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Abstract: Bessel’s correction adjusts the denominator in the sample variance 

formula from n to n – 1 to ensure an unbiased estimator of the population variance. 

This paper provides rigorous algebraic derivations to reinforce the necessity of this 

correction. It further introduces the concept of Bariance, an alternative dispersion 

measure based on average pairwise squared differences that avoids reliance on the 

arithmetic mean. Building on this, we address practical concerns raised in 

Rosenthal’s article, which advocates for n-based estimates from a Mean Squared 

Error (MSE) perspective, particularly in pedagogical contexts and specific applied 

settings. Finally, the empirical component of this work, based on simulation 

studies, demonstrates that estimating the population variance via an algebraically 

optimized Bariance formula approach can yield a computational advantage. 

Specifically, the unbiased sample variance can be computed in linear time using 

the optimized Bariance estimator, resulting in shorter run-times while preserving 

statistical validity. 

 

Keywords: Unbiased Sample Variance, Runtime-Optimized Linear Unbiased 

Sample Variance Estimators 
 

Introduction 

Variance Estimation and Multivariate Statistics 

Variance estimation is a foundational task across 

statistics and econometrics, with the sample variance 

being the default estimator in most applications. The 

unbiased version, corrected by Bessel’s factor (dividing 

by 𝑛 − 1 rather than 𝑛), compensates for the loss of one 

degree of freedom due to pre-estimating the population 

mean. This correction is not just a simple algebraic trick—

it admits deep geometric interpretations via orthogonal 

projections in ℝ𝑛 and can be derived rigorously from them. 

Despite its theoretical appeal, the unbiased estimator 

is not always the most optimal in practice. In small 

samples especially, its higher variance may lead to 

suboptimal inference. This has led researchers to consider 

shrunken estimators that intentionally trade off a small 

amount of bias for a significant reduction in variance, 

thereby minimizing Mean Squared Error (MSE). For 

example, empirical Bayes methods shrink sample 

variances toward a global prior, stabilizing estimation 

across thousands of features in genomic studies (Smyth, 

2004). Similar techniques based on James Stein shrinkage 

have been explored for variance estimation in high-

dimensional settings (Efron and Morris, 1975). 

Beyond the univariate case, shrinkage ideas are 

especially powerful in multivariate settings. In particular, 

shrinkage estimators for covariance matrices such as the 

Ledoit Wolf estimator (Ledoit and Wolf, 2004) have 

gained popularity in fields like econometrics and finance, 

particularly in the area of asset pricing. These estimators 

enhance the stability of sample covariance matrices by 

shrinking them toward structured targets (e.g., the identity 

matrix), significantly improving conditioning in high-

dimensional models, which are known to perform poorly 

(Ledoit and Wolf, 2005). This has practical relevance in 

the construction of variance-covariance matrices for 

portfolio optimization, factor models, and robust standard 

error estimation in large-scale regression analysis for 

econometric applications. 

In this broader context, this paper revisits classical 

variance estimation and introduces a novel perspective via 

an alternative measure of sample dispersion based on the 

average squared differences between all unordered pairs 

in a sample. We formally define this estimator as the 

Bariance, a term that reflects its construction from 

pairwise distances (between-variance) rather than 

deviations from a mean. It can be shown that for mean-

centered data, the Bariance equals exactly twice the 

unbiased sample variance. Moreover, a linear-time 

optimized formulation of the Bariance can be derived 

using simple algebraic properties that avoids quadratic 

pairwise computation, making it both theoretically 

elegant and computationally very efficient. 
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Relation to Existing Statistics and Applications 

Although the pairwise difference approach has roots in 

classical statistics such as U-statistics (Hoeffding, 1948), 

dissimilarity-based dispersion measures, and even the 

Gini coefficient (Cowell, 2011) the contribution here is a 

novel, unbiased estimator that is computationally 

optimized for runtime efficiency. In this respect, Bariance 

bridges theoretical variance estimation with algorithmic 

efficiency, a consideration critical in big-data contexts, 

real-time systems, and streaming analytics. 

