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Abstract: Improving Quality of Service (QoS) in an eUTRAN LTE network
is essential to guarantee optimal performance in the face of dynamic
variations in user traffic and radio channel interference. In this context, this
paper explores the use of 4th-order Runge-Kutta differential equations
(RK4) to model and optimize radio resource management, by comparing a
deterministic approach, which assumes stable and predictable traffic, with a
stochastic approach, which incorporates random network fluctuations. The
central problem lies in the difficulty of anticipating and effectively
managing network congestion, affecting resource allocation, bandwidth and
transmission delay. Through a 24 h simulation, the results show that the
deterministic approach predicts a resource allocation of up to 90% at peak
times, a bandwidth occupancy of 80 Mbps and a maximum latency of 120
ms, offering stable but limited management in the face of unforeseen events.
In contrast, the stochastic approach reveals fluctuations of ±5% in resource
allocation, variations of ±10 Mbps in bandwidth and a transmission delay of
up to 130-140 ms, reflecting a better representation of real network
conditions. These results demonstrate that the deterministic approach offers
a predictable view of the network, while the stochastic approach enables
better dynamic adaptation, essential for anticipating congestion and
adjusting resources in real time.

Keywords: 4G/LTE, Quality of Service (QoS), RK4 Differential Equations,
Deterministic vs. Stochastic Approach, LTE Network Congestion, Predictive
Optimization

Introduction
The evolution of mobile networks towards Long

Term Evolution (LTE) technology has led to significant
improvements in Quality of Service (QoS), offering
higher data rates, reduced latency, and better
management of radio resources. However, optimizing
QoS in an evolved Universal Terrestrial Radio Access
Network (eUTRAN) network remains a major challenge
due to dynamic variations in user traffic and interference
inherent in the radio channel. The use of differential
equations to model the evolution of network resources
and transmission performance proves to be a relevant
approach. This study proposes a model based on Runge-
Kutta 4th-order numerical integration (RK4) to analyze
and optimize QoS in an LTE network. Two
complementary approaches are explored: A deterministic
approach, where variations in traffic and interference are
assumed to be constant and predictable, and a stochastic

approach, where these fluctuations are modeled by
random processes reflecting real network dynamics.
Through numerical simulations, we compare these two
methodologies to highlight their respective impacts on
radio resource allocation, bandwidth occupation, and
transmission delay. The results show that while the
deterministic approach provides a stable and predictable
view of the network, it does not consider the vagaries of
user behavior and channel conditions. On the other hand,
the stochastic approach, although more complex to
model, offers a better representation of real-life scenarios
and enables network congestion to be anticipated. The
aim is to propose a dynamic radio resource optimization
strategy that not only improves QoS but also predicts
periods of congestion in order to proactively adjust
resource allocation. This work thus paves the way for
more efficient and adaptive management of LTE
networks, by integrating advanced mathematical models
coupled with simulation techniques for greater resilience
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in the face of traffic fluctuations. In the following, a
review of the literature is presented, with a discussion of
the QoS issue and the evolution of mobile radio
standards and their impact on QoS. In the following, the
RK4 differential system applied to an LTE network will
be developed, whose state variables are the QoS
characteristics to be improved.

Literature Review

The notion of QoS in a mobile network has always
been a problem that planners should solve before
deploying a mobile network. With this in mind,
researchers' work on cell planning in mobile networks
focused on cell coverage according to mobile technology
engineering and to solve this problem two approaches
were proposed for the Second Generation of Mobile
networks (2G-GSM): The first approach, called
Coverage Based Design, consists of minimizing the
number of Base Stations (BTS) to be deployed and
finding their position so that the Signal-to-Interference
Ratio (SIR) received at the mobile terminal is high
enough to satisfy demand (Sherali and Pendyala, 1996).
The second approach, called Demand Based Design,
transforms the minimization problem of the first
approach into a problem of maximizing the assumed
fixed number of base stations (Tutschku, 2002).

