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ABSTRACT 

The solution of Einstein’s field equations in Cosmological General Relativity (CGR), where the Galaxy is at 

or cosmologically near the center of a finite yet bounded spherically symmetrical isotropic gravitational 

field, is identical with the unbounded solution. I show that this leads to the conclusion that the Universe 

may be viewed as a finite expanding white hole. The fact that CGR has been successful in describing the 

distance modulus verses redshift data of the high-redshift type Ia supernovae means that the data cannot be 

used to distinguish between unbounded models and those with finite bounded radii of at least cτ (≅ cH0
−1

). 

According to Carmelian theory, I further show that whether or not the Universe is finite bounded or 

unbounded it is spatially flat at the current epoch and has been at all past epochs where it as matter dominated. 
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1. INTRODUCTION 

In an interview with Scientific American George 

Ellis once said (Gibbs, 1995). 

“People need to be aware that there is a range of models 

that could explain the observations,...For instance, I can 

construct you a spherically symmetrical universe with Earth 

at its center and you cannot disprove it based on 

observations....You can only exclude it on philosophical 

grounds. In my view there is absolutely nothing wrong in 

that. What I want to bring into the open is the fact that we 

are using philosophical criteria in choosing our models. A 

lot of cosmology tries to hide that”. 

This study proposes a model where the Galaxy is at 

the center of a spherically symmetrical finite bounded 

universe. It contends that fits to the magnitude-redshift data 

of the high-z type Ia supernovae (SNe Ia) (Astier et al., 

2006; Knop et al., 2003; Riess et al., 2004), are also 

consistent with this model. That is, providing that the 

radius of the Universe (a spherically symmetrical 

matter distribution) is at least cτ where c is the speed of 

light and τ  ≈ 4.28×10
17

 s (or 13.54 Gyr). Oliveira and 

Hartnett (2006) Here τ is the Hubble-Carmeli time 

constant, or the inverse of the Hubble constant 

evaluated in the limits of zero gravity and zero distance. 

This model is based on the Cosmological General 

Relativity (CGR) theory (Carmeli, 2002a) but 

explores the motion of particles in a central potential. 

In this case the central potential is the result of the 

Galaxy being situated at the center of a spherically 

symmetrical isotropic distribution comprising all 

matter in the Universe. 

This study is preceded by Hartnett (2006a) that forms 

the basis of the work I present here. Oliveira and 

Hartnett (2006) and then later I (Hartnett, 2008) 

progressed the work by developing a density function for 

higher redshifts. Those papers assumed the unbounded 

model. The reader should at least be familiar with 

(Hartnett, 2006a; 2008) before reading this. 

1.1. Methods 

The metric (Behar and Carmeli, 2000; Carmeli, 

1996; 2002a) used by Carmeli (in CGR) in a generally 

covariant theory extends the number of dimensions of 

the Universe by the addition of a new dimension -- the 

radial velocity of the galaxies in the Hubble flow. The 

Hubble law is assumed as a fundamental axiom for the 
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Universe and the galaxies are distributed accordingly. 

The underlying mechanism is that the substance of 

which space is built, the vacuum, is uniformly 

expanding in all directions and galaxies, as tracers, are 

fixed to space and therefore the redshifts of distant first 

ranked galaxies quantify the speed of the expansion. 

In determining the large scale structure of the 

Universe the usual time dimension is neglected (dt = 0) 

as observations are taken over such a short time period 

compared to the motion of the galaxies in the expansion. 

It is like taking a still snap shot of the Universe and 

therefore only four co-ordinates x
µ
 = (x

1
, x

2
, x

3
, x

4
) = (r, 

 θ,  φ, τv) are used -three of space and one of velocity. 

The parameter 1

0H
−τ ≈ , the Hubble-Carmeli constant, is a 

universal constant for all observers. 

Here the CGR theory is considered using a 

Riemannian four-dimensional presentation of gravitation 

in which the coordinates are those of Hubble, i.e., 

distance and velocity. This results in a phase space 

equation where the observables are redshift and distance. 

The latter may be determined from the high- redshift 

type Ia supernova observations (Oliveira and Hartnett, 

2006; Hartnett, 2006a; 2008). 

1.2. Phase Space Equation 

The line element in CGR, (Carmeli, 2002b) 

Equation (1): 

 

( )2 2 2 2 2 2 2 2ds dv e dr R d sin dξ= τ − − θ + θ φ  (1) 

 

represents a spherically symmetrical isotropic universe, 

that is not necessarily homogeneous. 