While computational efficiency is one of its key 

advantages, the Bariance measure may also prove 

valuable in applied scenarios where the concept of central 

tendency is unstable, ill-defined, or misleading. For 

example, in domains such as network analysis, genomics, 

ordinal survey research, or clustering, statistical 

dispersion is often better captured through relational or 

pairwise structures rather than deviations from a single 

global mean. In such contexts, the Bariance shares 

conceptual kinship with the Gini coefficient, which also 

operates on pairwise differences but in a distributional 

inequality framework. Unlike Gini, however, Bariance 

preserves unbiasedness for variance estimation 

under  𝑖. 𝑖. 𝑑. sampling and scales naturally in high-

dimensional or streaming environments. These features 

make it particularly attractive for modern applications in 

unsupervised learning, robust statistics, and high-throughput 

data pipelines—where traditional variance measures may 

either fail or become computationally prohibitive. 

Through an empirical simulation study, I demonstrate 

that this optimized unbiased sample variance estimator 

remains unbiased and improves runtime. The simulated 

empirical runtimes section includes hardware 

specifications and multiple replications, thereby 

addressing robustness, reproducibility, and statistical 

reliability. We then revisit the controversial idea 

advocated by Rosenthal (2015) that dividing by 𝑛 (rather 

than 𝑛 − 1) may yield lower-MSE variance estimators in 

practice, especially when unbiasedness is not strictly 

required. 

To sum up, the Bariance framework bridges 

computational efficiency with applied relevance, offering 

a theoretically grounded yet practically flexible 

alternative to traditional variance estimators. This paper 

thus aims to bridge classical econometric and statistical 

theory with modern considerations of efficiency, 

robustness, and computational scalability, while 

highlighting the often-underestimated choices in 

estimator design or usage. 

Setup 

Let  𝑋𝑖 , … 𝑋𝑛 ∈ ℝ be  𝑖. 𝑖. 𝑑. random variables 

with  𝔼[𝑋𝑖] = 𝜇 and  𝕍(𝑋𝑖)  =  𝜎² . Define the sample 

mean and biased/unbiased sample variance: 

X̄ ≝  
1

n
∑ Xi

n

i

                                                                                 (1) 

 

S2 ≝  
1

n
∑(Xi

n

i

− X̄)2                                                                     (2) 

 

Ŝ2 ≝  
1

n − 1
∑(Xi

n

i

− X̄)2                                                              (3) 

 

Derivation of Bias and Bessel’s Correction 

An estimator 𝜃̂ for a parameter 𝜃 is called unbiased if 

its expected value equals the true value: 
 
𝔼[𝜃] = 𝜃  (4) 
 

The normal n‑based sample variance with denominator 

n is defined as 𝑆2 =
1

𝑛
∑ (𝑋𝑖

𝑛
𝑖 − X̄)2 as in Eq. 2. 

We aim to compute 𝔼[𝑆2], the expected value of this 

estimator, to show that it is biased. 

We start by expanding the squared deviations: 

 

∑(𝑋𝑖

𝑛

𝑖

− X̄)2  ≡  ∑ 𝑋𝑖
2

𝑛

𝑖

−  𝑛X̄2                                                     (5) 

Thus: 
 

𝑆2 =  
1

𝑛
(∑  𝑋𝑖

2

𝑛

𝑖

−  𝑛 X̄2) =  
1

𝑛
∑ 𝑋ᵢ2

𝑛

𝑖

− X̄2                            (6) 

 

Then, take expectation of 𝑆². By linearity of 

expectation: 
 

𝔼[𝑆²]  =  
1

𝑛
∑ 𝔼[𝑋𝑖

2

𝑛

𝑖

]  −  𝔼[X̄2]                                                    (7) 

 

Compute 𝔼 [𝑋ᵢ2]. Using the identity: 

 
𝔼[𝑋ᵢ2] ≡  𝕍(𝑋ᵢ) + (𝔼[𝑋𝑖])2 =  𝜎2 + 𝜇2                                   (8) 

 

Thus: 

 

1

𝑛
∑ 𝔼[𝑋𝑖

2

𝑛

𝑖

] =  𝜇2 + 𝜎2                                                                 (9) 

 

Because the 𝑛 cancels out. 

