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ABSTRACT 

The axial vibration in a thin layer of finite cylinder made of trigonal (3M) piezoelectric crystal are 
investigated. By using a closed form solution of the equations of motion and applying new boundary 
conditions the effects of the geometrical dimensions, axial hydrostatic pressure and electrostatic 
potential along the axis of the cylinder shell on oscillation frequency and amplitude of spatial 
vibrations are simulated. 
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1. INTRODUCTION 

 Piezoelectric materials are now widely used in many 
fields of engineering. Thanks to their ability to convert 
electrical in mechanical energy and vice versa, they 
serve as sensors, actuators and transducers. Piezoelectric 
components and materials are integrated into complex 
smart structures or embedded as layers or fibers into 
multi functional composites. The interested reader is 
referred to recent conference proceedings (Gabbert and 
Tzon, 2001; Brebbia et al., 1998) for further information. 
It is well known that ceramic cylindrical piezoelectric 
shells are often used in underwater sound navigation and 
ranging (sonar) transducers (Stansfield, 1991; Wilson, 
1988). Axially polarized shells are used in projectors and 
radially polarized shells used in non-neutral electron 
beam diagnostics (Jazi et al., 2006; Feriedom, 1968) and 
hydrophones (Hison et al., 2005; Kraus et al., 2003; 
Pasquale, 2003; Bartlett et al., 2001; Gafsi et al., 1997; 
Inaudi et al., 1994). Projectors and hydrophones are 
underwater analogues of loud speakers and microphones 
respectively. One notable civil engineering application of 
piezoelectric sensors is in structural health monitoring 

(Hison et al., 2005; Kraus et al., 2003; Pasquale, 2003; 
Bartlett et al., 2001; Gafsi et al., 1997; Inaudi et al., 
1994; Kawiecki, 1999). Models of piezoelectric shells 
are necessary not only to model transducer, but also to 
determine the material properties of the shells. By a 
closed form solution of the equations of motion and 
boundary conditions the effects of the dimensions of the 
shell and the piezoelectric coefficients on the axial 
vibrations are investigation in (Ebenzer and Ramesh, 
2003; Yang and Batra, 1995). The interest in these 
problems arises because of their applications as 
resonators. Vibrations of a circular cylindrical 
piezoelectric shell, with deformations assumed to be 
either axisymmetric or with the tangential displacement 
taken to be zero and made of ceramics poled in various 
direction, have also been studied in (Haskins and Walsh, 
1957; Shud’ga et al., 1984). The frequency spectra of 
axial vibrations of cylindrical piezoelectric shells have 
significant variation, even when they are made in one 
batch. This causes a variation in the characteristics of 
transducers. Quantities that can be measured easily in the 
case of piezoelectric shells are, for example, the 
frequencies at which resonances and anti-resonances 
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occur when the shell is electrically excited. Here we 
have presented a theoretical simulation for the axial 
mechanical vibrations of finite cylindrical 
piezoelectric shells. It must be noted that comparing 
with (Ebenzer and Ramesh, 2003; Yang and Batra, 
1995) we will study the frequency spectrum and its 
dependency on the geometrical dimensions, axial 
hydrostatic pressure and electrostatic potential along 
the axis of cylindrical shell made of trigonal (3 m) 
piezoelectric crystals. This study is organized in four 
sections and an appendix. The introduction was 
presented as section 1. In section 2 the geometrical 
configuration and the basic governing equations of 
finite cylindrical shell of trigonal piezoelectric crystal 
are presented. In section 3 by using a closed from 
solution of the equations of motion the frequency 
spectra and its dependence to the geometrical 
dimensions, hydrostatic pressure and electrostatic 
potential along the axis of this system are 
investigated. In this section the graphs of amplitude 
squared of spatial vibration versus the length of 
cylindrical piezoelectric in different configurations are 
presented. Finally, in section 4 a summary and 
conclusion is presented.  

