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ABSTRACT 

We consider the dynamical system, fn+1 = u(fn), (1) (where usually n, is time) defined by a continuous 
map u. Our target is to find a flow of the system for each initial state f0, i.e., we seek continuous 
solutions of (1), with the same smoothness degree as u. We start with the introduction of continued 
forms which are a generalization of continued fractions. With the use of continued forms and a 
modulator function (i.e., weight function) m, we construct a sequence of smooth functions, which 
come arbitrarily close to a smooth flow of (1). The limit of this sequence is a functional transform, 

[ ]m uK , of u, with respect to m. The functional transform is a solution of (1), in the sense that, 

( )[ ]m u y c+K , is a flow of (1) for each translation constant c. Here we present the first part of our work 

where we consider a subclass of dissipative dynamical systems in the sence that they have wandering 
sets of positive measure. In particular we consider strictly increasing real univariate maps, u: D→D, D 
= (a+∞), where, a≤0, or, a=-∞, with the property, u(x)-x≥ε>0, which implies that u, has no real fixed 
points. We briefly give some mathematical and physical applications and we discuss some open 
problems. We demonstrate the method on the simple non-linear dynamical system, fn+1 = (fn)

2+1. 
 

Keywords:  Non Linear Dynamical Systems, Smooth Flows, Functional Transform, Continuous Iterates, 
Continued Forms, Abel Functional Equation, Iterative Functional Equations, Iterative Roots 

1. INTRODUCTION 

1.1. Preliminary Definitions 

Let Z, be any totally ordered set of integers. We call 
an increasing or decreasing sequence of consequtive 
integers from the set Z, an index set. We denote index 
sets for the rest of this article as,[ , ]Z k n , [ , )Z k ±∞ , 

( , ]Z n±∞ , where, ,k n Z∈ . 
We denote open, halfopen and closed real intervals 

as, ( , )a b� , [ , )a b� , ( , ]a b� , [ , ]a b� , where for closed 
boundaries, ,a b ∈�  and for open boundaries, 

, { }a b ∈ ∪ ±∞� , unless otherwise noted.  

We say that a function is kC  smooth if it has 
continuous derivatives of kth order. 

We denote the non-negative integer iterates of an 
univariate function, :f D → � , where, ( )f D D⊂ ⊂ � , as:  

[ ]

[0]

 ... , \ 0n

n

f f f n

f I

≡ ∈

≡

o o �

14243

 

 
where, I, is the identity function. We adopt the bracket 
notation for the iteration exponent to avoid any confusion 
with powers. The bracket notation has been previously used 
by Walker (1991) and others. If f, is invertible we denote 
its inverse for simplicity as f − . If additionaly, ( )D f D⊂ , 
we define the negative integer iterates of f, as: 
 

[ ] [ ]( ) ,n nf f n− −≡ ∈�  

 
The existence of the integer iterates, f[n], n∀ ∈Z , 

implies, ( )D f D= . We will use the following known 
properties of iterates: 
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[ ] [ ] [ ]

[ ] [ ] [ ]( )

n m n m

n m nm

f f f

f f

+=

=

o

 

 
Especially for the successor function,( ) 1S x x= + , we 

define real continuous ‘principal’ iterates as: 
 

[ ] ( ) ,aS x x a a≡ + ∈�  
 
where, the meaning of ‘principal’ iterates is explained in 
section 4.5 on homologous and principal functions. 

1.2. Introduction 

In this article we seek smooth solutions of the 
dynamical system Equation 1: 
 
 1 ( )n nf u f+ =  (1) 
 

For a class of functions, : , ( , )u D D D a→ = +∞� , 

where, 0a ≤ , or, a = −∞ , i.e., we seek smooth flows of 
(1) through an initial value, 0f D∈ . 

In section 2 we start with the definition of a 
continued form, which is a compact representation of 
successive composition of a sequence of functions, { }ju : 
 

[ , ]
[ ( )]C

t

j k n
j k n

u t u u
∈

≡ oKo

Z

 

 
Provided that the domains are such that the 

compositions can be performed (according to the definition 
in 1.1). It is straightforward to use continued forms for the 
representation of continued fractions, continued 
exponentials, nested radicals, iterates of functions etc. and 
generally in cases of successive composition. 

In section 3 we use continued forms to construct a 
function space: 
 

,H { ( ), { }, }k nh y c k n c C= + ≤ ∈ ∪ ±∞ ∈ ⊂ �Z   
 
which contains the functions: 
 

[ ]
,

[ , ]

,

( , ) [ ( ) ( )] ( )

( ) lim ( , )

( ) lim ( ) [ ]( )

C
t

k
k n

j k n

k k n
n

k m
k

h y x u m y j u t x

h y h y x

h y h y u y

∈

→+∞

→−∞

= −

=

= =

o o

K

Z

  

 
where, x D∈ , provided that the limit functions exist. 
The function, u U∈ , is a continuous function from a 
class U, defined in section 3 and, m M∈ , is a weight 

function, called a modulator function, which belongs 
to a class M. We call the limit function, [ ]mh u=K , the 

functional transform of u, with respect to a modulator 
function m. 

In theorem T2 we show that, u U∀ ∈ , m M∃ ∈ , such 
that the limit functions, ,limk k n

n
h h

→+∞
= ,exist for every, 

k ∈Z  and moreover are independent of x. 
In theorem T3 we show that, u U∀ ∈ , m M∃ ∈ , such 

that the functional transform, [ ]mh u=K , exists. 

In section 4 we consider an arbitrary finite subset, 
{ }, [0, ]nS f n q= ∈� , of the orbit of the dynamical system 

(1), with initial value, 0f D∈ . For an arbitrary point, 

fixedrf S∈  and for some fixed modulator function m, 

we define a sequence of translation constants, 

0( , )k rc f f ∈� , depending on rf  and 0f , such that, 

( ) ,k k rh r c f k −+ = ∀ ∈Z . 

In theorem T4 we show that the smooth functions, 
( )k kh y c+ , become arbitrarily close to S, as, k → −∞ , in 

the sence that, 00, Nε −∀ > ∃ ∈Z , such that, k N∀ ≤ , we 

have, 
0

( ) max | ( ) |k k k k n
n q

h y c S h n c f ε
≤ ≤

+ − = + − <� � . We also 

show that, provided that the functional transform, 
[ ]m uK , exists, the function, [ ]( )m u y c+K , interpolates 

the points of S, where the constant, lim k
k

c c
→−∞

= , depends 

only on 0f  and not on the choice of rf . 

In theorem T5 we show that any functional 
transform, [ ]m uK , is a solution of (1) and that, 

[ ]( )m u y c+K , interpolates the complete orbit, 0( )O f , of 

the dynamical system (1). Thus, [ ]( )m u y c+K , is a flow 

through 0f , of the dynamical system (1). 

In this first part of our work we consider a subclass 
of dissipative dynamical systems in the sence that they 
have wandering sets of positive measure. In particular 
we consider strictly increasing real univariate maps, 

: , ( , )u D D D a→ = +∞� , where, 0a ≤ , or,a = −∞ , with the 

property, ( ) 0u x x ε− ≥ > , which implies that u, has no real 
fixed points. 

From (Belitskii and Lyubich, 1999) we have that kC  
smooth solutions of (1) exist, { , }k ω∀ ∈ ∪ +∞� , provided 
that u, is kC   smooth and, 0f −′ ≠ . We believe that the 
functional transform, [ ]m uK , delivers indeed these 
smooth solutions. 

For continuous functions u and f, the dynamical 
system (1) is equivalent with the Abel Functional 
Equation (AFE), ( 1) ( )f x u f x+ = o . We also state a 
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known lemma which gives a general solution of the AFE 
from any particular solution. 