Compute 𝔼[X̄2]. Recall first: 

 

X̄  =  
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖

  ⇒  𝔼[X̄] =  𝜇,                                                        (10) 

 

𝕍(X̄) =  
𝜎2

𝑛
                                                                                      (11) 
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Thus: 

 

𝔼[X̄2]  =  𝕍(X̄)  +  𝔼[X̄]2 =  
𝜎2

𝑛
 + 𝜇2                                    (12) 

 

Combining both terms now yields: 

 

𝔼[𝑆2] =  (𝜇2 +  𝜎2) − (𝜇2 +  
𝜎2

𝑛
) =  𝜎2 − 

𝜎2

𝑛
                 (13) 

 

𝔼[𝑆2] =
𝑛 − 1

𝑛
 𝜎2,                                                                       (14)  

 

This shows 𝑆² is biased. Q.E.D. 

Bessel’s Correction defines the unbiased sample 

variance as in Eq. 3: 

 

Ŝ2 ≔  
1

𝑛 − 1
∑(𝑋𝑖

𝑛

𝑖

− X̄)2 ⇒   𝔼[Ŝ2] =  𝜎2 (𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑)    (15)

                                                              

 

 

This is Bessel’s Correction: dividing by 𝑛 − 1 

compensates for the loss of one degree of freedom (df). 

Introducing the Bariance and an Optimized Linear 

Runtime Estimator 

We define the Bariance of a random sample 

{𝑋₁, 𝑋₂, … , X𝑛} as the average squared difference over all 

unordered pairs: 

 

𝐵𝑎𝑟(𝑋) ∶=  
1 

𝑛(𝑛 − 1)
·  ∑(𝑋𝑖  −  𝑋𝑗)

2
𝑛

𝑖≠𝑗

                                (16)  

 

The selected term "Bariance" emphasizes the 

estimator’s foundation on pairwise between-sample 

variance rather than deviations from a mean. 

We begin by expanding the inner squared difference: 

 

(𝑋𝑖  −  𝑋𝑗)
2

=  𝑋𝑖
2 −  2𝑋𝑖𝑋𝑗  +  𝑋𝑗

2                                         (17)  

 

Summing over all distinct 𝑖 ≠  𝑗: 
 

∑(𝑋𝑖  −  𝑋𝑗)
2

=  ∑(𝑋𝑖
2 −  2𝑋𝑖𝑋𝑗  +  𝑋𝑗

2)

𝑛

𝑖≠𝑗

𝑛

𝑖≠𝑗

                     (18) 

 

Split this into three terms: 

 

=  ∑(𝑋𝑖
2)

𝑛

𝑖≠𝑗

+ ∑(𝑋𝑗
2)

𝑛

𝑖≠𝑗

− ∑(2𝑋𝑖𝑋𝑗)                                 

𝑛

𝑖≠𝑗

(19) 

 

For fixed 𝑖, there are 𝑛 − 1 values of 𝑗 ≠  𝑖: 

∑(𝑋𝑖
2)

𝑛

𝑖≠𝑗

 =  (𝑛 − 1) ∑ 𝑋𝑖
2

𝑛

𝑖

                                                       (20)  

 

∑(𝑋𝑗
2)

𝑛

𝑖≠𝑗

 =  (𝑛 − 1) ∑ 𝑋𝑗
2

𝑛

𝑗

                                                       (21)  

 

So the first two terms become: 

 

2(𝑛 − 1) ∑ 𝑋𝑖
2

𝑛

𝑖

                                                                 (22) 

 

Now consider: 

 

