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Abstract: Atherosclerosis is a complex disease that has garnered 

significant attention from researchers studying its various aspects. Its 

pathogenesis involves a wide array of cellular and molecular components, 

as well as crucial mechanisms and processes crucial for cellular and 

organismal functioning. Atherosclerosis is considered a chronic 

inflammatory disease characterized by disrupted lipid metabolism, 

oxidative stress, and immune response. Apoptosis, a fundamental cellular 

process essential for normal cell and organismal function, has also been 

implicated in numerous pathological conditions. In this review, we aim to 

compile and present data on the role of apoptosis in various cell types 

during the progression of atherosclerosis. By examining the involvement 

of apoptosis in atherosclerosis, we hope to shed light on the intricate interplay 

between cell death and disease pathogenesis. Understanding the specific 

mechanisms and consequences of apoptosis in atherosclerosis can contribute 

to the development of targeted therapeutic strategies and interventions for this 

debilitating condition. 
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Introduction 

Cardiovascular Diseases (CVD) are the leading cause 

of morbidity and mortality worldwide. Atherosclerosis, 

the process of vascular wall thickening and aging, is a 

major contributor to Coronary Heart Disease (CHD), 

ischemic stroke, and peripheral artery diseases. 

The objective of this review is to examine the current 

understanding of the pathogenesis of atherosclerosis, with 

a focus on the role of endothelial cells, macrophages, and 

vascular smooth muscle cells and their contribution to 

plaque formation and progression.  

Moreover, the review endeavors to uncover 

deficiencies in current understanding and to unearth 

promising new therapeutic avenues for preventing and 

treating atherosclerosis. 

Current therapeutic approaches for patients include a 

combination of statins, aspirin, β-receptor inhibitors, and 

angiotensin-converting enzyme inhibitors. However, 

despite these interventions, there remains a significant 

70-80% risk of experiencing a serious acute 

Cardiovascular (CV) event. Current treatments primarily 

target lowering arterial hypertension and LDL cholesterol 

levels (Olvera Lopez et al., 2023; Brophy et al., 2017), often 

overlooking inflammation and other factors contributing 

to cell death in arterial walls, driving atherosclerosis. 

Atherosclerosis develops in areas of low shear stress and 

disrupted blood flow, where endothelial cells become pro-

inflammatory, leading to plaque formation (Sobenin et al., 

2013; Nigro et al., 2011). Hyperlipidemia exacerbates this 

process by modifying LDL particles, triggering the 

expression of MCP-1 and VCAM-1. 
Endothelial cells facilitate monocyte adhesion and 

migration into the subendothelium, where they become 
macrophages, contributing to plaque formation 
(Sobenin et al., 2012; Linton et al., 2019a). 
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Macrophages, foam cells, and vascular smooth muscle 
cells all play critical roles in plaque development and 
vulnerability (Chistiakov et al., 2015b; McEver, 2015). 

This review aims to provide a comprehensive analysis 

of the pathogenesis of atherosclerosis, emphasizing the 
roles of endothelial cells, macrophages, and vascular 
smooth muscle cells. By identifying gaps in current 
knowledge and potential novel therapeutic targets, this 
review aims to contribute to the advancement of enhanced 
strategies for averting and managing atherosclerosis. 

Methods 
 
1. Study selection: A thorough search of the literature 

will target studies on atherosclerosis pathogenesis, 

emphasizing vascular SMCs, macrophages, and 

endothelial cells (Olvera Lopez et al., 2023). 

Databases such as PubMed, Scopus, and Web of 

Science will be searched to ensure comprehensive 

coverage of the literature. The search will be limited 

to articles published in English. The search strategy 

will include keywords and controlled vocabulary 
terms related to atherosclerosis, endothelial cells, 

macrophages, and vascular SMCs 

2. Data sources: PubMed, Scopus, Web of science 

3. Search Strategy: An example search strategy for 

PubMed is as follows: "Atherosclerosis" OR 

"atherosclerotic plaque" OR "coronary heart disease" 

OR "ischemic stroke" OR "peripheral artery 

diseases" AND "endothelial cells" OR "endothelium" 

OR "macrophages" OR "foam cells" OR "vascular 

smooth muscle cells" OR "smooth muscle cells" 

AND "pathogenesis" OR "plaque formation" OR 

"plaque progression" OR "inflammation" OR "cell 
death" OR "therapeutic targets" 