In section 5 on mathematical and physical 
applications we briefly discuss the subject of the formal 
definition of continuous iterates of any function in the 
class U, where we propose a split of iterates into two 
categories: Principal iterates and homologous iterates. 
Finally we demonstrate the method on the simple non-

linear dynamical system, 2
1 ( ) 1n nf f+ = + , defined by the 

map, 2( ) 1u x x= + . We show a smooth solution of the 
system using the logistic function as a modulator 
function, along the way pointing out some computational 
difficulties. At the end we give some important open 
problems related to this article. 

2. CONTINUED FORMS 

The terms ’continued form’ or ’continued 
composition’ seem not to have been used in mathematics 
as all encompassing names for successive composition of 
a sequence of functions. In contrast more restricted terms 
such as, continued fractions, continued powers, continued 
roots, continued radicals, continued exponentials etc., 
invariably indicating successive composition, often appear 
in use. It seems plausible that they all ultimately rely on 
'continued fractions‘, a name first introduced by John 
Wallis in his Opera Mathematica in 1695 (Olds 1963), but 
as a mathematical entity it is known since antiquity. For 
ex. continued fractions are implied in Euclid's Elements, 
as a subresult of his algorithm for the greatest common 
divisor and also used by the Indian mathematician 
Aryabhata in the 6 th cent., in his solution of indeterminate 
equations (Olds 1963). 

The relatively rare general term’ Kettenoperationen’ 
in german has more or less the same meaning as 
continued forms, but nevertheless seems not to have 
been used in a general setting. We will now give a 
formal definition of continued forms (the equivalent in 
german would be Kettenformen). 

Definition 

Let, { : }, , [ , ]j j ju D D j k n→ ⊂ ∈� � Z , be a sequence 

of univariate functions such that: 
 

1

1

( ) , [ 1, ] ,

( ) , [ 1, ] ,

j j j

j j j

u D D j k n if k n

u D D j k n if k n

−

+

⊂ ∀ ∈ + <

⊂ ∀ ∈ − >

Z

Z
  

 
We call the ordered composition of consequtive 

functions of this sequence a continued composition or a 

continued form. We denote a continued form in a 
compact way as: 
 

[ , ]
[ ( )]C

t

j k n
j k n

u t u u
∈

≡ oKo

Z

 

 
where, the dummy variable t, is the composition 
variable. A continued form may be evaluated at a point, 

nx D∈ , in which case we write: 
 

[ , ]
[ ( )] ( ) ( )C

t

j k n
j k n

u t x u u x
∈

≡o oKo

Z

 

 
We call x, the starting variable because evaluation 

begins with s. Continued composition of multivariate 
functions is performed with respect to one particular 
composition variable, which must be the same throughout 
the continued form. A continued form has an infinite 
number of terms if the index set is infinite, as for example 

in, 
[ , )

[ ( )]C
t

j
j k

u t
∈ +∞Z

, [ ( )]C
t

j
j

u t
∈Z

, etc. In this case the 

continued form notation represents a formal 
expression and the limits may not exist. To avoid 
some parenthesis we define that inside an expression, 
a continued form has precedence over composition of 
functions and over binary abelian operations such as 
addition and multiplication. 

A continued form is a function since it represents a 
composition of functions. Nevertheless an infinite 
continued form may not converge towards any particular 
function, either pointwise or uniformly. 

Definition 

Let, 
[ , )

[ ( )]C
t

j
j k

CF u t
∈ +∞

=
Z

, be an infinite continued 

form. We consider the partial continued forms: 
 

[ , ]
[ ( )], where,C

t

n j
j k n

g u t k n
∈

= ≤
Z

 

 
We say that CF, converges pointwise or uniformly to 

a function g, if and only if, the sequence of functions, 
{ }ng , converges pointwise or uniformly to g, as, 

n → +∞ , respectively. Analogous for: 
 

( , ]
[ ( )]C

t

j
j n

CF u t
∈ −∞

=
Z

. 
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In the case of a biinfinite continued form the two 
limits are independent unless otherwise noticed. 

The most important property of continued forms is 
the following, which stems from the associative property 
of composition. 

Corollary 

Let, ,
[ , ]

( ) [ ( )] ( )C
t

k n j
j k n

s x u t x
∈

= o

Z

, be a continued form 

and let, [ , ]l k n∈Z . Then: 
 

, , ,( ) ( )k n k l l ns x s s x= o  

 
Mathematical expressions involving repeated 

composition may be nicely represented as continued 
forms. Some examples are: 

Sums: 
 

[ , ][ , ]

[ ] (0)C
t

j j
j k nj k n

a a t
∈∈

= +∑ o

Z
Z

 

 
Products: 

 

[ , ][ , ]

[ ] (1)C
t

j j
j k nj k n

a a t
∈∈

=∏ o

Z
Z

 

 
Taylor series: 

 

( ) ( 1)

[0, ]
( ) ( ) ( ( ))

1

where, [ , ] (Lagrangeform)

C
t

j n

j n

x a
f x f a t f

j

a x

ξ

ξ

+

∈

− = + + 

∈
�

o

�

 

 
Iterates of functions: 

 

[ ]

[1, ]
( ) [ ( )] ( )C

t
n

j n
u x u t x

∈
=

�

o  

 
Continued fractions: 

 

2

2
1

1
0 0

[1, ]
(0)C

n

n

t
j

j n j
b

a
a

b
a

bb
a a

a t∈

+
+

 
+ = +  +  �

K

o  

 
Continued roots (or radicals): 

1 1 2 1

[1, ]
(1)C

n n n

t

j j
j n

a b a b a b

a b t

−

∈

+ + + +

 = + 
�

K

o

 

 
Continued powers: 

 

2 2 2 2
1 2

[1, ]
( ( ( ) ) ) ( ) (0)C

t

n j
j n

a a a a t
∈

 + + + = + 
�

K K o  

 

3 2
1 2 3

[1, ]
( ( ( ) ) ) ( ) (0)C

t
n j

n j
j n

a a a a a t
∈

 + + + + = + 
�

K K o  

 
Continued exponentials (towers): 

 
( )( )21( )

0
[0, ]

( ) ( ) (1)C
ana

t
a t

j
j n

a a
∈

 =  

K

�

o  

 
The value of continued forms generally depends on 

the starting variable. Nevertheless the value of 
converging infinite continued forms may not depend on 
the starting variable. An example are taylor series 
evaluated within the radius of convergence: 
 

( ) ( 1)

[0, ]

( )

( ) lim ( ) ( ( ))
1

( )
1

C

C

t

j n

n j n

t

j

j

x a
f x f a t f

j

x a
f a t

j

ξ+
→+∞ ∈

∈

− = + = + 

− + + 

�

�

o

 

 
For continued powers see Bo-Yan and Feng (2013) 

and Jones (1995). 

3. THE FUNCTION SPACE H 

3.1. Definitions 

We now formally define the function space H, which 
depends on a class of continuous functions U and on a 
class of modulator functions M. In the next sections we 
will show that the limits of particular sequences of 
functions from H, are solutions of (1). 

Definition 

Let U, M, be classes of continuous functions. We 
define a function space H, as: 
 

,H { ( ), { }, }k nh y c k n c C= + ≤ ∈ ∪ ±∞ ∈ ⊂ �Z  
 
where, hk,n, are functions defined as: 
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[ ]
,

[ , ]

, ,

,

( , ) [ ( ) ( )] ( )

( , ) lim ( , )

( ) ( , )

( ) lim ( ) [ ]( )

C
t

k
k n

j k n

k k n
n

k k

k m
k

h y x u m y j u t x

h y x h y x

h y h y x

h y h y u y

∈

+∞
→+∞

+∞

→−∞

= −

=

=

= =

o o

K

Z

 

 
where, x, is in the domain of, u U∈ , m M∈ and, 
k n≤ ∈Z . We call, [ ]m uK , the functional transform of u, 

with respect to m. The function classes U, M, will be 
defined such that, 1 { }y∃ ∈ ∪ −∞� , such that, 

1( , )y y∀ ∈ +∞� , the following existence conditions are 

satisfied: 

C1:  The functions, , ( , )k nh y x , exist, ( , )u m U M∀ ∈ × , 

k n∀ ≤ ∈Z , for every x, in the domain of u 
C2: The limit functions, , ( , )kh y x+∞ , exist, 

( , )u m U M∀ ∈ × , k∀ ∈Z  
C3: u U∀ ∈ , m M∃ ∈ , such that the limit functions, 

( )kh y , are independent of the starting variable x, 

k∀ ∈Z  
C4: ∀u∈U, ∃m∈M, such that the functional transform, 

( ) [ ]( )mh y u y=K , exists 
 

The conditions C1-C4 pose restrictions to the 
function classes U and M. The following definitions of 
U, M, are chosen, such that these conditions are satisfied. 