∑ 𝑋𝑖  𝑋𝑗

𝑛

𝑖≠𝑗

 =  (∑  𝑋𝑖

𝑛

𝑖

)

2

− ∑ 𝑋𝑖
2

𝑛

𝑖

                                           (23)  

 

Combine: 

 

∑ 𝑋𝑖  𝑋𝑗

𝑛

𝑖≠𝑗

= 2(𝑛 − 1) ∑ 𝑋𝑖
2

𝑛

𝑖

 −  2 [(∑  𝑋𝑖

𝑛

𝑖

)

2

− ∑ 𝑋𝑖
2

𝑛

𝑖

] (24) 

 

=  2𝑛 ∑ 𝑋𝑖
2

𝑛

𝑖

 −  2 (∑  𝑋𝑖

𝑛

𝑖

)

2

                                                    (25) 

 

Substitute back: 

 

 𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (
2𝑛

𝑛(𝑛−1)
) ∑ 𝑋𝑖

2𝑛
𝑖 − (

2

𝑛(𝑛−1)
) (∑  𝑋𝑖

𝑛
𝑖 )2   (26) 

 

The Obtained Optimized Bariance Expression 

 

𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑜𝑝𝑡 ≔  
2

𝑛 − 1
∑ 𝑋𝑖

2

𝑛

𝑖

− 
2

𝑛(𝑛 − 1)
(∑  𝑋𝑖

𝑛

𝑖

)

2

    (27) 

 

In the Case of Mean Centered Data 
 

Iff ∑ 𝑋𝑖
𝑛
𝑖 =  0 we can simplify the expressiom as: 

 

𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≡  
2

𝑛 − 1
∑ 𝑋𝑖

2

𝑛

𝑖

                                                       (28)  

 

Relate this to the unbiased sample variance: 

 

𝑆2 =  
1

𝑛 − 1
∑(𝑋𝑖

𝑛

𝑖

− X̄)2   =  
1

𝑛 − 1
∑(𝑋𝑖

𝑛

𝑖

)2                       (29) 

 

Thus: 

 

𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  2 ·  𝑆2                                                                    (30) 
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Properties of the Bariance 

 

𝐿𝑒𝑡 𝜃 ∶=  𝜎2 =  1.                                                                         (31) 

 

Then: 

 
𝐸[𝑆²]  =  𝜃 (32) 
 

𝐸[𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒]  =  2𝜃 (33) 
 

 𝐵𝑖𝑎𝑠(𝑆²)  =  0 (34) 
 

𝐵𝑖𝑎𝑠(𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒)  =  𝜃 (35) 

 

 𝑉𝑎𝑟(𝑆²)  =  2𝜃²/(𝑛 − 1) (36) 
 

𝑉𝑎𝑟(𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒)  =  4 𝑉𝑎𝑟(𝑆²) (37) 
 

𝑀𝑆𝐸(𝑆²)  =  𝑉𝑎𝑟(𝑆²) (38) 

 

𝑀𝑆𝐸(𝐵𝑎𝑟𝑖𝑎𝑛𝑐𝑒)  =  4 𝑉𝑎𝑟(𝑆²)  +  𝜃² (39) 

 

Materials and Methods 

Data-Generating Processes (DGPs) 

All numerical experimentation in this study relies on 

synthetic data generated under known statistical. 

Distributions, enabling exact comparisons between 

theoretical results and empirical outcomes. Unless 

otherwise. 

Stated, samples 𝑋₁, 𝑋₂, … , 𝑋𝑛  were drawn 

independently and identically distributed (i.i.d.). Two 

sampling distributions were used: 

 

1. Normal distribution: 𝑋ᵢ ~ 𝑁(0,1) 

2. Gamma distribution: 𝑋ᵢ ~ 𝛤(𝑘 = 2, 𝜃 = 2) , with 

E[Xᵢ] = 4 and Var [Xᵢ] = 8 

 

Sample sizes and replications: n = 100, τ = 1000. 