In this context, Buddendick et al. (2005) developed
optimization algorithms and models for joint
uplink/downlink planning, controlling the strength of the
Signal-to-Interference Ratio (SIR) of the radio subsystem
of a UMTS network. An evolution of UMTS technology
with Internet Protocol (IP) and its Multi-Protocol Label
Switching (MPLS) mechanisms in 3G mobile networks
enabled Pasandideh & Hilaire (2014) to design a model
to solve the problem of planning an all-IP UMTS
network according to realistic traffic by developing a
local search heuristic. With the advent of Long-Term
Evolution (4G-LTE) technology, mobile networks are
using OFDMA coding schemes in the downlink and SC-
FDMA in the uplink direction driven by HARQ-type
error recovery algorithms and turbo codes (Holma and
Toskala, 2012). This LTE technology allows new
parameters to be considered in the sizing of base stations
in mobile networks; with this in mind, aiming to satisfy
cell coverage Hakim et al. (2016) determine a cell
optimization model based on the spatio-temporal
variation of users and traffic density at specific times of
the day. Other works go even further, proposing the
determination of optimal base station positions through
the appropriate sizing of Tracking Areas (TAs), with the
aim of minimizing the cost of signaling during user
mobility (Safa and Ahmad, 2015). On the other hand,
some authors present a method of dynamically
controlling the power of eNodeBs to optimize coverage
in LTE networks (Chen et al. 2019), which is not the case
for Xu et al. who focus on optimizing capacity and
coverage in LTE-A networks through eNodeB

sectorization and power control techniques (Xu et al.,
2012). Jaloun et al., in 2011, proposed an integer
optimization based on genetic programming developed
by evaluating the signal-to-interference plus noise ratio
(Jaloun et al., 2011). A year later, in 2012, the work of
Lee et al. advocates instead eNodeB scheduling with
interference coordination in LTE networks (Lee et al.,
2012), Finally, Djomadji et al. 2023 designed an
effective machine learning model that takes certain Key
Performance Indicators (KPIs) as input, such as traffic
data, RRC, simultaneous users, etc., for each eNodeB per
hour and per day and accurately predicts the number of
RRC resources required, traffic losses and financial
losses for the mobile network operator (Djomadji et al.,
2023).

This work highlights the importance of QoS in
mobile networks to satisfy user needs and this study
explores the use of Runge-Kutta fourth-order differential
equations to improve the QoS of an LTE network, with
the aim of providing a mathematical answer to this
problem.

Mathematical Model

Quality of Service (QoS) enhancement in an Evolved
Universal Terrestrial Radio Access Network (E-UTRAN)
based on LTE technology can be modeled using Runge-
Kutta 4th-order differential equations (RK4). This
approach can be used to approximate the dynamics of
data flows, queue management, and radio resource
allocation.

A differential equation in the network is of the
following form:

Where:

: represents LTE network status variables such as
radio resource allocation, bandwidth occupation,
transmission delay, etc

: is a function describing the evolution of
resources in the network
Thus, considering radio resource allocation,
bandwidth occupation, and transmission delay as
the QoS variables to be improved, we have:

 Radio resource allocation (%)
 Bandwidth utilization (Mbps)
 Transmission delay (ms)

The system of differential equations representing the
evolution of quality of service (QoS) in an LTE network
as a function of time is:
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Where:

: Radio resource allocation rate (linked to user
demand)

: Radio resource release factor (linked to output
rate)

: Conversion of radio allocation to bandwidth
occupancy
: Bandwidth dissipation factor (related to network

traffic)
: Influence of bandwidth occupancy on delay
: Transmission delay control

In an RK4 simulation, we use the following iteration
to estimate :

With:

Where:

: Simulation time step (accuracy of approximation)
: Initial slope of the differential equation
: Intermediate correction after half a time step
: Second intermediate correction based on 
: Final slope after one full step

 is updated by combining these values with specific
weights to ensure accurate estimation in the LTE
network.