4. Inclusion criteria: Studies that investigate the 

pathogenesis of atherosclerosis, specifically focusing 

on endothelial cells, macrophages, and vascular 

SMCs. Experimental studies (in vitro or in vivo), 

clinical studies and review articles will be 

considered. Studies published in English 

5. Exclusion criteria: Studies not relevant to the 

atherosclerosis pathogenesis or not specifically focusing 

on endothelial cells, macrophages, or vascular smooth 

muscle cells. Studies with inadequate methodology or 
insufficient data. Studies not published in English 

 

Apoptosis as a Process 

Cellular demise through apoptosis is orchestrated by a 

group of cysteine proteases referred to as caspases, regulating 

programmed cell death. These activated caspases trigger 
apoptosis, eliminating surplus or impaired cells from the 

organism. Apoptosis unfolds through three core routes: The 

extrinsic pathway, the intrinsic pathway, and the 

Endoplasmic Reticulum (ER) stress-linked pathway. 

 
 
Fig. 1: Intrinsic and extrinsic pathways of apoptosis 

 

These pathways can lead to apoptosis together or 

independently (Bertheloot et al., 2021). Figure 1, we 

provide a schematic illustration of extrinsic and intrinsic 

apoptotic pathways. 

The Extrinsic Apoptotic Pathway  

The extrinsic apoptotic pathway, also known as the 

Death Receptor (DRs) pathway, involves DRs binding to 

specific ligands on the cell surface. DRs, including 

TNFR1, Fas, and TRAIL-R1/2, recruit FADD, leading to 
caspase-8 activation and subsequent apoptosis. Caspase-8 

activates caspases 3/6/7 in type I cells and triggers Bid 

cleavage in type II cells, leading to mitochondrial changes 

and apoptosis (Green and Llambi, 2015; Pobezinskaya and 

Liu, 2012; Parrish et al., 2013; Huang et al., 2016). 

The Intrinsic Apoptotic Pathway  

The intrinsic apoptotic pathway may be triggered by 

various factors, such as lack of nutrients, lack of growth 

factors, ionizing radiation, Reactive Oxygen Species 
(ROS), and cytotoxicity (Hekimi et al., 2016).  

These elements trigger Mitochondrial Outer 

Membrane Permeabilization (MOMP), leading to 

cytochrome c release. Cytochrome c binds to Apaf-1, 

forming an apoptosome complex, activating caspase-9, 

which activates caspase-3/6/7, causing apoptosis. Pro-

apoptotic proteins Smac/DIABLO and Omi/HtrA2 inhibit 

XIAP, promoting apoptosis. Bcl-2 family proteins 

regulate mitochondrial permeability, with Bax, Bak, and 

Bok inducing MOMP, releasing apoptotic factors and 

activating caspases. 

The Endoplasmic Reticulum Stress-Induced Apoptosis  

Endoplasmic reticulum stress occurs when unfolded or 

misfolded proteins accumulate as a result of diverse 

stressors like oxygen deprivation, nutrient deprivation, 

oxidative stress, and fluctuations in temperature. 

In response to ER stress, cells activate the Unfolded 

Protein Response (UPR) to address misfolded proteins 
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and maintain ER balance. UPR is regulated by three 

sensors on the ER membrane: IRE1, PERK, and ATF6 

(Sano and Reed, 2013). 

IRE1 Pathway  

IRE1α and IRE1ß are two types of IRE1 in mammals. 

IRE1α activates pro-apoptotic signaling during ER stress 

(Riaz et al., 2020), interacting with Bax and Bak Hetz et al., 

2006), phosphorylating Bax via JNK and p38 MAPK to 

induce mitochondrial apoptosis (Darling and Cook, 2014; 

Chistiakov et al., 2015a) and interacting with procaspase-

12 to promote apoptosis (Junjappa et al., 2018). 

Additionally, IRE1α inhibits the adaptive response and 

triggers apoptosis through RIDD. It degrades microRNAs 

suppressing caspase-2 mRNA translation, increasing 
caspase-2 expression (Lopez-Cruzan et al., 2016; Brown-

Suedel and Bouchier-Hayes, 2020). 

