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Abstract: Bessel’s correction adjusts the denominator in the sample variance
formula from 7 to n — 1 to ensure an unbiased estimator of the population variance.
This paper provides rigorous algebraic derivations to reinforce the necessity of this
correction. It further introduces the concept of Bariance, an alternative dispersion
measure based on average pairwise squared differences that avoids reliance on the
arithmetic mean. Building on this, we address practical concerns raised in
Rosenthal’s article, which advocates for n-based estimates from a Mean Squared
Error (MSE) perspective, particularly in pedagogical contexts and specific applied
settings. Finally, the empirical component of this work, based on simulation
studies, demonstrates that estimating the population variance via an algebraically
optimized Bariance formula approach can yield a computational advantage.
Specifically, the unbiased sample variance can be computed in linear time using
the optimized Bariance estimator, resulting in shorter run-times while preserving
statistical validity.
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Introduction

Variance Estimation and Multivariate Statistics

Variance estimation is a foundational task across
statistics and econometrics, with the sample variance
being the default estimator in most applications. The
unbiased version, corrected by Bessel’s factor (dividing
by n — 1 rather than n), compensates for the loss of one
degree of freedom due to pre-estimating the population
mean. This correction is not just a simple algebraic trick—
it admits deep geometric interpretations via orthogonal
projections in R™ and can be derived rigorously from them.

Despite its theoretical appeal, the unbiased estimator
is not always the most optimal in practice. In small
samples especially, its higher variance may lead to
suboptimal inference. This has led researchers to consider
shrunken estimators that intentionally trade off a small
amount of bias for a significant reduction in variance,
thereby minimizing Mean Squared Error (MSE). For
example, empirical Bayes methods shrink sample
variances toward a global prior, stabilizing estimation
across thousands of features in genomic studies (Smyth,
2004). Similar techniques based on James Stein shrinkage
have been explored for variance estimation in high-
dimensional settings (Efron and Morris, 1975).

Beyond the univariate case, shrinkage ideas are
especially powerful in multivariate settings. In particular,
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Sample Variance Estimators

shrinkage estimators for covariance matrices such as the
Ledoit Wolf estimator (Ledoit and Wolf, 2004) have
gained popularity in fields like econometrics and finance,
particularly in the area of asset pricing. These estimators
enhance the stability of sample covariance matrices by
shrinking them toward structured targets (e.g., the identity
matrix), significantly improving conditioning in high-
dimensional models, which are known to perform poorly
(Ledoit and Wolf, 2005). This has practical relevance in
the construction of variance-covariance matrices for
portfolio optimization, factor models, and robust standard
error estimation in large-scale regression analysis for
econometric applications.

In this broader context, this paper revisits classical
variance estimation and introduces a novel perspective via
an alternative measure of sample dispersion based on the
average squared differences between all unordered pairs
in a sample. We formally define this estimator as the
Bariance, a term that reflects its construction from
pairwise distances (between-variance) rather than
deviations from a mean. It can be shown that for mean-
centered data, the Bariance equals exactly twice the
unbiased sample variance. Moreover, a linear-time
optimized formulation of the Bariance can be derived
using simple algebraic properties that avoids quadratic
pairwise computation, making it both theoretically
elegant and computationally very efficient.

© 2025 Felix Reichel. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.



Felix Reichel / Journal of Mathematics and Statistics 2025, Volume 21: 44.49
DOI: 10.3844/jmssp.2025.44.49

Relation to Existing Statistics and Applications

Although the pairwise difference approach has roots in
classical statistics such as U-statistics (Hoeffding, 1948),
dissimilarity-based dispersion measures, and even the
Gini coefficient (Cowell, 2011) the contribution here is a
novel, unbiased estimator that is computationally
optimized for runtime efficiency. In this respect, Bariance
bridges theoretical variance estimation with algorithmic
efficiency, a consideration critical in big-data contexts,
real-time systems, and streaming analytics.