Application of RK4 in an LTE Network

In an eUTRAN network, by applying RK4 to the
differential Eqs. in (2-4), we have the following
differential equations to model the different QoS
variables:

For  (Radio resource allocation):

For  (Bandwidth utilization):

For  (transmission delay variation):

This differential equation model (10-24) enables:

Analyze the dynamics of radio resources in an LTE
network over time (10-14)
Simulate bandwidth and delay variations under
different network loads over time (15-19)
Optimize resource management to improve Quality
of Service (QoS) over time (20-24)

Simulation Hardware and Software

Laptop (i7, 16GB RAM, 1TB SSD) running Linux
(Ubuntu for srsRAN/OpenAirInterface)
Rooted Android 4G smartphone + GNetTrack
Netgear 4G LTE Modem (LB2120)
USB GPS
Python (Jupyter + scikit-learn + matplotlib)
MATLAB R2023a /Simulink

Data Selection
Real LTE data collected via a combination of

network instruments, mobile devices, field tools, and
analytical tools over one day for resource allocation (%),
bandwidth (Mbps), and transmission delay (ms)

Initial Conditions and Input Parameters for LTE
Model Simulation

Condition Initial (t = 0)

The initial values of the state variables (
 must represent an average or

realistic state of the LTE network at start-up :
Total number of eNodeB N = 10NeNB  = 10 (An

urban LTE network with several base stations)

: Initial allocation of radio
resources (%)

: Initial bandwidth
utilization (Mbps)

: Initial transmission delay
(ms)
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Mathematical Model Input Parameters (t = 0)

Radio resource allocation parameters

Radio resource allocation rate (%/s): 
, : Stochastic variable representing the

variability of user traffic and follows a normal
 distribution for fluctuations of 2%

around the mean
Radio resource release factor (%/s): 
(deterministic fixed factor)

Bandwidth occupancy parameters

Conversion of radio allocation to bandwidth
occupancy (Mbps/%): (deterministic

fixed factor)
Bandwidth dissipation (Mbps/s): 
où : Stochastic variable simulating
interference and network losses following a
uniform distribution between [-0.1, 0.1] in
(Mbps/s)

Transmission delay parameters

Influence of bandwidth on delay (ms/Mbps):
deterministic fixed factor)

Regulation of transmission delay (ms/s): 
where  is the stochastic Variable

simulating dynamic network congestion
following a normal distribution N (0,0.02) for
slight variations

Fig. 1: Evolution of key LTE network variables as a function of time under two scenarios: deterministic and stochastic

Simulation Parameters

Initial time:
Final time:  s (durée de simulation pour
observer la stabilisation du réseau)
Time step: s (accuracy of RK4 method)
Stochastic simulation: Includes  to model
uncertainty
Deterministic simulation: Uses only fixed mean
values with no fluctuation
Deterministic simulation provides a stable model
that describes the dynamics of the LTE network
without disturbances

Stochastic simulation allows analysis of real
variations and the impact of randomness on quality
of service (QoS).

Results
The three graphs in Figure 1 show the evolution of

key LTE network variables as a function of time under
two scenarios: Deterministic and Stochastic, for a 24-
hour LTE network. We analyze three key metrics:

Radio resource allocation (%)
Bandwidth occupancy (Mbps)
Transmission delay (ms)
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The simulation considers the periods of the day when
the network load is highest, specifically peak hours (8-
10h) and (18-20h):

In the deterministic model, the allocation of radio
resources ( ), increases progressively up to 90%
at peak times, then decreases outside these periods;
in the stochastic model, unpredictable oscillations
due to fluctuations in user demand and radio
interference, Thus we have: Random load peaks
which vary the allocation between 85 and 95%, at
peak times, more instability is observed in the
evening (20-24h), which can affect network
management.
At the level of the metric ( ), the deterministic
model shows that bandwidth is at maximum
utilization of 75 Mbps at peak times, indicating
stable and predictable use of the radio channel,
which is not the case at the stochastic model level,
marked by a fluctuation of ±10 Mbps, impacting
latency and network congestion. Between 18:00 and
20:00, traffic becomes irregular, resulting in packet
losses and degraded QoS. However, unexpected
decreases in the middle of the day indicate possible
underutilization of resources.
The transmission delay ( ), a very important QoS
metric in LTE technology, shows a maximum
latency of 100-120 ms at peak times in the
deterministic model, the response time is stable
outside peak loads (≈40-50 ms), on the other hand,
in the stochastic model, the observation gives a
fluctuating delay, with peaks of 130-140 ms at peak
times, which impacts VoLTE and streaming
performance; In the evening (20-24h), latency is
more unstable, probably due to unpredictable traffic
and in the off-peak (0h-6h), we have less latency,
indicating better resource allocation.