Estimators Evaluated 

The following variance estimators were evaluated. 

Unbiased sample variance: 

Ŝ2 ≔  
1

𝑛 − 1
∑(𝑋𝑖

𝑛

𝑖

− X̄)2                                                        (40)  

 

Id as in Eq. 3. bariance estimator (pairwise form): 

 

𝐵𝑎𝑟(𝑋) ∶=  
1 

𝑛(𝑛−1)
·  ∑ (𝑋𝑖  −  𝑋𝑗)

2𝑛
𝑖≠𝑗  (41) 

 

As in Eq. 16. optimized Bariance (linear form): 

 

𝐵𝑎𝑟(𝑋) ≔  
2

𝑛−1
∑ 𝑋𝑖

2𝑛
𝑖 −  

2

𝑛(𝑛−1)
(∑  𝑋𝑖

𝑛
𝑖 )2 (42) 

 

As in Eq. 27. 

 

Computational Environment 

Simulations were executed in Python and R on a Linux 

x86_64 machine with vectorized numerical libraries. The 

method time.perf_counter in Python was used for 

precision timing. Random seeds were fixed for 

reproducibility. 

Monte-Carlo Protocol 

For each replication (τ = 1000): 

 

1. Generate n = 100 i.i.d. observations 

2. Compute Ŝ² and Bariance 

3. Record point estimates, bias, variance, and MSE 

4. Aggregate across replications. (as SI unit seconds) 

 

Runtime Benchmarking 

Runtime evaluation was performed by repeatedly 

computing each estimator and measuring wall‑clock time. 

Bootstrapped confidence intervals were computed from τ 

= 20 repeated measurements. Both naive pairwise and 

optimized Bariance implementations were benchmarked.  

Results 

This section summarizes empirical results for 

unbiased variance and Bariance estimators under normal 

and gamma-distributed data, as well as runtime 

comparisons.  

 

Table 1: Empirical results for X ~ N (0, 1) (n = 100, τ = 1000) 

Estimator Mean Bias Variance MSE 

Unbiased Sample Variance 1.00091 0.00091 0.02156 0.02151 

Bariance 2.00181 1.00181 0.08625 1.08968 

 

Table 2: Empirical results for X ~ Γ (2, 2) (n = 100, τ= 1000) 

Estimator Mean Bias Variance MSE 

Unbiased Sample Variance 8.00087 0.00087 2.92574 2.92281 

Bariance 16.00174 8.00174 11.70295 75.71907 
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Table 3: Runtime for Normal-Distributed Data (in seconds) 

n Biased Var Unbiased Var Naïve Bariance Optimized Bariance 

10.0 0.0131 0.0142 0.0601 **0.0119** 

20.0 0.0208 0.0143 0.2191 **0.0092** 

30.0 0.0115 0.0115 0.4872 **0.0091** 

40.0 0.0121 0.0123 0.8767 **0.0104** 

50.0 0.0134 0.0132 1.5155 **0.0092** 

60.0 0.0124 0.0122 2.105 **0.009** 

70.0 0.0186 0.0176 2.7712 **0.0087** 

80.0 **0.0126** 0.0205 3.6592 0.0155 

90.0 0.0139 0.0135 5.0322 **0.0095** 

100.0 0.0127 0.0125 5.6617 **0.0098** 

 

Execution Environment 

All simulations were executed in Python 3.11 within a 

virtualized Linux environment (kernel 4.4.0), using 1 GB 

RAM and a 32‑core x86_64 processor. Timing was 

measured via time. Perf counter and repeated τ = 20 times 

for each estimator and sample size. 

Runtime Results 

Tables 1, 2 and 3 display the empirical runtime results 

from the manuscript, reproduced exactly, including 

highlighting of the fastest estimator in each row. 

Discussion 

Rosenthal (2015) argues that using n instead of 𝑛 −
 1 may lead to a smaller Mean Squared Error (MSE), 

especially when teaching or in practical settings. 