While computational efficiency is one of its key
advantages, the Bariance measure may also prove
valuable in applied scenarios where the concept of central
tendency is unstable, ill-defined, or misleading. For
example, in domains such as network analysis, genomics,
ordinal survey research, or clustering, statistical
dispersion is often better captured through relational or
pairwise structures rather than deviations from a single
global mean. In such contexts, the Bariance shares
conceptual kinship with the Gini coefficient, which also
operates on pairwise differences but in a distributional
inequality framework. Unlike Gini, however, Bariance
preserves unbiasedness for variance estimation
under i.i.d. sampling and scales naturally in high-
dimensional or streaming environments. These features
make it particularly attractive for modern applications in
unsupervised learning, robust statistics, and high-throughput
data pipelines—where traditional variance measures may
either fail or become computationally prohibitive.

Through an empirical simulation study, I demonstrate
that this optimized unbiased sample variance estimator
remains unbiased and improves runtime. The simulated
empirical  runtimes  section includes hardware
specifications and multiple replications, thereby
addressing robustness, reproducibility, and statistical
reliability. We then revisit the controversial idea
advocated by Rosenthal (2015) that dividing by n (rather
than n — 1) may yield lower-MSE variance estimators in
practice, especially when unbiasedness is not strictly
required.

To sum up, the Bariance framework bridges
computational efficiency with applied relevance, offering
a theoretically grounded yet practically flexible
alternative to traditional variance estimators. This paper
thus aims to bridge classical econometric and statistical
theory with modern considerations of efficiency,

robustness, and computational scalability, while
highlighting the often-underestimated choices in
estimator design or usage.
Setup

Let X;,..X,€R be i.i.d. random variables
with E[X;] = 4 and V(X;) = ¢®. Define the sample

mean and biased/unbiased sample variance:
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Derivation of Bias and Bessel’s Correction

An estimator 8 for a parameter 6 is called unbiased if
its expected value equals the true value:

E[0] = 0 )

The normal n-based sample variance with denominator
n is defined as S2 %Z?(X,- —X)? asin Eq. 2.
We aim to compute E[S?], the expected value of this

estimator, to show that it is biased.
We start by expanding the squared deviations:

n n
Z(XL——)_()Z = ZX,-Z— nX?
i i

Thus:

1(C 0, o) 1Ix _
§*=— ZXi—nXZ =—inz—x2
n i ni

Then, take expectation of S% By linearity of
expectation:

)

(6)

1

n
E[S?] = — ) E[X?] - E[X’] @
T
Compute E [X;%]. Using the identity:
E[X?] = V(X)) + (E[X;])? = % + p? (®
Thus:
1 n
— 21 = 2 2
nZEm] W+ o ©
Because the n cancels out.
Compute E[X?]. Recall first:
1 n
% = EZXI- = E[X] = (10)
_ a?
V&) = - 11
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Thus:

2

E[X2] = V(X) + E[X]? = % + o2 (12)

Combining both terms now yields:
a? a?
E[S?] = (u*+ 0?) — <u2 + 7) =0%— — (13)

E[$2] =n—1

a?, (14)

This shows S? is biased. Q.E.D.
Bessel’s Correction defines the unbiased sample
variance as in Eq. 3:

§2 = i —X)? = E[S?] = o2 (unbiased) (15)

This is Bessel’s Correction: dividing by n—1
compensates for the loss of one degree of freedom (df).

Introducing the Bariance and an Optimized Linear
Runtime Estimator

We define the Bariance of a random sample
{X1, X5, ..., X, } as the average squared difference over all
unordered pairs:

Bar(X) i= - oo Z(X (16)

L¢j
The selected term "Bariance" emphasizes the
estimator’s foundation on pairwise between-sample

variance rather than deviations from a mean.
We begin by expanding the inner squared difference:

(X — %)’ = X7 — 2X.X; + X? an

Summing over all distinct i # j:

D= %) = ) (xF - 2% + XP) (18)

i#j i%j
Split this into three terms:
n n n
= DR+ D (x7) - ) (2x:x) (19)
£3] i£j £3]

For fixed i, there are n — 1 values of j # i:

Zn:(xzz) = (n_l)zn:xiz 20)
=] 7
Zn:(sz) = (n—l)zn:X,-z @D
i*j j

So the first two terms become:

2n — 1)2)(3 22)

Now consider:

Zx X = (Z X-)Z—znzxf (23)

i#j i

Combine:
ZXX _2(71—1)2)(2 (Zn: Xi>2—zn:Xi2 (24)
i#j i i

= 2n Zn:Xf - 2<Zn: X,-)Z (25)