2. CONFIGURATION AND GOVERNING 
EQUATIONS 

 Here we consider a thin shell of cylindrical 
piezoelectric made of the trigonal (3 M) crystal shown in 
Fig. 1. The thickness of shell ∆ is much smaller than the 
length of the cylinder L and the mean radius Rp of the 
shell i.e., (∆ << L, RP). The up and the down parts of the 
piezoelectric tube are fixed at electrostatic potentials φu, 
φd and hydrostatic pressures Pu, Pd, respectively. 
Furthermore it is assumed that the down part has no 
spatial displacement and it locked by a hard holder at z = 
0. The trigonal piezoelectric (3 M) crystals are defined 
by the elastic stiff-nesses tensor Equation 1 (Vel and 
Baillargeon, 2005; Destuynder, 1999): 
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and the strain tensor Equation 3: 
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Where: 
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 Here u is mechanical displacement along the z-axis. 
Introducing the electric field components (E1, E2, E3) in 
cylindrical coordinates as (Eθ, Ez, Er) and making use the 
constitutive relation Equation 4: 
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 One can obtain the tensor elements of stress tensor Tij 

in terms of Ez = -
z
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Fig. 1. Sketch of an annular cylindrical piezoelectric shell 

biased by electrostatic potential and hydrostatic 
pressure its symmetric axis 

 
 The governing equations for balance of linear 
momentum: 
 

ij,i jT = ρµ&&
 

 
and balance of electrical displacement vector with 
material properties: 
 

ˆ ˆˆD E es= ε +
r r

 

  
 In cylindrical coordinates for piezoelectric region 
result Equation 6 and 7: 
 

zrz,r z, zz,zT T T puθ θ+ + = &&  (6) 
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where, in the above equations ε̂ is dielectric permittivity 
at constant strain. It must be noted that the buckling 
effect is negligible when the radius of thin shells to be 
much greater than their length. Therefore the radial 
displacements respect to the longitudinal displacements 
are neglected (Popow, 1968; Timoshenko and 
Woinowsky-Krieger, 1959). Here by substituting: 
 

im i t im i tu u(z)e e , (z)e eθ ω θ ω= φ = φ  

into the relations (5-7) and using .D 0∆ =
r r

 we obtain a 
couple system of second order ordinary differential 
equations for the longitudinal displacement u and electric 
potential φ. These differential equations have the 
following form Equation 8 and 9: 
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 The detailed computations for independence on the 
radial coordinate are presented in the appendix part. In 
Equation (8-9) the tensor elements eij, cij and ∈ij are the 
piezoelectric moduli in unit Coulombs/meter2, the elastic 
stiff-nesses in unit Pa and dielectric permittivity at 
constant strain in unit Farads/meter, respectively. The 
general solutions of Equation (8 and 9) have the 
following form Equation 10: 
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where, A, B, C, D Are arbitrary constants and 
Equation 11: 
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 Substituting the general solutions (10) in Equation 
(6) the stress element Tzz can expressed as Equation 12: 
 

ZZ 22 11

2 2
22

2 2
11 p

T Ce kc (Acos(kz) Bsin(kz))

ke m
1 (Acos(kz) Bsin(kz))

R k

= + −

 
+ − −  ε  

 (12) 

3. GRAPHS OF FREQUENCY 
SPECTRUM AND MECHANICAL 

DISPLACEMENT 

 In this section we will use the following boundary 
conditions for obtaining the special solutions of Equation 
(8-9) and the coefficient k Equation 13: 
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 Taking into the account boundary conditions (13) 
the coefficients directly are determined as Equation 14: 
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and the parameter k will appear in an implicit function as 
Equation 15: 
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 The detailed computations are presented in the 
appendix part. In other word, the Equation (11) and (15) 
present the permission frequency of vibrations along the 
axis for a fixed configuration. In continuation of our 
discussion we will present several graphs of permission 
frequency and amplitude of mechanical displacement for 
several configurations. It must be noted that our date 
refer to LiTaO3 (one of trigonal (3 m) crystals) with mass 
density ρ = 7454 Kg/m3 at temperature 25°C. For this 
crystal we have (Zelenka, 1986): 
 
e22 = 1.59 C/m2, c11 = 229.8×109N/m2, 
c66

 = 92.9×109N/m2, ε11 = 339.5×10-12=F/m2 
 
 Figure 2 illustrates the permission frequency of 
axial mechanical vibrations versus the length of the 
piezoelectric tube L. In this figure both the up and 
down pressures and the difference of electrostatic 