Definition 

We define a class U, of continuous functions with the 
properties: 

• : , ( , )u D D D a→ = +∞� , where, 0a ≤ , or, a = −∞  

• u, is strictly increasing 
• ( ) 0u x x ε− ≥ >  

Definition 

We define a class M, of kC  smooth functions with 
the properties: 

• : (0,1)m →� �  

• lim ( ) 0 lim ( ) 1
x x

m x m x
→−∞ →+∞

= ∧ =  

We call the functions in M, modulator functions. 
In the following existence theorems we show that the 

conditions required by the definition of H, are satisfied 
by the functions in U, M. 

3.2. Existence Theorems 

The following lemma satisfies the existence condition 
C1 of the definition of H. 

Lemma 1: Assumptions 

A1. u U∈  
A2. m M∈   

Propositions 

P1. For every, q ∈Z  we have: 
 

 
[ , ]

[ , ]

[ ( ) ( )] ( )

[ ( ) ( )] ( )

C

C

t

j k n

t

j k q n q

m y j u t x

m y q j u t x

∈

∈ + +

− =

+ −

o

o

Z

Z

  

 

P2. 
[ , ]

[ ( ) ( )] ( )C
t

j k n
m y j u t x

∈
− o

Z

, is strictly increasing with 

respect to x, ( , )u m U M∀ ∈ × , k n∀ ≤ ∈Z , 

fixedy∀ ∈�  (assuming its existence) 

P3. The continued form, 
[ , ]

[ ( ) ( )] ( )C
t

j k n
m y j u t x

∈
− o

Z

, 

exists, ( , )u m U M∀ ∈ × , k n∀ ≤ ∈Z , y∀ ∈�  and, 
x D∀ ∈  

P4. 1 { }y∃ ∈ ∪ −∞� , such that the functions: 
 

[ ]
,

[ , ]
( , ) [ ( ) ( )] ( )C

t
k

k n
j k n

h y x u m y j u t x
∈

= −o o

Z

 

 
Exist, ( , )u m U M∀ ∈ × , k n∀ ≤ ∈Z , 1( , )y y∀ ∈ +∞�  

and, x D∀ ∈ . 
This lemma satisfies condition C1 of the definition of H. 

Proof: P1: 

[ , ]

[ , ]

( ) [ , ]

[ , ]

[ ( ) ( )] ( )

[ ( ( )) ( )] ( )

[ ( ) ( )] ( )

[ ( ) ( )] ( )

C

C

C

C

t

j k n

t

j k n

t

j q k n

t

j k q n q

m y j u t x

m y q j q u t x

m y q j u t x

m y q j u t x

∈

∈

− ∈

∈ + +

− =

+ − + =

+ − =

+ −

o

o

o

o

Z

Z

Z

Z
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P2: Since u, is strictly increasing, ( ) ( )m y n u x− , is 
strictly increasing with respect to x, for fixed y and, 

fixedn∀ ∈Z . Then, 
[ , ]

[ ( ) ( )] ( )C
t

j k n
m y j u t x

∈
− o

Z

, is 

strictly increasing with respect to x, since it is a 
composition of strictly increasing functions.  

P3: For, y ∈� , let, 

,
[ , ]

( ) lim [ ( ) ( )] ( )C
t

k n
j k nx a

b y m y j u t x
+ ∈→

 
 = − 
 

o

Z

, (for a, see 

definition of U). Then for, ( , )u m U M∈ ×  and, 
n ∈Z , we will show by induction that: 

, ( ) ,k nb y a k n> ∀ ≤  

• ,
[ , ]

( ) lim [ ( ) ( )] ( )C
t

n n
j n nx a

b y m y j u t x
+ ∈→

 
 = − 
 

o

Z

( )lim ( ) ( ) ( ) lim ( )
x a x a

m y n u x m y n u x a
+ +→ →

= − = − > , 

since, lim ( ) 0
x a

u x a
+→

> ≤  and,0 ( ) 1m y n< − <  

• We assume that, , ( ) , where, \ 0n N nb y a N− > ∈�  

• ( 1), ( )n N nb y− + =

[ ( 1), ]
lim [ ( ) ( )] ( )C

t

j n N nx a
m y j u t x

+ ∈ − +→

 
 − = 
 

o

Z

[ , ]

,

, ,

lim ( ( 1)) [ ( ) ( )] ( )

( ( 1)) ( ( )) , since,

( ( )) ( ) 0, and,

0 ( ( 1)) 1

C
t

j n N nx a

n N n

n N n n N n

m y N u m y j u t x

m y N u b y a

u b y b y a

m y N

+ ∈ −→

−

− −

 
 − + − 
 

= − + >

≥ > ≤

< − + <

o o

Z

  

Thus, , ( ) ,k nb y a k n> ∀ ≤ . Since, 

[ , ]
[ ( ) ( )] ( )C

t

j k n
m y j u t x

∈
− o

Z

, is strictly increasing with 

respect to x, then, 
[ , ]

[ ( ) ( )] ( )C
t

j k n
m y j u t D D

∈
− ∈o

Z

 and thus 

the continued forms exist, k n∀ ≤ ∈Z . 

P4a: The iterate, [ ]nu , exists, n∀ ∈� , since, ( )u D D⊂ . 

Let, [ ]lim ( ),n
n

x a
a u x n

+→
= ∈� , then since u, is strictly 

increasing we have that, [ ]nu , is strictly increasing 

thus, [ ] ( ) ( , )n
nu D a= +∞� . Since, ( )u x x> , we have, 

1n na a a+ ≥ ≥  and, 1

1

if ,

if ,
n

n

a a a

a a a a

→ +∞ >
= =

. We are 

interested in the images of the negative iterates, 
[ ]ku , which thus have the property, 

[ ], ( )k
nk n u a a∀ ≥ − ≥  and since, [ ]ku , are strictly 

increasing then, [ ] ( ( , ))k
nu a D+∞ ∈�  

P4b: Let, ,
[ , ]

( ) [ ( ) ( )] ( )C
t

k n
j k n

s y m y j u t x
∈

= − o

Z

, where, 

y ∈� . We will show that, fixedx D∀ ∈ , 

fixedn∀ ∈Z , we have: ,lim ( )k n
k

s y
→−∞

= +∞ . By the 

ratio test we have: ,

1,

( )
lim

( )
k n

k k n

s y

s y→ −∞ +

 

1,

1,

( ) ( )
lim

( )
k n

k k n

m y k u s y

s y
+

→ −∞ +

−
=

o

 

lim ( )
k

m y k
→−∞

= − 1,

1,

( )
lim

( )
k n

k k n

u s y

s y
+

→ −∞ +

o

1,

1,

( )
lim 1

( )
k n

k k n

u s y

s y
+

→ −∞ +
= >

o  true since, lim ( ) 1
k

m y k
→−∞

− =  

and, 
0

( ) 0
x

u x x ε
≠

− ≥ > ⇒  
( )

1 1
u x

x
ε> + > . 

