
Physics International, 2012, 3 (2), 50-57       

ISSN: 1948-9803 

©2012 Science Publication 

doi:10.3844/pisp.2012.50.57 Published Online 3 (2) 2012 (http://www.thescipub.com/pi.toc) 

Corresponding Author: James Michael Chappell, School of Electrical and Electronic Engineering, Faculty of Engineering, 

Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia 

 

50 Science Publications

 
PI 

The Gravity Field of a Cube 

1
James Michael Chappell, 

2
Mark John Chappell, 

1
Azhar Iqbal and 

1
Derek Abbott 

 
1School of Electrical and Electronic Engineering,  

Faculty of Engineering, Computer and Mathematical Sciences, 

University of Adelaide, Adelaide, SA 5005, Australia 
2Applied Cognitive Neuroscience Research Unit, 

Griffith Health Institute, Griffith University, Queensland, 4111, Australia 
 

ABSTRACT 

We calculate the Newtonian gravitational potential and field of a cubic, homogeneous asteroid and we apply it 
to the orbit of possible satellites. Large astronomical objects such as stars or planets, naturally tend to form 
spherical shapes due to the dominance of the gravitational forces, but as a thought experiment, we consider the 
properties of a planet in the form of a perfect cube. We investigate the formation of stable orbits around such 
cubic objects, for the case of a static as well as a rotating cube employing the method of Poincare sections. The 
calculation of the gravitational field around non-spherical objects has a significant role in space missions to 
investigate asteroid belt objects that require calculating orbits around a large non-spherical mass. The 
calculation of such non-spherical fields also has relevance in identifying deposits or beds of ores inside the 
Earth, by measuring gravitational anomalies. 
 
Keywords: Gravitational Field, Cube, Satellite Orbits, Poincare Sections 

1. INTRODUCTION 

Much work has now been carried out in calculating 
the gravitational field around cuboid objects and so we 
investigate in this study, the nature of the gravitational 
field and satellite orbits around a hypothetical cubic 
Earth-size planet. Plato, in the Timaeus, links what he 
considers the four basic elements, fire, air, water and 
earth, with the four regular solids, using the tetrahedron 
to represent fire, the octahedron to represent air, the 
icosahedron to represent water and the cube to represent 
earth. Taking Plato’s idea literally, we might imagine the 
Earth in the form of a perfect cube. We can then calculate 
the gravitational field around this object, the process being 
simplified by the simple endpoints needed when 
integrating over a right rectangular prism, assuming 
Newton’s classical law of gravitation. The equipotentials 
of the field will give us, for example, the shape of lakes 
that would form on the face of such a cube. The concept of 
cubical planets is in fact not new, as in 1884 the Swiss 
astronomer Arndt claimed to have discovered a cubical 
planet orbiting beyond the orbit of Neptune, though 
unfortunately the discovery was never verified (Vankirk, 

1885). The appearance of cubic planets in our universe 
may appear extremely improbable, however if gravity 
acted over the L

∞
 = maxi=1…3|xi| metric rather than the 

usual Euclidean metric then cubic planets would naturally 
form under the force of gravity. 

The gravitational field of a cube was apparently first 

calculated in (MacMillan, 1958) and later extended to 

cuboid masses (Nagy, 1966; Mufti, 2006a), including 

varying density (Garcia-Abdeslem, 2005; Hansen, 

1999) and also for general polyhedra (Paul, 1974; 

Coggon, 1976), as well as for a range of simpler planar 

objects such as straight line segments as well as disks and 

annular shapes (Riaguas et al., 1999; 2001; Azevedo 

and Ontaneda, 2007; Azevedo et al., 2005; 

Fukushima, 2010; Alberti and Vidal, 2007; Blesa, 

2005; Gutierrez-Romero et al., 2004; Palacian et al., 

2006; Najid and Elourabi, 2012; Najid et al., 2012; 

Iorio, 2007; 2012). These results were found to have 

application in the calculation of the gravitational 

anomalies on the Earth (Mufti, 2006b) and the 

slowdown of the Earth’s rotation rate due to tidal drag 

(Celnikier, 1990). Further investigations explored the 

nature of the satellite orbits that would form around a 
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static cube (Liu et al., 2011a; Werner, 1994), as well as for 

rotating cubes (Liu et al., 2011b) using simulations and 

the method of Poincare sections (Liu et al., 2011a; 