It is fundamental to the theory that ds = 0. In the case 

of Cosmological Special Relativity (see chap. 2 of 

Carmeli, 2002a), which is very useful pedagogically, we 

can write the line element as Equation (2): 

 
2 2 2 2

ds dv dr=τ −  (2) 

 

ignoring θ and φ co-ordinates for the moment. By 

equating ds = 0 it follows from (2) that τdv = dr 

assuming the positive sign for an expanding universe. 

This is then the Hubble law in the small v limit. Hence, 

in general, this theory requires that ds = 0. 

Using spherical coordinates (r, θ, φ) and the isotropy 

condition dθ = dφ = 0 in (1) then dr represents the radial 

co-ordinate distance to the source and it follows from (1) 

that Equation (3): 

2 2 2
dv e dr 0

ξτ − =  (3) 

 

where,  ξ is a function of v and r alone. This results in 

Equation (4): 
 

/ 2dr
e

dv

−ξ= τ  (4) 

 

where, the positive sign has been chosen for an 

expanding universe. 

1.3. Solution in Central Potential 

Carmeli found a solution to his field equations, modified 

from Einstein’s, (Hartnett, 2006b; Behar and Carmeli, 2000; 

Carmeli, 2002a; 2002b) which is of the form: 

 
' 2R

e
1 f (r)

ξ =
+

 (5) 

 

with R’ = 1, which must be positive. From the field 

equations and (5) we get a differential Equation (6): 

 

2 r

eff

f
f ' k

r
+ = − τ ρ  (6) 

 

where, f(r) is function of r and satisfies the condition f(r) 

+1>0. The prime is the derivative with respect to r. Here 

k = 8πG/c
2
τ

2
 and  ρeff = ρ-ρc where ρ is the averaged 

matter density of the Universe and ρc = 3/8πGτ2
 is the 

critical density. 

The solution of (6), f(r), is the sum of the solution 

(2GM/c
2
r) to the homogeneous equation and a particular 

solution 2 2

eff

k
r

3

 − τ ρ 
 

 to the inhomogeneous equation. In 

(Carmeli, 2002a) Carmeli discarded the homogeneous 

solution saying it was not relevant to the Universe, but 

the solution of a particle at the origin of coordinates, or 

in other words, in a central potential. 

Now suppose we model the Universe as a ball of dust 

of radius ∆ with us, the observer, at the center of that 

ball. In this case the gravitational potential written in 

spherical coordinates that satisfies Poisson’s equation in 

the Newtonian approximation is Equation (7): 

 

GM
(r)

r
Φ = −  (7) 

 

for the vacuum solution, but inside an isotropic 

matter distribution Equation 8: 
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r

0 r

2 2

' 24
(r) G r dr ' 4 r 'dr '

r

2
G r 2G

3

∆πρ Φ = − + πρ 
 

= πρ − πρ∆

∫ ∫
  (8) 

 

where, it is assumed the matter density ρ is uniform 

throughout the Universe. At the origin (r = 0)  Φ(0) = -

2Gπρm∆2
, where ρ = ρm the matter density at the present 

epoch. In general ρ depends on epoch.Because we are 

considering no time development ρ is only a function of 

redshift z and ρm can be considered constant. 

From (8) it is clear to see that by considering a finite 

distribution of matter of radial extent ∆, it has the e ect of 

adding a constant to f(r) that is consistent with the constant 

2Gπρ∆2
 in (8), where f(r) is now identified with -4Φ/c

2
. 

Equation (5) is essentially Carmeli’s equation A.19, 

the solution to his equation A.17 from p.122 of 

(Carmeli, 2002a). More generally (5) can be written as 

Equation (9): 

 
' 2R

e
1 f (r) K '

ξ =
+ −

 (9) 

 

where, K is a constant. This is the most general form of 

the solution of Carmeli’s equation A.17. So by 

substituting (9) into Carmeli’s A.18, A.21 becomes 

instead Equation (10): 

 

2 2

2 eff

1 1
(2RR ' f ') (R f K) k

RR ' R
− + − + = τ ρ& & &  (10) 

 

Therefore (9) is also a valid solution of the Einstein field 

equations (A.12 - A.18 (Carmeli, 2002a) in this model. 

Making the assignment R = r in (10) yields a more 

general version of (6), that is Equation (11): 

 

2

eff

f K
f ' r

r

−
+ = κτ ρ  (11) 

 

The solution of (11) is then Equation (12): 
 

2 2

eff

1
f (r) r K

3
= − κτ ρ +  (12) 

 
From a comparison with (8) it would seem that the 

constant K takes the form K = 8πGρeff (0)∆2
/c

2
. 