Thus for, 0y =  and arbitrary x, n, we have, 

,lim (0)k n
k

s
→−∞

= +∞ , hence, r∀ ∈� , there is some, 

0L L n≤ ∧ ≤ , such that, , (0) ,l n rs a l L> ∀ ≤ . Then from P4a 

we have, ( )[ ] [ ]
, (0) ( ) ,k k

l n ru s u a a k r> > ∀ ≥ − . Then if, 

k L≤ , we have, ( )[ ]
, (0)k

k nu s a>  and, 

[ ]
,

[ , ]
(0, ) C

t

k
k n

j k n
h x u

∈
= o

Z

[ ( ) ( )] ( )m j u t x− o , exists, k r∀ ≥ − . 

If, k L> , we set, k L q− = ∈� . Then from P1: 

( )[ ] [ ] [ ]
,

[ , ]
(0) [ ( ) ( )] ( )C

t

k k k
L n

j L n
u s u m j u t x u

∈
= − =o o o

Z

[ , ]
C

t

j L q n q∈ + +Z

[ ]

[ , ]
[ ( ) ( )] ( ) C

t
k

j k n q
m q j u t x u

∈ +
− =o o

Z

[ ( ) ( )] ( )m q j u t x− o  
Thus, , ( , )k n qh q x+ , exists, k r∀ ≥ −  and since n, is 

arbitrary we conclude that, , ( , )k nh q x , exists, k r∀ ≥ − . 

From P1 we have that, , ( , )k nh y x , exists, y q∀ ≥ . But q, 

depends only on L, for fixed k and since L, always exists we 
have that q, always exists for every, k n≤ ∈Z . Thus 
condition C1 of the definition of H, is satisfied. This 
concludes the proof. 

The following theorem satisfies the existence 
conditions C2 and C3 of the definition of H. 
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Theorem 2: Assumptions 

A1. u U∈  
A2. m M∈   
A3. , ( , ) Hk nh y x ∈ , satisfy condition C1 of the definition 

of H. 
A4. 1 { }y ∈ ∪ −∞�  

Propositions 

P1. The limit functions, , ,( ) lim ( , )k k n
n

h y h y x+∞ →+∞
= , exist, 

( , )u m U M∀ ∈ × , k∀ ∈Z , 1( , )y y∀ ∈ +∞� . This 

satisfies condition C2 of the definition of H. 

P2. u U∀ ∈ , m M∃ ∈ , such that the limit functions, 

,( ) ( , )k kh y h y x+∞= , are independent of the starting 

variable x, k∀ ∈Z , 1( , )y y∀ ∈ +∞� . This satisfies 

condition C3 of the definition of H. 

Proof 

P1. We will first prove this proposition for, 

0 0,( ) ( , )h y h y x+∞= . For fixed, y ∈�  and, m M∈ , 

we define the sequence: ( ),nc m y n n= − ∈� . 

Let, 
[0, ]

( ) [ ( )] ( )C
t

n j
j n

s x c u t x
∈

= o

Z

. From L1 the 

continued forms exist and are strictly increasing with 
respect to, x D∈ , ( , )u m U M∀ ∈ × , n∀ ∈Z . 

Let, ( ) lim ( )n
n

s x s x
→+∞

= . We will show that, ( )s x ∈� , 

u∀ ∈U , x D∀ ∈ . 

A: Let, x fixed >0, then:  

• ( ) 0,nc u x n> ∀ ∈�  

 (since, (0), 0nu c > )  

• ( )nc u x , is strictly increasing, n∀ ∈�  

 (since, 0nc >  and u, is strictly increasing) 

• N∃ ∈� , such that, n N∀ ≥ , we have, ( )nc u x x< ⇒  

 (since, 0nc →  and, , ( ) 0x u x > ) 

• 0 (0) ( )n nc u c u x x< < < ⇒  

 (since, x>0 and u, is strictly increasing) 
• ( [0, ]) [0, ]nc u x x⊂ ⇒� �  

• ( [0, ]) [0, ]ns x x⊂� �  

• 1 1(0) ( (0)) (0),n n n ns s c u s n N− −= > ∀ ≥ ⇒  

 (since, (0) 0nc u >  and, ( )ns x , is strictly increasing 

with respect to x) 
• 0 0(0) (0) (0) 0ns s c u> = > ⇒  

• { (0)}n n Ns ≥ , is a strictly increasing sequence 

• 1 1( ) ( ( )) ( ),n n n ns x s c u x s x n N− −= < ∀ ≥ ⇒  

 (since, ( )nc u x x<  and, ( )ns x , is strictly increasing 
with respect to x) 

• { ( )}n n Ns x ≥ , is a strictly decreasing sequence 

• 0 (0) ( ) ,n ns s x x n N< < < ∀ ≥ ⇒  

• the limits, (0), ( )s s x , exist and moreover, 
0 (0) ( )s s x x< < <  

 This proves P1 for, 0 and, 0k x= > . 
 
B: If, x = 0, let, x1 = cnu(0)>0 and we are done by A. 
Otherwise let fixed x, be such that, a<x<0. Then: 
 
a. If, lim ( ) 0

x a
u x

+→
≥ ,we let, 1 ( ) 0, ( ,0)nx c u x x a= > ∀ ∈�  

and we are done by A 
b. If, lim ( ) 0

x a
u x

+→
< , there exists, 0b < , such that, 

( ) 0u b = . Then: 

i. Let, [ ,0)x b∈� , then let, 1 ( ) 0nx c u x= ≥  and we are 

done by A 
ii.  Let, 0a x b< < < , which implies that, ( ) 0u x < , then, 

N∃ ∈� , such that, n N∀ ≥ , we have, ( )nc u x b> , 

(since, 0nc →  and, , ( ) 0b u x < . We let, 1 ( )nx c u x=  

and we are done by Bbi 

Thus, 
[0, ]

( ) lim [ ( )] ( )C
t

j
n j n

s x c u t x
→ +∞ ∈

= o

Z

, exists, u∀ ∈U  

and, x D∀ ∈ . Since the sequence, { }nc , is arbitrary and 

exists, m M∀ ∈ , we have that: 
 

0, 0,
[0, ]

( ) lim ( , ) lim [ ( ) ( )] ( ),  

exists, ( , ) , ,

C
t

n
n n j n

h y h y x m y j u t x

u m U M x D y

+∞ →+∞ →+∞ ∈
= = −

∀ ∈ × ∀ ∈ ∀ ∈

o

�

Z
 

 

Then by L1, , ,( ) lim ( , )k k n
n

h y h y x+∞ →+∞
=

[ , ]
lim C

t

n j k n→+∞ ∈
=

Z

 

[ ( ) ( )] ( )m y j u t x− o , exists, ( , )u m U M∀ ∈ × , x D∀ ∈ , 

1( , )y y∀ ∈ +∞� . 

This completes the proof of P1: 

P2. Let, ( ) ( ) (0),n n nx s x s x Dδ = − ∈ . We will prove that, 

( ) ( ) 0n x xδ δ→ = , as, n → +∞ . If, 0x < , we are done. 