PERK Pathway  

During prolonged ER stress, activated PERK 

phosphorylates and deactivates eIF2α. This promotes ATF4 

atranslation, inducing CHOP expression (Rozpedek et al., 

2016; Rajesh et al., 2015). CHOP upregulates Bax and 

Bak and downregulates anti-apoptotic proteins, leading to 

apoptosis via the intrinsic apoptotic pathway Redza-

Dutordoir and Averill-Bates, 2016). CHOP also induces 

DR5-mediated apoptosis and ERO1α expression, 

generating ROS (Hu et al., 2019). CHOP triggers ER 

calcium release, inducing Fas receptor expression through 

CaMKII and JNK activation, promoting mitochondrial 

apoptosis (Galluzzi et al., 2018). 

ATF6 Pathway 

In response to acute and prolonged stress, ATF6 

translocates from the ER to the Golgi apparatus. There, it 
undergoes cleavage by S1P/2P proteases, yielding 

cytosolic fragments. This process ultimately leads to the 

elevation of CHOP levels, which promotes cellular demise 

(Hillary and FitzGerald, 2018; Sharma et al., 2019). 

Apoptosis in Atherosclerosis 

Apoptosis plays an important role in the development 

of atherosclerosis Guevara et al., 2001). Various factors 
like oxidative stress, hypoxia, interferon-γ, and 

cholesterol overload induce apoptosis in atherosclerotic 

plaques, affecting cell types such as endothelial cells, 

SMCs, T-lymphocytes, and macrophages. Endothelial 

cell death can lead to plaque erosion and thrombosis 

(Stark and Massberg, 2021; Soldatov et al., 2018a-b). In 

SMCs, apoptosis may destabilize the fibrous cap, causing 

rupture. Macrophages, comprising over 40% of deceased 

cells in plaques, play a significant role. Studies on 

macrophage apoptosis regulation in atherosclerosis yield 

conflicting findings. Some suggest it hampers plaque 

growth, while others propose it contributes to necrotic 

core formation and atherosclerosis. 

C/EBP homologous protein knockout (−/−) mice show 

reduced macrophage apoptosis under cholesterol-induced 

stress, leading to less necrotic core formation and lower 
lesion development in ApoE-/-and LDL receptor-/- 

backgrounds (Zhou et al., 2015; Sobenin et al., 2014a). 

Conversely, ApoE-/-mice with heterozygosity for a 

cholesterol trafficking protein have decreased 

macrophage apoptosis, less necrotic tissue, and lower 

atherosclerosis (Zhou et al., 2015; Sobenin et al., 2014b). 

This highlights the varying effects of macrophage apoptosis 

at different plaque stages (Gauthier et al., 1999; Babaev et al., 

1992; Poon et al., 2014). Apoptotic intimal cells in 

atherosclerotic plaques serve as a source of tissue factor, 

promoting coagulation cascade activation. Unstable 
plaques, particularly in macrophage-rich areas near the 

necrotic core, exhibit higher tissue factor levels, 

correlating with increased thrombogenicity Linton et al., 

2016). Additionally, plaques in diabetic patients contain 

abundant apoptotic debris (Zifkos et al., 2021; Van Vré et al., 

2012). Macrophage apoptosis disrupts cellular clearance 

and exacerbates inflammation during plaque 

development, while SMC apoptosis compromises plaque 

integrity, potentially leading to rupture. The role of 

endothelial cell apoptosis in atherogenesis remains 

unclear (Rayner, 2017). 

Apoptosis of VSMCs 

Vascular Smooth Muscle Cells (VSMCs) are integral 

to the medial layer of mature blood vessels, exhibiting 

contractile and synthetic/proliferative phenotypes 

(Bacakova et al., 2018).  

In normal conditions, VSMCs regulate vessel 

elasticity and tone with their contractile phenotype 

(Bacakova et al., 2018). In disease states, they shift to a 

synthetic phenotype, acquiring proliferative and 

migratory capabilities. This transition enables them to 

move to the intima, proliferate, and produce extracellular 

matrix, aiding in fibrous cap formation within 

atherosclerotic plaques (Sorokin et al., 2020). Studies 

suggest that VSMC apoptosis may play a role in 

atherosclerosis development, particularly in 

hypothyroidism (Wang et al., 2014). Furthermore, VSMC 

apoptosis correlates with fibrous cap thinning and plaque 

rupture in advanced atherosclerosis, contributing to 

plaque calcification, medial expansion, degeneration, 

inflammation, and stenosis (Harman and Jørgensen, 

2019). Delayed clearance of apoptotic VSMCs results in 

secondary necrosis and Interleukin-1 (IL-1) secretion 

(Beck-Joseph and Lehoux, 2021), stimulating adjacent 

VSMCs to produce proinflammatory cytokines, 

intensifying inflammation and fostering atherosclerosis 

(Beck-Joseph and Lehoux, 2021). 
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Causes of VSMC Apoptosis in Atherosclerosis 

Inflammatory cytokines, oxidized LDL, high NO 
levels, and mechanical damage induce VSMC apoptosis. 

