As has been noted by Summers (1980b) the role of 
viscosity in solar wind is not well-understood, since the 
model studied by Scarf and Noble (1965) in which 
included viscous effects obtained physically unacceptable 
results, while a well-behaved model including viscosity 
studied by Whang and Chang (1965) imposed the 
possibility of physically realistic boundary conditions.  

On the other hand Leer and Holzer (1972) studied 
kinetic and hydrodynamic models of collisionless solar 
wind proton gas and found that whilst heat conduction 
and viscosity are neglected in hydrodynamic model, 
they are automatically included in the kinetic model 
and the results of the two approximations are nearly the 
same. Also Leer and Holzer (1972) proposed that 
models of the quiet solar wind should be based on a 
hydrodynamic formulation. 

For a modern excursion in solar wind and cosmic-ray 
astrophysics we refer to the book of Schlickeiser (2002). 

In this note we establish analytic approximation of 
the problem and we consider the equations for a 
hydrodynamic model of solar and stellar winds in the 
dimensional analysis form: 
 
( / ) ( , )u t u u grad u gradp G∂ ∂ − ∆ + + =   (1.1) 
 

With divu = 0 in X×R and u| X∂ = 0, where X is a 
smooth domain of R3 and by definition the operator 
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This system describes the motion of viscous 
incompressible fluid. The function u: R3×R→R3, with u(x,t) 
= (u1(x,t), u2(x,t),u3(x,t)) represents the velocity of the fluid, 
p(x,t) is the pressure and G: R3×R→R3 is the given external 
force, with G(x,t) = (G1(x,t), G2(x,t), G3(x,t)). 

2. MAIN RESULTS 

In what follows for classical notions and terminology 
in functional analysis and semigroups we refer to the 
book of Yosida (1980). 

For our approximation we consider the Hilbert space 
H with elements u∈L2(X, B(X), λ3) such that 
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Let the non-negative and self-adjoint Stokes operator 
S with domain. 
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R(S) = L2(X, B(X), λ3) defined by the formula S: = -P2∆, 
where P2 denotes the projection operator from L2(X, B(X), 
λ3) onto H and ∆ is the Laplace operator. Let also 
{ : 0}tSe t− ≥  be the analytic semigroup generated by S. 

Then applying the projection operator P2 to both sides 
of the Navier-Stokes Equation 1.1 yields: 
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where, B: = P2(u, grad) (Giga, 1983; von Wahl, 1985). 

Therefore, setting υ: R → R3: t → υ(t): = u(x,t), the 
system of equations can be written as: 
 
( / ) ( ) ( ( ), ),d dt A t F t t t Rυ υ+ = ∈  (2.1)  
 
where, the operator A: = S is the non-negative and self-
adjoint stokes operator and the function F absorbs the 
non-linear terms. 

In order to deal with the last equation we first 
consider the corresponding linear evolution equation: 
 
( / ) ( ) ( ),d dt A t f t t Rυ+ = ∈   (2.2)  
 

As is well-known, we may assume that there exist 
constants µ0, δ>0 such that 0

tA te e δµ− −≤ , for all t ∈ R+. 

We denote by Cb(R, R3) the Banach space of bounded 
continuous functions ϕ: R → R3, endowed with 
supremum norm { }| |: sup ( ) :t t Rφ φ= ∈  and let C(R, R3) 

the space of continuous functions ϕ: R → R3. Also by     
P(R, R3) we denote the closed subspace of Cb(R, R3) of 
all almost periodic functions in Cb(R, R3). 

Let also M1(R, R3) be the Banach space of Bochner-
measurable functions ϕ: R → R3 for which 
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A function ϕ: R→ Dom(A) is called a strong solution 
(respectively a classical solution) on R of (2.1) or (2.2) if 
it is strongly differentiable for λ1-almost every t∈R 
(respectively for every t∈R). 

In the sense of semigroup approach to differential 
evolution equations, concerning the case of 
magnetohydodynamics (Athanasiadou et al., 2014a; 
2014b), for the hydrodynamic approximation that we are 
intrested in, we obtain the following results. 

Proposition 2.1 

If 1 3(R,R )f M∈  then Equation 2.2 has at least one 
strong solution υ in Cb(R, R3). 

Proof. Let υ: R → R3 ( ) 1( ) : ( ) ( )
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Hence, υ∈Cb(R, R3). 
For h>0 follows: 
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Letting h→0+ we conclude 
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t∈R, i.e., υ is a strong solution in Cb(R, R3). 
Let Φ the corresponding Nemytskii operator of the 

non-linear function F: R3×R → R3 appearing in Equation 
2.1, i.e., for every y: R →R3, Φy is defined by Φy(t): = 
F(y(t), t), t ∈ R. 

Proposition 2.2 

Let Φy∈M1(R, R3) provided y∈M1 (R, R3) and there 
exists a constant η>0 such that 1 2 1 2y y y yηΦ − Φ ≤ −  for 

all y1, y2∈M1(R, R3) and µ0 δ−1η<1. Then Equation 2.1 
has at least one strong solution υ in M1(R, R3). 

Proof. We consider the Hamerstein-type operator 
1 3 1 3: (R,R ) (R,R )M MΞ →  which to any y∈M1 (R, R3) 

associates a strong solution Ξy in Cb(R, R3) ⊆ M1(R, R3) 
of the linear evolution equation ( ) ( ) ( )x t Ax t y t+ = Φ&  such 

that ( ) 1( )t s A
t

y e yd sλ− −

−∞
Ξ = Φ∫ , t∈R. Let t, σ∈R and y1, 

y2∈M1(R, R3). Then combining the assumptions and 
Fubini theorem it follows: 
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Thus, Ξ is a contraction operator in M1(R, R3). By 

similar arguments we have the next result. 

Proposition 2.3 

Let Φy∈P(R, R3) provided y∈P(R, R3) and there 
exists a constant η>0 such that 1 2 1 2y y y yηΦ − Φ ≤ −  

for all y1, y2∈P(R, R3) with µ0 δ−1 η<1. Then there 
exists exactly one classical solution υ of Equation 2.1 
in P(R, R3). 
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