Substitute back:

JorxZ - (-2) Gr X (26)

Bariance = (n(n 5

n(n—1)
The Obtained Optimized Bariance Expression

n 2
Bariancey, = 12 — n(n — (Z X,-) (27)

In the Case of Mean Centered Data

Iff ;' X; = 0 we can simplify the expressiom as:
n
2
Bariance = —ZXIZ (28)
n—14
L

Relate this to the unbiased sample variance:

n n
= SR = Y 29)
n—14."" n—14s""
1A L
Thus:
Bariance = 2 - 5?2 (30)
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Properties of the Bariance

Let 6 := g% = 1. (31)
Then:
E[sY] = 6 (32)
E[Bariance] = 26 (33)
Bias(s?) = 0 (34)
Bias(Bariance) = 6 (35)
Var(s?) = 20%/(n—1) (36)
Var(Bariance) = 4 Var(s?) (37)
MSE(S?) = Var(s?) (38)
MSE (Bariance) = 4 Var(s?) + 62 (39)

Materials and Methods
Data-Generating Processes (DGPs)

All numerical experimentation in this study relies on
synthetic data generated under known statistical.

Distributions, enabling exact comparisons between
theoretical results and empirical outcomes. Unless
otherwise.

Stated, samples X;,X5,..,X, were drawn
independently and identically distributed (i.i.d.). Two
sampling distributions were used:

—_

Normal distribution: X; ~ N(0,1)

2. Gamma distribution: X;~TI'(k=2,0 =2), with
E[Xi] =4 and Var [X;] =8

Sample sizes and replications: n = 100, T = 1000.

Estimators Evaluated

§2 = #Z(xi %2 (40)

Id as in Eq. 3. bariance estimator (pairwise form):

Bar(X) = ——- ¥iL;(X; - X;)° (41)
As in Eq. 16. optimized Bariance (linear form):
Bar(X) = — 31 X2 - n(nz_l) r X)? (42)

Asin Eq. 27.

Computational Environment

Simulations were executed in Python and R on a Linux
x86_64 machine with vectorized numerical libraries. The
method time.perf counter in Python was used for
precision timing. Random seeds were fixed for
reproducibility.

Monte-Carlo Protocol
For each replication (t = 1000):

Generate n = 100 i.i.d. observations

Compute S? and Bariance

Record point estimates, bias, variance, and MSE
Aggregate across replications. (as SI unit seconds)

=

Runtime Benchmarking

Runtime evaluation was performed by repeatedly
computing each estimator and measuring wall-clock time.
Bootstrapped confidence intervals were computed from t
= 20 repeated measurements. Both naive pairwise and
optimized Bariance implementations were benchmarked.

Results

This section summarizes empirical results for
unbiased variance and Bariance estimators under normal

The following variance estimators were evaluated. and gamma-distributed data, as well as runtime
Unbiased sample variance: comparisons.
Table 1: Empirical results for X ~ N (0, 1) (n =100, T=1000)
Estimator Mean Bias Variance MSE
Unbiased Sample Variance 1.00091 0.00091 0.02156 0.02151
Bariance 2.00181 1.00181 0.08625 1.08968
Table 2: Empirical results for X ~T" (2, 2) (n =100, == 1000)
Estimator Mean Bias Variance MSE
Unbiased Sample Variance 8.00087 0.00087 2.92574 2.92281
Bariance 16.00174 8.00174 11.70295 75.71907
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Table 3: Runtime for Normal-Distributed Data (in seconds)

n Biased Var Unbiased Var Naive Bariance Optimized Bariance
10.0 0.0131 0.0142 0.0601 **0.0119%*
20.0 0.0208 0.0143 0.2191 **0.0092%*
30.0 0.0115 0.0115 0.4872 **0.0091**
40.0 0.0121 0.0123 0.8767 **0.0104%*
50.0 0.0134 0.0132 1.5155 **0.0092%*
60.0 0.0124 0.0122 2.105 **0.009%*
70.0 0.0186 0.0176 2.7712 **0.0087**
80.0 **0.0126%* 0.0205 3.6592 0.0155
90.0 0.0139 0.0135 5.0322 **0.0095%*
100.0 0.0127 0.0125 5.6617 **0.0098**

Execution Environment

All simulations were executed in Python 3.11 within a
virtualized Linux environment (kernel 4.4.0), using 1 GB
RAM and a 32-core x86 64 processor. Timing was
measured via time. Perf counter and repeated z =20 times
for each estimator and sample size.