Proinflammatory cytokines like Tumor Necrosis Factor 

(TNFα) from plaque macrophages and Interferon (IFN)-γ 

from T cells sensitize VSMCs to apoptosis via the Fas death 

receptor (CD95), facilitating Fas transport to the cell surface. 

The Fas receptor/Fas Ligand pathway contributes to 

oxLDL-induced VSMC apoptosis in plaques (Grootaert et al., 

2018; Puchenkova et al., 2020). Elevated p53 levels 

induce apoptosis in human plaque VSMCs under low 

serum conditions but not in normal medial VSMCs 

(Mercer et al., 2005). Activated p53 increases sensitivity 

to Fas-mediated apoptosis by upregulating surface Fas 
expression (Mercer et al., 2005). Additionally, VSMCs are 

more susceptible to p53-mediated apoptosis with increased 

proliferation (Cao et al., 2017). Plaque VSMCs exhibit high 

apoptosis rates alongside low proliferation due to 

hypophosphorylated retinoblastoma protein predominance, 

promoting cellular senescence (Tucka et al., 2014). 

Genetic profiling of human atherosclerotic plaques has 

revealed high expression of Death-Associated Protein 

(DAP) kinase in foam cells originating from VSMCs. The 

role of DAP kinases in atherosclerosis remains uncertain. 

VSMCs in human fatty streaks show elevated expression 
of the pro-apoptotic Bax gene, heightening their 

susceptibility to apoptosis via the mitochondrial pathway 

(Sobenin et al., 2014b; Chistiakov et al., 2014). 

Consequences of VSMC Apoptosis in Atherosclerosis  

VSMC apoptosis in advanced plaques heightens 

plaque vulnerability, stenosis, and medial degeneration. 

Additionally, it fosters platelet thrombogenicity through 

the exposure of phosphatidylserine on apoptotic cell 

surfaces, which can trigger thrombin formation and 

activate the coagulation cascade (Osonoi et al., 2018). 

Apoptotic VSMC remnants within plaques act as matrix 

carriers and potential sites for calcification, contributing 

to plaque microcalcification. These microcalcifications 

correlate with increased plaque progression and may raise 

the risk of plaque rupture by inducing biomechanical 

stress on the fibrous cap (Shioi and Ikari, 2018).  

While human VSMCs possess strong phagocytic 

abilities for apoptotic VSMCs, hyperlipidemia reduces 

their clearance efficiency. Insufficient removal of 

apoptotic VSMCs leads to secondary necrosis and 

subsequent interleukin-1-driven inflammation, worsening 
plaque inflammation. 

Pharmacological Modulation of Apoptosis in VSMCs  

Given the significance of caspases in apoptosis, efforts 

have focused on inhibiting these proteases to mitigate 

apoptotic cell death and stabilize atherosclerotic plaques. 

Application of the broad caspase inhibitor zVAD-fmk 

topically reduces VSMC apoptosis and neointimal 

hyperplasia. However, VSMCs lacking caspase-3 exhibit 

heightened vulnerability to necrosis. Notably, caspase-3 

deletion in mice results in primary necrosis and plaque 

enlargement. Hence, suppressing apoptosis appears 
counterproductive in atherosclerosis mitigation 

(Grootaert et al., 2016; Myasoedova et al., 2016). 

Apoptosis of Macrophages 

Researchers posit that macrophage apoptosis is 

prevalent throughout atherosclerosis and exhibits varied 

effects based on lesion progression. In the initial stages, 
macrophage apoptosis demonstrates an anti-

atherosclerotic impact. Studies show that Bax deficiency 

reduces macrophage apoptosis, promoting early 

atherosclerotic lesions in LDL Receptor-Null (LDLR-/-) 

mice. Similarly, the absence of AIM/Spα/Api6, an apoptosis-

suppressing factor, increases macrophage survival, impeding 

lesion development in LDLR-/-mice (Bian et al., 2020; 

Chistiakov et al., 2012; Linton et al., 2019b). 