Scheeres et al., 2000). These preliminary investigations 

of orbits around cubic objects are of significance as they can 

be considered the first step towards an analysis of orbits 

around more general shaped bodies. These investigations, 

for example, have application to future missions to 

investigate asteroids, where orbits need to be calculated 

around rotating non-spherical objects (Liu et al., 2011a; 

Werner and Scheeres, 1996; Michalodimitrakis and 

Bozis, 1985; Liu et al., 2011b; Scheeres et al., 1998; 

1996; Yu and Baoyin, 2012a; 2012b; 2012c). 

In this study we firstly produce a calculation for the 

field of a perfect cube or rectangular solid of uniform 

density, with which we then investigate the formation of 

stable orbits around such objects using the method of 

Poincare sections, before concluding with some light-

hearted remarks regarding the nature of life on a 

hypothetical cubic planet.  

1.1. Analysis 

1.1.1. Gravitational Potential of a Cube 

We first seek the Newtonian gravitational potential of 

a rectangular solid of uniform density ρ with Newton's 

universal gravitational constant G. We suppose the 

rectangular solid has a length 2L, breadth 2B and depth 

2D, oriented along the x, y, z axes respectively, centered 

on the origin, then we have the potential Equation 1: 
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where, we made the substitution, x = x'-X, y = y'-Y and z 

= z'-Z and completed the integral over the z coordinate. 

Next, integrating over the y variable and using 
2 2 2r x y z= + + , we find Equation 2: 
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and with the integral over x, we achieve our final 

result: 
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using x1 = x, x2 = y, x3 = z and D1 = L,D2 = B,D3 = D we 

can write Equation 4: 
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For the gravitational potential of a right rectangular 

prism mass, where v = x1x2x3. The pairs of log and 

arctan terms combine to produce the expected 
1

r
falloff 

in gravitational potential at large distances. For example, 

for a 2×2×2 m
3
 cube, with Gρ = 1, as x→ ∞, yz ln (x+r)-

2x

2
arctan 

yz 8

xr r
→− , as expected for a point source. 

In order to reveal the equipotentials around this 

object, we can imagine a very low density fluid being 

added to a face of a cube and by plotting Equation (3) at 

a constant potential, we find a lake as shown in Fig. 1. A 

perfect circle is shown for comparison and we can see 

how the water is pulled up towards the corners due to the 

extra mass present there. 

The surface of the lake, for someone boating on the 

surface, will be approximately spherical in shape, as it is 

for a large lake upon the Earth, as is also shown in Fig. 

1, found by plotting Equation (3) at a constant potential 

in three dimensions. 

1.2. Gravitational Field 

We calculate the gravitational field vectors from 

Equation 5: 
 

1 2 3

V V V
g V e e e

x y z

 ∂ ∂ ∂
= −∇ = − + + ∂ ∂ ∂ 

r
  (5) 
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Fig. 1. A lake formed on the surface of a cube. As expected, the edge of the lake is ‘pulled up’ towards the corners, due to the extra 

mass present there, but forming a nearly spherical surface 
 

The field vector in the x direction gx =−
v

x

∂

∂
, can be 

deduced from Equation (2), before the last integral is 

calculated and hence by the fundamental theorem of 

calculus we find Equation 6: 
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and from symmetry we can also easily deduce the field 

strengths in the y and z directions, giving the field 

strength vector 3

i 1 i ig g e==∑r
, where Equation 7: 
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for distinct i, j, k, where ei are the unit vectors for the x, 

y, z coordinate system. 

If we look at the changing direction of the field as 

we move across a face, then we observe that the field 

vector only points towards the center of the cube at the 

center of each face, at the corners and at the center of 

each edge, which could also be deduced by symmetry 

arguments, refer Fig. 2. 