In P1 we have shown that all cases where, 0x < , can 
be reduced to, 0x < , where in this case we have: 

• 1 10 (0) (0) ( ) ( )n n n ns s s x s x+ +< < < < ⇒  
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 (from P1A) 
• 1 10 ( ) (0) ( ) (0)n n n ns x s s x s+ +< − < − ⇒  

• 1 1 1
1

( ) ( ) (0)
0 ( ) ( )

( ) ( ) (0)
n n n

n n
n n n

x s x s
x x

x s x s

δδ δ
δ

+ + +
+

−< < ⇒ = =
−

 

1 1( ( )) ( (0))
1,

( ) (0)
n n n n

n n

s c u x s c u
n N

s x s
+ +− < ∀ ≥ ⇒

−
  

• ( ) ( )n x xδ δ→ ∈� , as, n→+∞ 

This condition is not sufficient to show that, ( ) 0xδ = , 
for every sequence, { }n nc ∈� . Nevetheless since, ( ) 0nc u x →  

and, (0) 0nc u → , there is always a sequence, { }n nc ∈� , 

converging to zero fast enough such that, ∀n≥N, ∃0<ε<1, 
such that, 1 1( ( )) ( (0)) ( ( ) (0))n n n n n ns c u x s c u s x sε+ +− ≤ − ⇒  

1( )
1

( )
n

n

x

x

δ ε
δ

+ ≤ <  and this finally implies that, ( ) 0xδ = , 

x D∀ ∈ . 
Combining this result with the existence of, ( )s x , 

x D∀ ∈ , from P1, we conclude that the limit, ( )s x , is 
independent of x. Applying the same arguments as at the 
end of P1B above, we conclude that, u U∀ ∈ , m M∃ ∈ , 
such that the limit functions, ,( ) ( , )k kh y h y x+∞= , are 

independent of the starting variable x, k∀ ∈Z , 

1( , )y y∀ ∈ +∞�  and this satisfies condition C3 of the 

definition of H. 
The following theorem satisfies the existence 

condition C4 of H. 

Theorem 3: Assumptions 

A1. u U∈  
A2. m M∈  
A3. , ( , ) Hk nh y x ∈ , satisfy condition C1 of the 

definition of H. 
A4. ( ) Hkh y ∈ , satisfy condition C2, C3 of the 

definition of H 
A5. 1 { }y ∈ ∪ −∞�  

Propositions 

P1. u U∀ ∈ , m M∃ ∈ , such that the functional transform, 
( ) [ ]( )mh y u y=K , exists, 1( , )y y∀ ∈ +∞� . 

Proof 

P1. For, m fixed ∈M, we define the sequence: 
( ),kd m y k k −= − ∈Z . Let, x D∈  and let: 

 

[ ]

[ , 1]
( ) [ ( )] ( ) and, ( ) ( )C

t
k

k j k k
j k

r x d u t x p x u r x
∈ −

= =o o

Z

 

By A3 both kr  and kp , exist, k −∀ ∈Z  and 

1( , )y y∀ ∈ +∞� . We want to show that, u U∀ ∈ , m M∃ ∈ , 

such that, lim ( )k
k

p x
→−∞

 , exists, x D∀ ∈  and 1( , )y y∀ ∈ +∞� . 

To simplify this proof we set, n k= − , ( )nc m y n= + , 

[ ,1]
( ) [ ( )] ( )C

t

n j
j n

s x c u t x
∈

=
�

o
 and, [ ]( ) ( )n

n nq x u s x−= o , 

where, n ∈� . Then: 

• [ ] ( )nu x , is strictly increasing, n∀ ∈Z  
(iterate and inverse of a strictly increasing function) 

• ( )nc u x , is strictly increasing,n∀ ∈�  

(since, 0nc > ) 

• ( )ns x , is strictly increasing, \ 0n∀ ∈ �  
(a composition of strictly increasing functions) 

• 1 1 1 10 : ( ) ( ) ( )x s x c u x u x x∃ > = = −  

(since, 1nc < ) 

• 2 2 2 10 : ( ) ( ( ))x s x c u c u x∃ > = =  

• [2]
2 1 1 2( ) ( )c u u x x u x x x− = − −o  

• 0, [1, ] :jx j n∃ > ∈�  

• [ ] [ ]

1 1 1

( ) n n
n n j j

j n j n

s x c u x x u x x
≤ ≤ − ≤ ≤

   
   = − = − ⇒
   
   

∑ ∑   

• [ ] [ ] [ ]

1

( ) ( )n n n
n n j

j n

q x u s x u u x x− −

≤ ≤

 
 = = − ⇒
 
 

∑o o
 

1

( )n j
j n

q x x x
≤ ≤

= − ∑   

(this is easily proved by induction) 

Thus, ( )nq x , converges, if and only if, the series, 

1
j

j n

x
≤ ≤
∑ , converges. We have: 

 

1 1

lim ( ) limn j j
n n j n j

q x x x x x
→ +∞ → +∞ ≤ ≤ ≤

 = − = −
 
 

∑ ∑  

 
The series, 

1
j

j

x
≤
∑ , converges if and only if (since, 

xn>0): 
 

1 1lim 1 lim 1n n

n nn n

x x

x x
δ+ +

→ +∞ → +∞
< ⇔ = −  

 
where, 0δ > , (independent of n). We have: 
 

[ ]
1 1

[ ] [ ]
1 1

( ) ( ) ( ) ( )

( ) ( )

n
n n n n n

n n
n n n n

x q x q x q x u s x

x q x u c u q x

−
− −

−
− −

= − = − ⇒

= −

o

o o
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For, fixed \ 0n ∈� , fixedx D∈  and fixed, cj, we have 

fixed, 0jx > , where, 1,2, 1j n= −K . This implies that, xn, 

depends only on, cn. Let assume that, cn, can take any 
value, 0 1nc< < . 

Let, [ ] [ ]
1 1( ) ( ) ( )n n

n n n n nx c q x u c u q x−
− −= − o o , then for, 

[ ] [ ]
1 11 (1) ( ) ( ) 0n n

n n n nc x q x u u q x−
− −= ⇒ = − =o o  

and as cn, decreases from 1, xn, increases (since the 
function, ( )n nx c , is strictly decreasing with respect to cn). 

Thus (since nx , varies continuously with continuousnc ) 

for any, 0, 0nδ ε> ∃ > , such that: 1 1n ncε− < < ⇒  

10 n nx x δ−< < + ⇒  1 0nε +∃ > , such that, 

1
1 11 1 1n

n n
n

x
c

x
ε

δ
+

+ +− < < ⇒ <
+

 (since n, is arbitrary and δ , 

does not depend on n), 1
1 1n

n

x

x
δ+⇒ ≤ <  (where, 1 0δ > , 

does not depend on n), 1lim 1n

n n

x

x
+

→+∞
⇒ < . 

Thus the series, 
1

j
j

x
≤
∑ , converges if and only if, 

N∃ ∈� \0, such that, 1 1,n nc n Nε− < < ∀ ≥ . 

It is easy to show that, 0, as,n nε → → +∞ , thus in 

other words the series converges if nc , tends to 1, 

sufficiently fast. Notice that the rate of convergence 
depends on the choice of m. It can also be shown that 
for fast increasing functions u, the rate of convergence 
of nc , may be slow and vice versa. 

Thus, u U∀ ∈ , m M∃ ∈ , such that, lim ( )n
n

q x
→+∞

, exists, 

x D∀ ∈ , which implies that, u U∀ ∈ , m M∃ ∈ , such that, 
lim ( )k

k
p x

→−∞
, exists, x D∀ ∈  and, 1( , )y y∀ ∈ +∞� . 

By A4, 0( )h y , exists according to C3. Setting, 

0( )x h y= , we have that: 
 

0( ) [ ]( ) lim ( )m k
k

h y u y p h y
→−∞

= =K o  

 
Exists as required by condition C4 of the definition of H. 

4. SOLUTIONS OF THE DYNAMICAL 
SYSTEM, fn+1 = u(fn)  

4.1. Smooth Approximations of the Solutions 

We consider an arbitrary finite subset, 
{ },0nS f n q= ≤ ≤ ∈� , of the orbit of, 1 ( )n nf u f+ =  (1), 

depending on an initial value 0f , in the domain of u. 

For some fixed modulator function, m M∈ , such that, 
( )kh y , exists, 1( , )y y∀ ∈ +∞� , we consider an arbitrary 

point, fixedrf S∈ . We define a sequence of translation 

constants, 0( , )k rc f f ∈� , depending on rf  and 0f , such 

that, ( ) ,k k rh r c f k −+ = ∀ ∈Z . The translation constants will 

necessarily be such that, 1kr c y+ ≥ . 