Additionally, IKKα loss in macrophages inhibits 

Akt phosphorylation, boosting macrophage apoptosis 

and reducing early atherosclerosis in LDLR-/-mice 

(Babaev et al., 2016). Nevertheless, with the 
atherosclerosis development, macrophage apoptosis is the 

main factor that leads to the formation of a necrotic 

nucleus of an atherosclerotic plaque. Since the body's 

ability to purify apoptotic cells decreases, apoptotic 

macrophages contribute to the storage of debris and 

secondary necrosis (Seimon and Tabas, 2009). The 

necrotic core releases matrix metalloproteinase, causing 

extracellular matrix breakdown, VSMC apoptosis, and 

fibrous cap thinning, increasing plaque instability. Loss of 

PDZK1 in macrophages induces apoptosis, impeding 

apoptotic cell clearance and fostering necrotic core 
formation. In advanced atherosclerosis, ER stress prompts 

macrophage apoptosis via the CHOP-Bash pathway, leading 

to plaque rupture (Yu et al., 2018; Tsukano et al., 2010). 

Endothelial Cell Death in Atherosclerosis  

Endothelial cells lining blood vessels play a crucial 

role in atherosclerosis initiation and progression by 

regulating molecular and cellular passage between 
circulation and tissues. Disruption of endothelial barrier 

function due to apoptosis triggers leukocyte infiltration 

and LDL accumulation, promoting atherosclerosis 

(Sandoo et al., 2010; Sun et al., 2020; Summerhill et al., 

2019). Endothelial cell apoptosis elevates procoagulant 

properties, potentially leading to vessel blockage and 

embolism, causing ischemic events (Wang et al., 2022). 

Statin therapy, known for its cardiovascular benefits, 

preserves endothelial cell viability by inhibiting 

isoprenoid synthesis and modulating various cellular 

processes, including apoptosis (Mansouri et al., 2022; 
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Ward et al., 2019). Studies indicate statins prevent 

endothelial cell apoptosis by altering BCL-2 and BAX 

expression, reducing oxidative stress, and suppressing 

pro-apoptotic signaling (Wang et al., 2020; Wood et al., 

2013; Li et al., 2015; Bao et al., 2010). Understanding 
endothelial cell death mechanisms in atherosclerosis is 

vital, considering their multifaceted contribution to 

disease development. 

Induction of Endothelial Cell Apoptosis by LDL 

Atherosclerosis primarily stems from elevated levels 

of LDL in plasma, signifying heightened coronary risk. 

Various modifications render LDL atherogenic, 

facilitating its uptake by macrophage scavenger receptors 

and fostering macrophage foam cell formation (Li et al., 
2021). Notably, oxLDL induces endothelial cell apoptosis 

either through Fas-ligand-dependent pathways or ROS 

generation, exacerbating endothelial damage and promoting 

atherosclerotic complications (Salvayre et al., 2002). 

Induction of Endothelial Cell Apoptosis by Elevated 

Blood Glucose  

Hyperglycemia in diabetes induces endothelial cell 

apoptosis (Giri et al., 2018). High glucose levels trigger 

apoptosis in Human Umbilical Vein Endothelial Cells 

(HUVECs) via PI3K/AKT signaling and ROS 

overproduction (Zhang et al., 2021; Yuan et al., 2019). 

Pharmacological intervention for diabetes, like metformin, 

can mitigate endothelial cell death induced by 

hyperglycemia (Ganesan et al., 2023; Detaille et al., 2005). 