1.3. Orbits Around the Cube 

Could a moon or satellite form a stable orbit around 

such a cubic planet? We notice that there is a slightly 

greater gravitational force of attraction over the 

corners of the cube and hence an orbiting satellite will 

suffer significant perturbation in these areas, refer 

Fig. 3. A cube has three symmetry planes parallel to 

its faces, six symmetry planes in the diagonal plane and 

four asymmetry planes that contain the regular 

hexagonal cross section. It has been shown (Liu et al., 

2011a), that periodic orbits can form in all three cases, 

although only planar-type orbits form when orbiting 

around the axis of symmetry, that is parallel to the 

faces or diagonally across the corners. 

If we take the planar satellite orbits, around the 

faces and the centre of the edges, we produce the 

orbital Equation 8: 

 

  x yx g , y g= =&& &&   (8) 

 

Solving this equation numerically for the specific case, 

of a satellite orbiting a cube with a side length equal to the 

diameter of the Earth, with an initial height of three Earth 

radii moving in the positive x direction with a velocity of 

3.63 km s
−1

 gives the orbit shown in Fig. 4. 

We find an orbital period of approximately 4.8 h and 

due to the interaction over the corners, the orbit is 

distorted from a perfect ellipse, creating a fairly rapid 

counterclockwise precession of the successive apogees 

as may also be seen in Fig. 4. The orbit does not close 

after the first orbit, but provided the precession amount 

is a rational fraction of the orbit, the orbit will 

eventually close. 
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Fig. 2. The field through a cube sliced in half through the faces. We can observe the slight distortion of the field lines between the 

edges and the center of each face 

 

 
 
Fig. 3. The equipotential around the equator of the cube. Notice how the field is slightly stronger over the corners, indicated by the 

equipotential being shifted outwards compared to a perfect circle. When comparing the gravitational potential of a cube to a 

sphere of the same mass, because the sphere is a more compact object we find a deeper potential well, though the two 

potentials converge at larger distances as expected 
 

Bertrand’s theorem from classical mechanics states 
that ‘The only central forces that result in closed orbits for 
all bound particles are the inverse-square law and Hooke’s 
law.’ (Goldstein et al., 2002) Due to the presence of a 
cuboid mass distribution the force field felt by the satellite 
is not inverse square and so we would not expect closed 
orbits. Alternatively, the potential of a cubic distribution 
of matter inside a cube can be expanded in a series of 
multipoles, that is, in a series r

-k
, where k = 1,2,3…., 

which implies a precession of the perihelion. 
By simulating a sequence of orbits of a satellite 

forwards in time, the Poincare section can be obtained by 

plotting (x, x& ) as the particle crosses the x-axis. This 
procedure may be repeated for different initial condition 
of the satellite though with the same value for the 
satellite energy, as shown in Fig. 5. Hence this method is 
useful when seeking to determine a stable orbit trajectory 
for a satellite of a given energy. 

If we now investigate a satellite orbiting a rotating 
cube (Liu et al., 2011b) in the same direction as the cube 
rotation we find quite irregular orbits due to the significant 
perturbation over the corners of the cube when the satellite 
is near perigee that deflects the satellites orbit at seemingly 
irregular intervals (due to the differential rotation periods). 
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Fig. 4. A satellite orbiting around the equator of a static cube with a side length equal to the diameter of the Earth. Beginning with an 

satellite orbital radius of three Earth radii and a velocity of 3.63 km s−1, we find a period of approximately 4.8 h, but with an 

orbit that precesses fairly rapidly, as shown by the counterclockwise movement of successive apogees 

 

 

 
Fig. 5. The Poincare section, plotting the x coordinate (when y = 0) against its velocity in the x direction, for satellites around the 

unit cube showing a closed orbit for this particular satellite energy at approximately five units 
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Fig. 6. Orbits around a cube rotating with a 10 h. day, with a 4.8 h. satellite orbit, close to a 2:1 resonance. With this configuration 

we find that the satellite rapidly acquires energy, colliding with the cube near the end of the eighth orbit as shown. From the 

graph of energy gain, we can see that by the 8th orbit the satellite has a nearly 17% energy gain at perigee 

 

That is, the stable orbits apparent on the Poincare 

section in Fig. 5, will now be deflected rhythmically from 

these positions, making orbits less stable. For example, with 

a cube rotation forming a 10 h day, so that the period is 

approximately double the satellite period of 4.8 h, in order 

to highlight any resonance effects, then we find in the 8th 

orbit that the satellite now collides with the face of the cube, 

as shown in Fig. 6. 