He shows that while dividing by n − 1 yields an unbiased 

estimator, this may come at the cost of increased variance. In 

some cases, a biased but lower-MSE estimator using n is 

preferable: “A smaller, shrunken, biased estimator actually 

reduces the MSE.” (Rosenthal, 2015). 

This introduces another viewpoint: Unbiasedness is 

not always the ultimate goal, minimizing error in practice 

often is. 

From a theoretical perspective, unbiasedness ensures 

that the expected value of the estimator exactly matches 

the true population variance. However, unbiasedness 

alone does not guarantee minimal estimation error in 

finite samples. 

Allowing a small bias can reduce this variance enough 

to yield a lower overall MSE (Casella and Berger, 2002; 

Shao, 2003). 

To illustrate, consider the generalized family of 

estimators: 
 

𝜎2
𝑎 =

1

𝑎
∑(𝑋𝑖

𝑛

𝑖

− X̄)2 

 

As derived in (Rosenthal, 2015), the MSE-minimizing 

denominator is shown graphically to be as: 

 
𝑎∗ = 𝑛 +  1 

In sum, relaxing unbiasedness for variance estimation 

is a principled and context-dependent choice. 

Conclusion 

Bessel’s correction is a foundational concept that 

ensures unbiased estimates of variance. We explored its 

necessity through algebraic, and pairwise differences 

reasoning (now formalized as the Bariance construct), 

building both intuition and understanding. Additionally, 

we considered a pedagogical and practical perspective, 

such as Rosenthal’s MSE-based view for estimating 

variance (Rosenthal, 2015) in finite sample. 

Although the unbiased estimator is mathematically 

correct in expectation, the biased version can sometimes 

be more intuitive and, in certain contexts, statistically 

preferable across various sampling distributions. This 

aligns with insights from modern treatments of 

mathematical statistics, which often emphasize the trade-

off between bias and variance in estimator performance 

(Casella and Berger, 2002; Shao, 2003). Furthermore, 

empirical results revealed a faster runtime in our 

simulation example using the average pairwise 

differences definition as an unbiased variance estimator, 

referred to as the Bariance estimator particularly when 

employing the algebraically optimized formula using 

scalar sums allowing for vectorised implementations in 

high-level programming langauges. 

To sum up, the main finding the run-time optimized 

estimator for the Bariance formula was a coincidental yet 

significant observation, that the unbiased estimator can be 

computed in linear time and statistically outperforms the 

conventional unbiased sample variance estimator in all 

tested empirical runtime performance scenarios. 

Naturally, many other estimators exist for sample 

variance, including those designed to trade off bias for 

computational gains. Someone trained in complexity 

theory, theoretical computer scientist or mathematician 

could derive theoretical bounds on the time complexity of 

such estimators. 

Beyond its computational efficiency, however, the 

Bariance measure may also offer benefits in applied 

settings where deviation from a central mean is either 
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unstable, undefined, or conceptually inappropriate. In 

fields such as genomics, network analysis, robust 

statistics, or ordinal survey research, dispersion may be 

more meaningfully characterized by average pairwise 

differences rather than deviations from a global average. 

Moreover, distance-based methods like clustering, energy 

statistics, and nonparametric ANOVA (e.g. the case of 

permutation ANOVA) can benefit from the geometric and 

symmetry-preserving properties of Bariance, particularly 

in high-dimensional or irregularly structured data where 

the mean offers little interpretive value. These contexts 

highlight how the pairwise construction of Bariance is not 

only computationally attractive but also methodologically 

appropriate. 

Thus, the optimized Bariance formula alone stands as 

a viable alternative with promising practical implications 

for real-time multivariate big data applications, including 

forecasting (especially with shrunken variance–

covariance estimators), computational biology, 

chemistry, finance, and big-data streaming applications 

(such as online learning) where unbiased and scalable 

variance estimation is essential or outperforming a 

competitor by the means of runtime is important. 
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