Induction of Endothelial Cell Apoptosis by 

Decreased Nitric Oxide and Oxidative Stress  

The endothelium plays a vital role in regulating 

vascular tone through the synthesis and release of Nitric 

Oxide (NO) (Förstermann and Sessa, 2012). NO, 

produced by endothelial NO Synthase (eNOS) in response 

to shear stress induced by blood flow, facilitates 

vasodilation, inhibits platelet aggregation, and suppresses 

inflammation (Förstermann and Sessa, 2012). Moreover, 

NO helps maintain endothelial cell viability by inhibiting 

apoptosis through various mechanisms (Francis et al., 

2010). Reduction in NO levels, often due to decreased 

eNOS activity or increased NO inactivation by ROS, 

leads to endothelial dysfunction (Widlansky and 

Gutterman, 2011). ROS, generated by various cells 

involved in atherosclerosis, contributes to endothelial 

dysfunction and can induce endothelial cell apoptosis 

(Widlansky and Gutterman, 2011). Pro-atherosclerotic 

factors such as ox-LDL, high blood glucose, and 

inflammatory mediators like TNFα further promote ROS 

production by endothelial cells, potentially initiating 

atherogenesis (Yuan et al., 2019). 

Induction of Endothelial Cell Apoptosis by Low 

Shear Stress  

There is a significant relationship between the shear stress 

created by blood flow and endothelial function.  

In regions of High Shear Stress (HSS), endothelial 

cells maintain vascular homeostasis (Zaragoza et al., 

2012). However, turbulent flow in areas of arterial 

branching leads to Low Shear Stress (LSS), causing 

endothelial dysfunction and apoptosis (Marchio et al., 

2019). HSS protects endothelial cells from apoptosis 

through various mechanisms, including reducing Fas 
receptor regulation and activating pro-survival signaling 

pathways (Marchio et al., 2019). Conversely, LSS 

induces endothelial cell apoptosis by promoting 

mitochondrial dysfunction and increasing ROS levels 

(Redza-Dutordoir and Averill-Bates, 2016). The 

development of atherosclerotic plaques predominantly 

occurs in regions exposed to LSS, suggesting that 

endothelial cell apoptosis due to LSS may initiate 

atherosclerosis (Wu et al., 2017). LSS also contributes to 

plaque rupture and thrombosis, particularly in 

downstream areas (Otsuka et al., 2016). Endothelial cell 

apoptosis downstream from atherosclerotic plaques 
exposes necrotic remnants, triggering platelet activation 

and blood clot formation, leading to cardiovascular events 

(Khandkar et al., 2021). 

Conclusion 

Atherosclerosis, a complex inflammatory process 

characterized by increased apoptosis and inadequate 
removal of dead cells, necessitates a comprehensive 

approach for effective treatment. Unfortunately, current 

clinical approaches often overlook the crucial role of 

inflammation and cell death in atherosclerotic lesions. 

This review focuses on apoptosis, the programmed 

cell death, that occurs in various cell types within the 

plaque. It explores the general mechanisms of apoptosis 

and consolidates our understanding of its impact on 

plaque development and regression. 

Early lesions experience apoptosis, resulting in a 

reduction in plaque size. Yet, in advanced stages, 

apoptosis results in necrotic core formation, heightening 

plaque vulnerability. Moreover, macrophage-mediated 

clearance of apoptotic cells contributes to plaque 

regression by initiating anti-inflammatory signaling and 

enhancing cholesterol efflux. Hence, enhancing the 
process of clearing apoptotic cells, called efferocytosis, 

holds tremendous therapeutic potential (May and 

Harrison, 2013; Moser and Chun, 2016). 

Additionally, targeting Reactive Oxygen Species 

(ROS) through antioxidant therapy emerges as another 

promising approach. ROS are linked to both inflammatory 

signaling within atherosclerotic plaques and Endoplasmic 

Reticulum (ER) stress felt by macrophages, ECs, and 
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VSMCs. Therefore, anti-ROS agents like vitamins C and 

E could alleviate plaque progression, inflammation, and 

cell death. However, the conflicting results from studies 

in humans underscore the need for further research to 

standardize dosage conditions, assess different forms of 
vitamins, and consider variations within the test groups. 

Moreover, understanding the intricate pathways 

governing inflammation, cell death, and lipid metabolism 

can reveal new therapeutic targets. These pathways include 

cholesterol metabolism, cytokine production, ER stress, 

autophagy (the recycling of damaged organelles and lipids), 

and the modulation of "don't eat me" and "eat me" signals 

and their respective receptors. Exploring these pathways can 

lead to the identification of molecules for developing 

innovative and effective treatments for atherosclerosis. 

By unraveling the underlying mechanisms of cell 

death, inflammation, and apoptotic cell clearance within 

atherosclerotic plaques, we can pave the way for novel 

therapeutic strategies to combat cardiovascular disease. 
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