It is independent of r and describes a non-zero 

gravitational potential of a finite universe measured at 

the origin of coordinates. There is some ambiguity 

however as to which density to use in Carmelian 

cosmology since it is not the same as Newtonian theory. 

Here ρeff is used and evaluated at r = 0. 

In the above Carmelian theory it initially assumed 

that the Universe has expanded over time and at any 

given epoch it has an averaged density ρ and hence ρeff. 

The solution of the field equations has been sought on 

this basis. However because the Carmeli metric is solved 

in an instant of time (on a cosmological scale) any time 

dependence is neglected. In fact, the general time 

dependent solution has not yet been found. But since we 

observe the expanding Universe with the coordinates of 

Hubble at each epoch (or redshift z) we see the Universe 

with a different density ρ (z) and an effective density ρeff 

(z). Carmeli arrived at his solution with the constant density 

assumption. I have made the implicit assumption that the 

solution is also valid if we allow the density to vary as a 

function of redshift, as is expected with expansion. 

Now it follows from (4), (9) and (12) that Equation (13): 

 

2

2 2

dr 1
1 r

dv c

− Ω 
= τ +  τ 

 (13) 

 

where, Ω = ρ/ρc. This compares with the solution when 

the central potential is neglected (i.e., ∆  → 0). In fact, 

the result is identical as we would expect in a universe 

where the Hubble law is universally true. 

Therefore (13) may be integrated exactly and yields 

the same result as Carmeli Equation 14: 

 

v
sinh ( 1 )

r c

c 1

− Ω
=

τ − Ω
 (14) 

 

Since observations in the distant cosmos are always 

in terms of redshift, z, we write (14) as a function of 

redshift where r is expressed in units of cτ and v/c = 

((1+z)
2
 -1)/((1+z)

2
 +1) from the relativistic Doppler 

formula. The latter is appropriate since this is a velocity 

dimension. In fact, is really redshift dependent and a 

more rigorous solution of (13) valid for any redshift is 

needed. This I have done in (Hartnett, 2008) but for this 

analysis this is not necessary. 

What is important to note though is that regardless of 

the geometry of the Universe, provided it is spherically 

symmetrical and isotropic on the large scale, (14) is 

identical to that we would get where the Universe has a 

unique center, with one difference which is explored in 

the following section. For an isotropic universe without a 
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unique center, one can have an arbitrary number of 

centers. However if we are currently in a universe where 

the Galaxy is at the center of the local isotropy 

distribution this means the Universe we see must be very 

large and we are currently limited from seeing into an 

adjacent region with a different isotropy center.  

1.4. Gravitational Redshift 

Hartnett (2006a) the geometry in the model is the 

usual unbounded type, as found in an in finite universe, 

for example. In a finite bounded universe, an additional 

effect may result from the photons being received from 

the distant sources. The gravitational redshift (zgrav) 

resulting from the Galaxy sitting at the unique center of a 

finite spherically symmetrical matter distribution must be 

considered. In this case we need to consider the 

difference in gravitational potential between the points of 

emission and reception of a photon. Hartnett (2008) it 

was determined in a matter dominated Carmelian 

universe that the Universe is always spatially at and that 

the total mass energy density Ωt = 1. As a consequence 

g00 = 1 which is the 00th metric component, the time part 

of the 5D metric of coordinates x
k
 = t, r, θ,  φ, v (k = 0-4). 

In general relativity we would relate it by g00 = 1-4Φ/c
2
 

where -4Φ is the gravitational potential. The factor 4 and 

minus sign arise from the Carmelian theory when (12) and 

(8) are compared. So what is g00 for the large scale 

structure of a finite bounded universe in CGR? 

Considering a finite bounded universe, from (12), 

using Ω =ρ/ρc, I therefore write g00 as: 

 
2 2

00 t tg (r) 1 (1 )r 3( 1)= + − Ω + Ω − ∆  (15) 

 

where, r and ∆ are expressed in units of cτ. Equation (15) 

follows from g00 = 1 -4Φ/c
2
 and (8) where Φ is taken 

from the gravitational potential but with effective 

density, which in turn involves the total energy density 

because we are now considering space-time. 

Clearly from Ωt = 1 and (15) it follows that g00 (r) = 

1 regardless of epoch. Thus from the usual relativistic 

expression Equation (16): 

 

00

00

grav

g (0)
1 z 1

g (r)
+ = =  (16) 

 

and the gravitational redshift is zero regardless of 

epoch. As expected if the emission and reception of a 

photon both occur in flat space then we’d expect no 

gravitational effects. 