potentials are fix. The graphs in Fig. 2 have shown for 
non-symmetric mode m = 2 and several mean radii of 
tube. As it shows the frequency decreases by increasing 
the radius of tube in a fix length of tube. Furthermore, 
numerical computations show that the variations of 
frequency for higher order of m are considerable. As 
the Fig. 3 shows the frequency of axial mechanical 
vibrations increases by increasing difference of 
electrostatic potentials. 
 For fixed configuration the higher frequency 
refers to the higher order of m as shown in Fig. 4. The 
effects of hydrostatic pressure of lower part Pd on 
frequency are illustrated in Fig. 5. As it shows for a 
fix configuration the frequency of axial mechanical 
vibrations decreases by increasing Pd. Comparing all 
the Fig. 2-5 shows that in all cases the frequency 
decrease by increasing tube length L. Figure 6-10 
present variations amplitude of mechanical vibrations 
A versus the operating frequency. As shown in Fig. 6 
for a fix configuration the amplitude decreases by 
increasing the radius of tube in a fix frequency. 
Furthermore, Fig. 7 shows that amplitude increases by 
increasing the difference of electrostatic potentials in 
a fix operating frequency and configuration. The 
amplitude decrease by increasing length of tube as 
shown in Fig. 8. Figure 9 shows that for fixed 
operating frequency and configuration the greater 
amplitudes coincident with large number of m. 
Finally, Fig. 10 illustrates that the amplitude decrease 
by increasing the hydrostatic pressure Pd. In Fig. 6-10 
as they shown the amplitude decreases by increasing 
the frequency of mechanical vibration for all 
configurations. 

APPENDIX 

 By taking in to account radial depending of u(z) as 
u(r, z) from dynamics equation we have: 
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Fig. 2. Graph of frequency of longitudinal mechanical vibrations ω versus to length of the piezoelectric tube L, (L-ω) for 

several radii tube Rp 

 

 
 

Fig. 3. Graph of (L-ω) for several longitudinal voltages loading φu-φd 
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Fig. 4. Graph of (L-ω) for symmetric and non-symmetric modes 

 

 
 

Fig. 5. The hydrostatic pressure effects on graph of (L-ω) 
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Fig. 6. Graph of amplitude of longitudinal mechanical vibrations a versus the frequency of oscillations ω, (ω-A) for several 

radii of tube Rp 
 

 
 

Fig. 7. Graph of (ω-A) for several longitudinal voltages loading φu-φd 
 

 
 

Fig. 8. Graph of (ω-A) for several tube length L 
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Fig. 9. Graph of (ω-A) for symmetric and non-symmetric modes 
 

 
 

Fig. 10. The hydrostatic pressure effects on (ω-A) graph 
 
 By averaging ∇.D = 0 in across of thickness of shell 
between r = Rp (inner radius) and r = Rp+∆ (outer radius) 
for a fixed value of z and taking u (r, z) = R1 (r) Z1 (z), 
φ(r, z) = R2(r) Z2(z) and introducing β = -

e31

2
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r z
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we will obtain: 
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 Generally in the problems including cylindrical 
configuration R1(r) and R2(r) are in order of series of 

ordinary Bessel and Neumann functions (Jm, Nm) of the 
m order where m is the order of angular dependence of 
displacement and potential function. Therefore it is easy 
to see that (Arfken et al., 2011): 
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 From the above results we will obtain: 
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 Taking in to account the above results and using 
them in average of dynamic equation one can find that: 
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0
r z

∂ φ =
∂ ∂

 

 
 The two above results let us to neglect the radial 
coordinate dependence of u and φ in governing equation. 
About using the boundary conditions (13) and details for 
obtaining the Equation (15) it must be noted we need to 
determine the coefficients A, B, C, D and k. 
 From u (z = 0) = 0 we will find B = 0 and from 

d|z o(z) =φ = φ  we have D = φd. Furthermore: 
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4. CONCLUSION 

 In this study we have reviewed a combined electro-
mechanical problem for axially polarized of an annular 
cylindrical piezoelectric made of trigonal (3M) crystals. 
We applied new boundary conditions and we obtained a 
frequency spectrum of axial mechanical vibrations as an 
implicit function including the axial hydrostatic 
pressures, axial electrostatic potential and geometrical 

dimensions. We have shown that the frequency of axial 
mechanical vibrations increases by increasing the 
difference of electrostatic potential and order of azimuthal 
dependence m. Furthermore, we have obtained the 
frequency decreases by increasing the radius of tube and 
hydrostatic pressure. The graphs of amplitude of 
vibrations versus the operating frequency have been 
presented. They have been shown that the amplitude 
decreases by increasing radius of tube and its length and 
the hydrostatic pressure. So it has been shown that the 
amplitude increases by increasing the electrostatic potential 
and order of magnitude of azimuthal dependence m. 
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