In the next theorem we show among others that the 
smooth functions, ( )k kh y c+ , become arbitrarily close to 
all points of S, as, k → −∞ . 

Theorem 4: Assumptions:  

A1. Let, 1 ( ),n nf u f n+ = ∈�    
A2. u U∈  and, m M∈  
A3. ( ), ( ) Hkh y h y ∈  

A4. Let, 0( ), ,h y u m , be pC  smooth functions where, 

{ , }p ω∈ ∪ +∞� , where by Cω smooth we denote 
real analytic functions 

A5. Let, { }, [0, ]nS f n q= ∈�  

A6. Let, 
0

{ }k k
c −∈Z

, be a sequence such that, 

0( ) ,k k rh r c f k −+ = ∀ ∈Z , where, fixedrf S∈  and, 

0 {0}− −= ∪Z Z  

Propositions: 

P1. The functions, ( )kh y , are pC  smooth, k∀ ∈Z  

P2. 00, Nε −∀ > ∃ ∈Z , such that, 

( ) ,k kh y c S k Nε+ − < ∀ ≤ , where, 

[0, ]
( ) sup | ( ) |k k k k n

n q
h y c S h n c f

∈
+ − = + −

�

 

P3. ( ) [ ]( ) ,m n nh n c u n c f f S+ = + = ∀ ∈K  

P4. The limit constant, 0( )c c f= , is independent of the 

choice of r 

Proof 

P1. Let, 
[ , )

( ) [ ( ) ( )]C
t

k
j k

s y m y j u t
∈ +∞

= −
Z

. 

Without loss of generality we can assume that, 
0k ≤ , then: 

 

[ ] [ ]
0

[ , 1]

[ ]
0

[ , 1]

( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( )

C

C

t

k k
k k

j k

t
k

j k

h y u s y u m y j u t s y

u m y j u t h y

∈ −

∈ −

= = − =

−

o o o

o o

Z

Z
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Thus, ( )kh y , is pC  smooth since it is a composition 

of pC  smooth functions. 

P2. Either, 1 [0, ]r q− ∈� , or, 1 [0, ]r q+ ∈� . Without 
loss of generality we can assume that, 1 [0, ]r q+ ∈ ⇒�  

1rf S+ ∈ . We will show that, 1( 1 ) 0k k rh r c f ++ + − → , as, 

k → −∞ . 
• Let:

[ ]
1 1

[ ]
1 1

( 1 ) ( 1 )

( )

k
k k k r k k r

k
k k r

h r c f u s r c f

u s r c f

δ + +

− +

= + + − = + + − =

+ − =

o

o

 

 (since, ( ) ( )k k qs y s y q+= + , by L1,P1) 

•  

[ ]
1

[ ] [ ] [ ]
1

[ ] [1 ]
1

( ( ( 1)) ( ))

( ( 1) ( ))

( ( 1) ( ))

k
k k r

k k k
k k r

k k
r r

u m r k u s r c f

u m r k u u u s r c f

u m r k u f f

+
−

+
−

+

− − + − =

− + + − =

− + − ⇒

o o

o o o o

o

  

 (since, [ ] ( )k
k k ru s r c f+ =o  ) 

•  

[ ] [1 ]
1

[ 1] [1 ]

[ 1] [1 ]

( ( 1) ( ))

( ( 1) ( )) ( ( ))

lim ( ( 1) ( ))

k k
r k r

k k
r k r

k k
r r

k

u m r k u f f

u m r k u f u u f

u m r k u f f

δ

δ

−
+

− − −

− −
→−∞

− + = + ⇒

− + = + ⇒

 − + = ⇒ 

o

o

o

  

 (since, lim ( 1) 1
k

m r k
→−∞

− + =  ) 

• lim ( ( )) lim 0k r r k
k k

u u f fδ δ−
→−∞ →−∞

+ = ⇒ = ⇒   

 (since u,is strictly increasing) 

1

1

lim ( 1 ) lim

( 1 ) [ ]( 1 )

k k r k
k k

m r

h r c f c c

h r c u r c f

+
→−∞ →−∞

+

+ + = ⇒ = ⇒

+ + = + + =K
 

In a similar way we can show that, 
lim ( ) ,k k n n

k
h n c f f S

→−∞
+ = ∀ ∈ . Since S, has a finite number 

of points the supremum always exists and tends to zero: 

[0, ]
sup | ( ) | 0k k n

n q
h n c f

∈
+ − →

�

. Then, 00, Nε −∀ > ∃ ∈Z , such 

that, 
[0, ]

sup | ( ) | ( )k k n k k
n q

h n c f h y c S ε
∈

+ − = + − <
�

. 

P3, P4. P2 immediately implies that, 
( ) [ ]( ) ,m n nh n c u n c f f S+ = + = ∀ ∈K . This again 

immediately implies that c, is independent of the 
choice of r and for any particular u, depends only 
on, f0 and m. 

4.2. The Functional Transform, [ ]m uK , as a 
Solution of (1) 

Theorem 5: Assumptions: 

A1. u U∈  and, m M∈  

A2. ( ), [ ]( ) Hk mh y u y ∈K , where, 1( , )y y∈ +∞� , 

1 { }y ∈ ∪ −∞�  

A3. Let, lim k
k

c c
→−∞

= , be the limit translation constant as 

defined in T4. 

Propositions: 

P1. The transformed functions, ( ) [ ]( )mh y u y=K , satisfy 

the Abel functional equation, ( 1) ( )h y u h y+ = o , 

1( , )y y∀ ∈ +∞� . 

P2. The functional transform, [ ]( )m u y c+K , is a flow of 

(1) through 0f  and thus completely interpolates the 

orbit 0( )O f . 

Proof 

P1. We have: 
 

[ ]

[ , )

[ ]

[ 1, )

( 1) [ ( 1 ) ( )]

[ ( ) ( )] (by L1,P1)

C

C

t

k
k

j k

t

k

j k

h y u m y j u t

u m y j u t

∈ +∞

∈ − +∞

+ = + − =

− =

o

o

Z

Z

 

[ 1]
1

[ 1, )

1

[ ( ) ( )] ( )

lim ( 1) lim ( ) ( 1) ( )

C
t

k
k

j k

k k
k k

u u m y j u t u h y

h y u h y h y u h y

−
−

∈ − +∞

−→−∞ →−∞

− = ⇒

+ = ⇒ + =

o o o

o o

Z
 

 
And this proves P1. 

P2. Since, 0[ ]( )m u c f=K , the proposition P2 follows 

from P1. Q.E.D. 

4.3. General Solution of the Abel Functional 
Equation, f(x + 1) = u f(x)oooo  

For, u U∈ , the functional transform delivers 
particular solutions of the Abel FE, f S u f=o o , where 
S, is the successor function. The following known lemma 
gives a general solution of the AFE, from any particular 
solution, where it is not necessary that the particular 
solution is derived from the functional transform. 

Lemma 6: Assumptions: 

A1. I, is the identity function, S, is the successor 
function and, : , : , :u D Dϕ → Φ → → ⊂� � � � � , 

:f A ⊂ →� � , are continuous functions.  
A2. Consider the FEs: 

f S u f=o o  (1) Abel FE 
S SΦ = Φo o  (2) FE of diagonally 1-periodic functions 
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S Iϕ ϕ=o o  (3) FE of 1-periodic functions 

where the domain A, of f, is such that FE (1) is 
completely satisfied on the respective domains. 

Propositions 

P1. The general solution of (1) is,h f= Φo , where, 
:f A → � , is a particular continuous solution of (1) 

and Φ, is an arbitrary solution of (2). 
P2. The general solution of (2) is, I ϕΦ = + , where ϕ, is 

an arbitrary solution of (3). We call Φ, a diagonally 
1- periodic function. 

P3. The general solution of (3) is an arbitrary 1-periodic 
function ϕ. 