The satellite picks up energy through the well known 

slingshot effect, as can be seen in Fig. 6. This energy is 

being extracted from the cube, however as the satellite 

periodically goes out of resonance with the cube, the 

energy will be returned to the cube, so that the energy of 

the combined system is constant. It is not easily visible 

on Fig. 6 but the apogee of the satellite is in fact 

increasing by a few percent that reflects the energy gain. 

As others have already discussed, a second planar 

configuration is possible with orbits diagonally over the 

corners of the cube, but if we allow more general orbits 

not aligned along these axes of symmetry then the 

orbits take on a more complex three-dimensional nature 

(Liu et al., 2011b). 

2. CONCLUSION 

We review in this study the nature of the gravitational 

field and satellite orbits that would form around a 

hypothetical cubic Earth-sized planet. 

Calculating the gravitational potential and vector 

field for a cubic mass, we firstly find the shape of lakes 

that would form on the surface of such a cubic mass, 

shown in Fig 1. We then examine the possibility of 

stable orbits around such an object. Solving orbital 

equations numerically we find that the orbits are not 

closed in general but precess fairly rapidly due to 

interactions of the satellites with the mass in the corners 

of the cube. However by plotting the Poincare section for 

the satellite, as shown in Fig. 5, we can identify the 

initial conditions which will form a single closed orbit 

for a given satellite energy. Orbits are then calculated for 

the case where the cube is allowed to rotate, which 

produced resonance effects between the cube rotation and 

the satellite orbital period, causing previously stable satellite 

orbits to now crash into the cube, as shown in Fig. 6. 

As an extension to our analysis involving satellite 

orbits under the assumption of Newtonian gravity, we 

could also calculate the general relativistic corrections 

due to the use of Einstein's theory of gravity. We 

expect, though, that these effects will only become 

significant for special situations, such as those involving 

high orbital speeds or a high rotation rate for the central 

body producing the Lense-Thirring effect, for example 

(Iorio et al., 2011; Iorio, 2005; Misner et al., 1973). As a 

further extension we might also consider the calculation 

of the energy levels determined from the Schrodinger 

equation, utilizing the classical cube potential V, given 

by 2h
V | E |

2m

− ∇ + ψ = ψ 
 

. 

Consider now a hypothetical cube 

12,000×12,000×12,000 km
3
, approximately the size of 
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the Earth, with the same volume of water and 

atmosphere as found on the Earth, then we would 

approximately half fill each face with water and have an 

atmosphere approximately 100 km thick similar to what 

is assumed for the atmosphere on the Earth before 

reaching space. In this case then the corners and the 

edges of the cube, would be like vast mountain ranges 

several thousand km high, with their tips extending out 

into free space. It would therefore be very difficult to 

cross these mountain ranges and hence we would have 

six nearly independent habitable zones on each face. 

There would presumably be permanent snow on the sides 

of these vast mountain ranges and people would live 

around the edges of the oceans on each face in a fairly 

narrow habitable zone only about 100 km wide as the 

cube faces rise rapidly through the atmosphere. 

Unfortunately climbing the approximately 3000 km high 

corners does not result in an improved view because the 

surface is still fiat in any observed direction. However 

the corners, being in free space, would be very suitable 

for launching satellites. One would also have 

approximately 2 6000× km of downhill ski run from 

each corner, down to the centre of each face. In order to 

have a day night cycle we would also need the cube to be 

rotating. The sun would rise almost instantaneously over 

the face of a cube however, so that each face would need 

to be a single time zone and thus the cube as a whole 

would require four separate time zones, assuming the 

planet was rotating about the centre of an upper and 

lower face. The north and south faces in this case would 

be permanently frozen as they would receive no sunlight 

except that striking the oceans extending away from the 

surface of the cube, so there might be a permanent pool 

of liquid water at the two poles. Launching low orbit 

satellites around this cube needs special care in order to 

avoid certain orbital resonances that would create 

significant variations in the orbit (Berezovsky, 2011). 
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