Since it follows from (15) that g00(r) = 1 regardless of 

epoch, g00(r) is not sensitive to any value of ∆. This also 

means the above analysis is true regardless of whether 

the universe is finite bounded or unbounded. The 

observations cannot distinguish. In an bounded or 

unbounded universe of any type no gravitational redshift 

(due to cosmological origin) in the light from distant 

source galaxies would be observed. 

1.5. Finite Bounded White Hole 

Now if we assume the radial extent of a finite matter 

distribution at the current epoch is equal to the current 

epoch scale radius, we can write Equation (17): 

 

m

1

|1 |
∆ =

− Ω
 (17) 

 

Expressed in units of cτ. In such a case, ∆ = 1.02 cτ if 

Ωm = 0.04 and ∆ = 1.01 cτ if Ωm = 0.02. 

It is important to note also that in Carmeli’s 

unbounded model (14) describes the redshift distance 

relationship but there is no central potential. Hartnett 

(2006b) and in Oliveira and Hartnett (2008) Equation 

(14) was curve fitted to the SNe Ia data and was found 

to agree with Ωm = 0.02-0.04 without the inclusion of 

dark matter or dark energy. Therefore the same 

conclusion must also apply to the finite bounded 

model suggested here. 

In order to achieve a fit to the data, using either the 

finite bounded or unbounded models, the white hole 

solution of (6) or (11) must be chosen. The sign of the 

terms in (12) means that the potential implicit in (12) is 

a potential hill, not a potential well. Therefore the 

solution describes an expanding white hole with the 

observer at the origin of the coordinates, the unique 

center of the Universe. Only philosophically can this 

solution be rejected. Using the Carmeli theory, the 

observational data cannot distinguish between finite 

bounded models (∞ > ∆ ≥ cτ) and finite (∆ = 0) or 

infinite (∆ = ∞) unbounded models. 

The physical meaning is that the solution, developed 

in this study, represents an expanding white hole 

centered on the Galaxy. The galaxies in the Universe 

are spherically symmetrically distributed around the 

Galaxy. The observed redshifts are the result of 

cosmological expansion alone. 
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Moreover if we assume ∆≈cτ and Ωm = 0.04 then it 

can be shown (Hartnett, 2008) that the Schwarzschild 

radius for the finite Universe Equation (18): 

 

s mR 0.04c≈ Ω ∆ = τ  (18) 

 

Therefore for a finite universe with ∆ ≈ cτ it follows 

that Rs ≈ 0.04 cτ ≈ 200 Mpc. Therefore an expanding 

finite bounded universe can be considered to be a white 

hole. As it expands the matter enclosed within the 

Schwarzschild radius gets less and less. The 

gravitational radius of that matter therefore shrinks 

towards the Earth at the center. 

This is similar to the theoretical result obtained by 

Smoller and Temple (2003a) who constructed a new 

cosmology from the FRW metric but with a shock wave 

causing a time reversal white hole. In their model the 

total mass behind the shock decreases as the shock wave 

expands, which is spherically symmetrically centered on 

the Galaxy. Their study states in part “...the entropy 

condition implies that the shock wave must weaken to 

the point where it settles down to an Oppenheimer 

Snyder interface, (bounding a finite total mass), that 

eventually emerges from the white hole event horizon of 

an ambient Schwarzschild space-time”. 

This result then implies that the Galaxy could in fact 

be somewhere near to the physical center of the 

Universe. Smoller and Temple (2003b) statem that 

\With a shock wave present, the Copernican Principle is 

violated in the sense that the earth then has a special 

position relative to the shock wave. But of course, in 

these shock wave refinements of the FRW etric, there is 

a space-time on the other side of the shock wave, 

beyond the galaxies and so the scale of uniformity of 

the FRW metric, the scale on which the density of the 

galaxies is uniform, is no longer the largest length 

scale”[emphasis added]. 

Their shock wave refinement of a critically 

expanding FRW metric leads to a big bang universe of 

finite total mass. This model presented here also has a 

finite total mass and is a spatially at universe. It 

describes a finite bounded white hole that started 

expanding at some time in the past. 

2. CONCLUSION 

Since the Carmeli theory has been successfully 

analyzed with distance modulus data derived by the 

high-z type Ia supernova teams it must also be consistent 

with a universe that places the Galaxy cosmologically 

near the center of an spherically symmetrical isotropic 

expanding white hole of finite radius. The result 

describes particles moving in both a central potential and 

an accelerating spherically expanding universe without 

the need for the inclusion of dark matter. The 

observational data cannot be used to exclude models 

with finite extensions ∆≥cτ. 
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