Proof 

P1. We have: 
h S f S f S u f u h= Φ = Φ = Φ =o o o o o o o o   

P2. We have: 
( )

( )

S I S I S S S I

S I S

ϕ ϕ ϕ
ϕ

Φ = + = + = + =
+ = Φ

o o o o o

o o

  

where, we have used the following property of the 
successor function: ( )S u v S u v u S v+ = + = +o o o . 

P3. S Iϕ ϕ ϕ= =o o , is the definition of 1-periodic 
functions 

In assumption A2 we have included the identity 
function in FE (3), to stress the elegant symmetry of the 
three functional equations. This theorem can easily be 
extended to wider classes of functions by taking care of 
the respective domains and image sets. 

Notice that the related functional equation, 
g u S g=o o , is also called the Abel FE. Actually this was 
the original FE considered by Abel (1881). 

4.4. Existence of Smooth Solutions of (1) 

The following lemma is an adaptation of the main 
theorem stated by (Belitskii and Lyubich, 1999). 

Lemma 7: Assumptions: 

A1. f, satisfies the AFE: f S u f=o o  (1). 
A2. u U∈  
A3. u, is Ck smooth where, { , }k ω∈ ∪ +∞� , where Cω 

smooth means real analytic. 

A4. If, k≥1, let, '( ) 0f − ≠ . 

Propositions: 

P1a. If, 0k = , there exists a continuous solution of (1) 

P1b. If, 1k ≥ , there exists a kC  diffeomorphic solution of 
(1) 

Proof 

P1. We consider the FE: g u S g=o o . Assumption A2 
implies that u, has no real fixed points and this implies 
that every compact subset of, A ⊂ � , is wandering 
under u, which means that, N∃ ∈� , such that for 

,p q ∈� , we have: [ ] [ ]( ) ( ) ,p qu A u A p q Nφ∩ = ∀ − ≥ , 

see Belitskii and Lyubich (1999). From the main 
result in (Belitskii and Lyubich, 1999) we have that in 
this case there exists an invertible solution 

of, g u S g=o o , which is kC  smooth. Let g, be such 

a solution. Since g, is invertible let, f g −= . Then: 

f u S f f S u f− −= ⇒ =o o o o . Thus f, is a solution 
of (1) 

For, 0k = , g, is continuous thus, f g −= , is 

continuous. For, 1k ≥ , g, is kC k smooth and the chain 

rule implies that f, is kC  smooth provided that, 
'( ) 0f − ≠ (A4). Thus  f, is a kC  diffeomorphism. 

Thus we have established that kC  smooth solutions of 
(1) exist. We have not proved in this article that the 

functional transform, [ ]m uK , indeed delivers these kC  

smooth solutions for appropriate modulator functions. 
Nevertheless we have strong evidence that this is the case. 

4.5. Homologous and Principal Functions 

The general solution in Lemma 6 of the AFE (1) with 
respect to u, defines a class Hu, of continuous functions: 
 

{ | , is a solution of the AFE (1) in L6}uH f f=  
 

We call any two functions in uH , homologous 

functions. By L6 any two homologous functions 1 2,f f  

are related as: 1 2f f= Φo , where Φ is a real diagonally 

1- periodic function. The question arises whether there 
is any unique privileged function in uH , called the 

principal function of uH . Kuczma et al. (1990) 

describes such principal solutions of the AFE in the 
sense of (Szekeres, 1958), which however do not apply 
to functions of the class U, as defined in section 3. 
Nevertheless we have found strong evidence (not 
presented in this article) that unique privileged functions 
exist for functions of the class U. These functions define 
principal solutions of the dynamical system defined by u. 
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In some cases of AFE with known principal solutions, we 
have found an appropriate modulator function m, (called a 
principal modulator function that corresponds to u) such that, 

[ ]m uK , is identical with the principal solution. The principal 

modulator function corresponding to each u, is probably not 
unique. A most surprising property though of many functional 
transforms, [ ]m uK , was that by using a variety of simple 

modulator functions, we got homologous solutions that are 
extremely close to the principal solution. Indeed if, h f= Φo , 
is a homologous solution and f, is the principal solution we 
have found that the amplitudes of Φ, are of the order of 10−5 to 
10−13. By amplitude of Φ, we mean the amplitude of the 1 -
periodic function, ( ) ( )x x xϕ = Φ − . 

5. APPLICATIONS: MATHEMATICAL 
AND PHYSICAL 

5.1. Continuous Iterates of Functions 

The functional transform method presented in this 
article has both mathematical and physical applications. 

In the area of mathematics it is an approach to define 
continuous iterates of functions. It is known that for 
continuous strictly increasing functions u, there is always a 
subclass of homologous continuous strictly increasing 
functions h, which are solutions of the AFE (1). With the help 
of these solutions we can give a rigorous definition of 
continuous iterates of a function u. Following the discussion in 
subsection 4.5 about homologous functions, we propose a 
definition of continuous iterates as: 
 

[ ]

[ ]

principal iterates:               ( ) ( ( ))

homologous iterates:          ( ) ( ( ))

y

y

u x f y f x

u x h y h x

−

−
Φ

≡ +

≡ +
  

 
where, f, is the principal solution of (1), h, is a homologous 
solution and Φ, is a diagonally 1-periodic function such 
that, h f= Φo . A principal iterate is also a homologous 
iterate, but not vice versa. If we define, ( ) 0,n nΦ = ∀ ∈Z , 

all homologous iterates are identical with the principal 
iterate at integer values of y. For non-integer y, the 
homologous iterates generally have different values (for 
differentiable Φ, they may have identical values only on a 

set of measure zero). In our opinion the functional transform 
is a significant step towards the use of homologous iterates, 
since it substantially expands the class of functions u, for 
which a solution of (1) is available. 

5.2. Physical Applications 

We describe a general physical experiment where 
the functional transform could be usefull. In this 

experiment we measure the input 0f and the output 

1f , of a physical quantity at time 0t =  and 1t = , 

respectively. We make following assumptions: 
 
• The experiment can be performed repeatedly 
• The output 1f , depends deterministically on the 

input 0f , which implies that for identical inputs we 

get identical outputs 
• The input and output vary continuously and from 

the measurements we can estimate a continuous 
function u, that governs the dynamical system, 

1 0( )f u f=   

• We assume that the dynamical system is controlled 
by u, for a time period T 

• The function u, belongs to the class U, described in 3.1 
 

Then the functional transform, [ ]m uK , is a 

continuous solution of the dynamical system and gives 
the quantity, ( )f t , at any time, t T∈ .  

Next we give an example to demonstrate the method. 

An Example: 2u(x) = x + 1  

We demonstrate our method on the Dynamical 

System (DS), 2
1 ( ) 1n nf f+ = + , hence the defining map 

is, 2: , (0, ), ( ) 1, ( ) 1u D D u x x u x x−→ = +∞ = + = −� � . 