Runtime Results

Tables 1, 2 and 3 display the empirical runtime results
from the manuscript, reproduced exactly, including
highlighting of the fastest estimator in each row.

Discussion

Rosenthal (2015) argues that using n instead of n —
1 may lead to a smaller Mean Squared Error (MSE),
especially when teaching or in practical settings.

He shows that while dividing by n — 1 yields an unbiased
estimator, this may come at the cost of increased variance. In
some cases, a biased but lower-MSE estimator using n is
preferable: “A smaller, shrunken, biased estimator actually
reduces the MSE.” (Rosenthal, 2015).

This introduces another viewpoint: Unbiasedness is
not always the ultimate goal, minimizing error in practice
often is.

From a theoretical perspective, unbiasedness ensures
that the expected value of the estimator exactly matches
the true population variance. However, unbiasedness
alone does not guarantee minimal estimation error in
finite samples.

Allowing a small bias can reduce this variance enough
to yield a lower overall MSE (Casella and Berger, 2002;
Shao, 2003).

To illustrate, consider the generalized family of
estimators:

n

1 -
0%a =2 ) (K= %)?

A

As derived in (Rosenthal, 2015), the MSE-minimizing
denominator is shown graphically to be as:

at=n+1
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In sum, relaxing unbiasedness for variance estimation
is a principled and context-dependent choice.

Conclusion

Bessel’s correction is a foundational concept that
ensures unbiased estimates of variance. We explored its
necessity through algebraic, and pairwise differences
reasoning (now formalized as the Bariance construct),
building both intuition and understanding. Additionally,
we considered a pedagogical and practical perspective,
such as Rosenthal’s MSE-based view for estimating
variance (Rosenthal, 2015) in finite sample.

Although the unbiased estimator is mathematically
correct in expectation, the biased version can sometimes
be more intuitive and, in certain contexts, statistically
preferable across various sampling distributions. This
aligns with insights from modern treatments of
mathematical statistics, which often emphasize the trade-
off between bias and variance in estimator performance
(Casella and Berger, 2002; Shao, 2003). Furthermore,
empirical results revealed a faster runtime in our
simulation example using the average pairwise
differences definition as an unbiased variance estimator,
referred to as the Bariance estimator particularly when
employing the algebraically optimized formula using
scalar sums allowing for vectorised implementations in
high-level programming langauges.

To sum up, the main finding the run-time optimized
estimator for the Bariance formula was a coincidental yet
significant observation, that the unbiased estimator can be
computed in linear time and statistically outperforms the
conventional unbiased sample variance estimator in all
tested empirical runtime performance scenarios.
Naturally, many other estimators exist for sample
variance, including those designed to trade off bias for
computational gains. Someone trained in complexity
theory, theoretical computer scientist or mathematician
could derive theoretical bounds on the time complexity of
such estimators.

Beyond its computational efficiency, however, the
Bariance measure may also offer benefits in applied
settings where deviation from a central mean is either
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unstable, undefined, or conceptually inappropriate. In
fields such as genomics, network analysis, robust
statistics, or ordinal survey research, dispersion may be
more meaningfully characterized by average pairwise
differences rather than deviations from a global average.
Moreover, distance-based methods like clustering, energy
statistics, and nonparametric ANOVA (e.g. the case of
permutation ANOVA) can benefit from the geometric and
symmetry-preserving properties of Bariance, particularly
in high-dimensional or irregularly structured data where
the mean offers little interpretive value. These contexts
highlight how the pairwise construction of Bariance is not
only computationally attractive but also methodologically
appropriate.

Thus, the optimized Bariance formula alone stands as
a viable alternative with promising practical implications
for real-time multivariate big data applications, including
forecasting (especially with shrunken variance—
covariance  estimators),  computational  biology,
chemistry, finance, and big-data streaming applications
(such as online learning) where unbiased and scalable
variance estimation is essential or outperforming a
competitor by the means of runtime is important.
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