Discussions
Table (1) shows that the stochastic model exhibits

greater variability, especially at peak times, as radio
resources fluctuate by ±5%, which impacts dynamic
allocation and transmission delay (+10%) on average,
due to random congestion not captured by the
deterministic model, thus degrading QoS stability in the
network.

Table (2) compares the performance of the
deterministic and stochastic models over the course of a
day. In the off-peak period (0-6h), the two models are
very close, as there are few traffic variations. At peak
times and in the evening, bandwidth and delay are more
unstable in the stochastic model due to random
congestion; and in the evening it reveals a more irregular
use of resources, suggesting a need for dynamic
optimization.

The application of 4th-order Runge-Kutta differential
equations (RK4) in modeling QoS optimization in LTE

networks has enabled stable and accurate numerical
integration over 24 hours, offering in-depth analysis of
network dynamics under deterministic and stochastic
approaches. The deterministic model, RK4, showed a
maximum resource allocation of 90% at peak times (8-10
am and 6-8 pm), with a stabilized bandwidth of 75 Mbps
and a fixed latency of 120 ms, illustrating predictable but
limited management in the face of real traffic variations.
Conversely, the stochastic-based approach revealed ±5%
oscillations in resource allocation, ±10 Mbps variations
in bandwidth, and fluctuating latency between 130 and
140 ms, demonstrating the need for dynamic resource
adaptation to manage unforeseen congestion. RK4 thus
enabled us to assess the robustness of the deterministic
model, which is suitable for static network planning, and
the realism of the stochastic model, which better reflects
random fluctuations in user traffic. However, these
simulations underline the fact that, despite the accuracy
of RK4, effective QoS optimization in LTE networks
requires dynamic resource adjustment, paving the way
for the integration of predictive AI models to anticipate
and manage congestion in real-time.
Table 1: Overall performance comparison between deterministic

and stochastic

Parameter Deterministic
model

Stochastic
model

Difference
(%)

: average
allocation

60 % 62% +3.3%

Peak time
allocation

90 % 85%-95% Variability of
±5%

: Average
bandwidth

45 Mbps 48 Mbps +6.7%

Peak-time
bandwidth

75 Mbps 70-80
Mbps

Variability of
±10 Mbps

: Average
delay

65 ms 72 ms +10.8%

Peak hour delay 120 ms 130-140 ms Variability of
±10-20 ms

Table 2: Performance comparison between Deterministic (D) and
Stochastic (S) according to Period of the Day

Period  (%)  (Mbps) (ms)
Period Hour D S D S D S
Night (0-6h) 30 32 20 22 30 35
Morning (6-8h) 50 53 35 38 50 55
Peak hour Morning (8-10h) 90 85-95 75 70-80 120 130-140

Evening (18-20h)
Day (10-18h) 50 52 40 43 45 50
Evening (20-24h) 40 45 30 35 40 45

Conclusion
The results obtained in this study highlight the value

of the Runge-Kutta 4th-order (RK4) approach for
optimizing Quality of Service (QoS) in an eUTRAN LTE
network. By modeling the dynamic evolution of radio
resources, bandwidth occupancy, and transmission delay,
RK4 provides a better understanding of network
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variations and facilitates the adjustment of resources
according to traffic conditions. Comparative analysis of
the deterministic and stochastic approaches showed that
the former offers a stable, predictable view of the
network. However, this approach does not consider
random fluctuations in traffic, which limits its
effectiveness in the face of unforeseen congestion.
Conversely, the stochastic approach, by incorporating
random variations, provides a more realistic model of the
network, offering greater adaptability in real-time. These
results demonstrate the need for dynamic resource
management based on intelligent congestion prediction.
In the future, the integration of Machine Learning and
time series could make it possible to anticipate periods of
heavy load and automatically adjust resource allocation
to improve the resilience and efficiency of the LTE
network. In this way, a hybrid approach combining
mathematical modeling (RK4) and artificial intelligence
could provide an advanced solution for optimal,
predictive management of next-generation mobile
networks.
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