For this example we chose the logistic function, 
1

( )
1 x

m x
e−=

+
, as the modulator function and we seek a 

smooth solution for the starting value, 0 0f = . With the 

functional transform method, we will approximate as close 
as possible (considering the limitations of our computer) 
the values , 1,2,3,4,5,6rf r = , of the orbit of this DS, 

assuming only the starting value, 0 0f = . The first few 

exact values of the orbit are given by the integers: 
 

0f  0 

1f  1 

2f  2 

3f  5 

4f  26 

5f  677 

5f  458 330 

Applying the functional transform method to u, we 
have: 
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( )

[ ]
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[ , ]

2[ ]
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2[ ]
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2

( )[16, ]

( , ) [ ( ) ( )] ( )

1
( ,1) 1 (1)

1

1
( ) 1

1

1

1
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C
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t
k

k n
j k n
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k n y jj k n
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k
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y jj

h y x u m y j u t x
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h y t

e

t
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e

t

e

∈

− −∈

− −∈

− −∈ +∞

= − ⇒

 += − ⇒ 
+ 

 += −  
+ 

 +
 

+ 

o o

o o

o o

Z

Z

Z

Z

  

 
We have checked that using the first 15 terms of 

the continued form is sufficient for our purposes, 
since the later terms contribute only about 10−30 to the 
result. Of course in principle one can take any number 
of terms. First we will determine the translation 
constants kc , for, k = -1, -2,…, -31, for the chosen 

orbit point, 0 0f = , (which implies, y = 0). We use the 

equation: 
 

( )
2[ ]

0( )[ ,15]

(0 ) ( )

1
1 (1) 0

1
C

k

k k k k

t
k

k c jj k

h c h c

t
c f

e− −∈

+ =

 +− = 
+ 

�

o o �

Z

 

 
Below we give the convergents kc , showing only the 

correct decimal digitsdigc , for various k: 
 
k ck cdig 
-6 0.3208 4.4 
-11 0.32086284 8.1 
-16 0.32086284925 11.8 
-21 0.320862849249683 15.5 
-26 0.3208628492496829344 19.1 
-31 0.3208628492496829344748 22.8 

 

 
 

Fig. 1. Interpolation of the orbit points of, [ ] (0), 0,1,2,3nu n = , by the convergents, ( )kh x , where, 1, 2, 3, 4, 5k = − − − − − , (Section 

5.2). At the limit, ( ) ( ) [ ]( )k mh x h x u x→ =K  
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Fig. 2. First three derivatives (brown, purple, blue ) of the functional transform, ( ) [ ]( )mh x u x=K , (orange). (Section 5.2) 

 
Clearly kc , approaches a limit value. The correct 

digits increase linearly with |k|, according to, 
0.735 | |digc k� . 

Next we give the difference between the function values 
and the orbit points, , ( )r k r k kf h r c∆ = − + , where, 

1,2,3,4,5,6r = , for various k. 
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k\r  1 2 3 4 5 6 
-6 2.7×10−5 6.4×10−5 2.6×10−4 2.6×10−3 0.14 190 
-11 5.7×10−9 1.3×10−8 5.5×10−8 5.5×10−7 2.9×10−5 3.9×10−2 
−16 1.2×10−12 2.8×10−12 1.2×10−11 1.2×10−10 6.1×10−9 8.2×10−6 
−21 2.5×10−16 6.0×10−16 2.4×10−15 2.5×10−14 1.3×10−12 1.7×10−9 
−26 5.3×10−20 1.3×10−19 5.2×10−19 5.2×10−18 2.7×10−16 3.7×10−13 
−27 9.7×10−21 2.3×10−20 9.5×10−20 9.5×10−19 5.0×10−17 Overflow 
−28 1.8×10−21 4.2×10−21 1.7×10−20 1.8×10−19 Overflow Overflow 
−29 3.3×10−22 7.8×10−22 3.2×10−21 Overflow Overflow Overflow 
−30 6.1×10−23 1.4×10−22 Overflow Overflow Overflow Overflow 
−31 1.1×10−23 Overflow Overflow Overflow Overflow Overflow 
 

We see that, ( )k kh r c+ , converges fast to, rf , as k, 

decreases, until the computation is stopped by overflow. 
This is a computational difficulty that eventually will be 
met on all computers. There are some methods (not 
mentioned in this article) to temporarily overcome this 
problem, which add a few more steps at the cost of rapidly 
increasing complexity of calculations. Figure 1 shows 
how fast, ( )h y ck k+ , approaches the orbit points of u. 

It is straightforward to compute higher derivatives of 
the functional transform Fig. 2 shows the first three 
derivatives. From these we get the first few terms of the 
series expansion at, 1y = : 
 

2

2 3 4

[ 1]( ) ( ) 1 0.735198( 1)

( 1) ( 1) ( 1)
0.221822 0.783798 0.10186

2 3! 4!

m x y h y y

y y y

+ = = + − +

− − −+ − +

K

K

 

 
With this example we have demonstrated that the 

functional transform may seem complicated to calculate, 
but with the computer it is in principle no more difficult 
than the calculation of the exponential function from its 
Taylor series. The main obstacle we encountered in 
calculating functional transforms of various functions 
was the overflow barrier and only seldom the time 
limitation of calculations was a problem. For example 
the highest order translation constant 31c− , of our sample 

functional transform, 2[ 1]m x +K , needed only a split 

second to calculate with 23 accurate decimal digits on an 
average PC, before it was interrupted by overflow. In the 
future the overflow barrier will be pushed to much 
higher numbers. This means that for a large subclass of 
functions in the class U, the functional transform will be 
computable almost instantly to any desired precision. In 
turn this will make the functional transform and the 
homologous iterates even more usefull. 

We have calculated the functional transform for various 
smooth functions u, with simple and complicated rules. In 
all cases the functional transform method has delivered 
quite smooth solutions for which we have in cases 

calculated and plotted the derivatives in excess of the 10 th 
order. The evidence is that the functional transform method 
delivers very smooth solutions. 

Form the physical perspective the functional 
transform presented in this article applies to dynamical 
systems that increase to infinity. Since infinities are not 
directly observable in the universe, we must expect that 
there will be a sudden break down of the dynamical 
system at some point. Nevertheless it is perfectly 
legitimate to apply the continuous solution for the time 
period before the break down. The fact that the 
functional transform uses internally an extrapolation to 
infinity does not affect the solution for the period when 
the dynamical system is valid. Contrariwise this 
extrapolation facilitates or at least greatly .improves the 
convergence of the functional transform. 

6. DISCUSSION 

The functional transform delivers smooth solutions for 
dynamical systems governed by the Abel FE, f S u f=o o , 
where, u U∈ , is defined in Section 3.1. A large number 
of known results deals with particular functions u (ex. 
Hooshmand, 2006). Although a few methods are 
available which deliver solutions for more general 
classes of u, (most deal with the related original Abel FE, 

f u S f− −=o o ), none of the previous results known to 
us, directly applies to strictly increasing functions 
without fixed points with, ( )u x x> . Via these solutions 
we can determine the iterative roots of functions in U, 
which are usefull in many applications. See Baron and 
Jarczyk (2001) for a survey on iterative roots and the AFE. 

The functional transform presents a novel method 
using continued forms for the determination of solutions 
of functional equations, which to our knowledge has not 
been previously used. Moreover the continued forms 
themselves, which represent arbitrary successive 
compositions, may prove a handy notation for a variety 
of mathematical settings where a large number of 
repeated compositions is required. 
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7. OPEN PROBLEMS 

We give a brief description of some open problems 
related to this article: 

• Provided that u, is pC  smooth, a rigorous proof is 
required that the functional transform delivers at 

least pC  smooth functions, { , }p ω∀ ∈ ∪ +∞� . A 
counterexample would also be usefull 

• A rigorous definition of principal functions in the set 
of homologous functions uH , is needed where u, is 

as in Lemma 6 
• Finding ' principal ' modulator functions corresponding 

to each u, that deliver the principal solutions 
• Extension of the class U, for which the functional 

transform applies and defining the class for which it 
delivers smooth solutions. Also extension of the 
class of modulator functions M 

8. CONCLUSION 

The functional transform method delivers 
sufficiently smooth flows of the dynamical system, 

1 ( )n nf u f+ = , for each initial value 0f , for a class of 

strictly increasing real functions, u U∈ . The flows 
depend on an arbitrary modulator function. In this 
article we have demonstrated the method and proved 
some important theorems which show that the method 
works. As a sideproduct we have introduced the notion 
of continued forms which represents successive 
composition of functions and is a generalization of 
continued fractions. The proofs of the theorems 
presented in the current article were significantly more 
clear due to the use of continued forms. 

In following articles we intend to expand the class of 
functions U, for which the functional transform method can 
be applied. We also intend to give more applications both 
mathematical and physical. 
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