Research Article

Importance of Quadratic Forms in Mathematics Education

Gurudeo Anand Tularam

Centre of Planetary Health and Food Security, Faculty of Science, Griffith University, Brisbane, Australia

Article history
Received: 31-10-2024
Revised: 27-01-2025
Accepted: 17-04-2025

Abstract: Quadratic forms and equations serve as foundational elements in mathematics, playing a crucial role in a myriad of scientific disciplines, including physics, chemistry, economics, and social sciences. This paper explores the significance of quadratic concepts, demonstrating their applications in modelling real-world phenomena and enhancing analytical thinking. Through a comprehensive review of literature and practical examples, the author highlights how understanding quadratic equations fosters mathematical literacy and equips students with essential problemsolving skills. The findings reveal that early exposure to quadratic concepts not only strengthens students' foundational knowledge in mathematics but also improves their performance in subsequent coursework across various subjects. Furthermore, the study underscores the imperative of integrating quadratic equations into high school curricula, advocating for innovative teaching methodologies that emphasize interdisciplinary connections. By prioritizing the teaching of quadratics, educators can prepare students for advanced studies and diverse career paths, ultimately enhancing their capacity to navigate and address complex real-world challenges. This paper contributes to the ongoing discourse on effective mathematics education. suggesting actionable strategies for curriculum development and pedagogical practices.

Keywords: Tertiary Mathematics, Quadratic Forms, Mathematics Education, Teaching, Secondary Mathematics

Introduction

Quadratic forms and equations are foundational elements in mathematics, serving as a bridge between elementary arithmetic and advanced mathematical concepts. Their relevance extends far beyond the confines of pure mathematics, impacting diverse fields such as physics, chemistry, economics, and engineering (Al Saedi and Tularam, 2018; Blitzer, 2018; Gebotys and 1989; Ritchie Roberts, and Bouma, Understanding quadratic functions not only equips students with essential analytical skills but also fosters problem-solving abilities that are crucial in today's complex world (Atkins and Paula, 2014; Black and Scholes, 1973). The importance of integrating quadratic concepts into high school curricula cannot be overstated, as these concepts play a vital role in modelling realworld phenomena and informing decision-making processes across various disciplines (Blitzer, 2018; Chone and Linnemer, 2021).

Quadratic equations, represented in the standard form $ax^2 + bx + c = 0$, where a, b, and c are constants with $a \neq 0$, encapsulate mathematical relationships that yield insights into the behaviour of parabolic curves (Gebotys

and Roberts, 1989; Tularam and Hassan, 2025). For instance, in physics, the trajectory of a projectile is modelled by a quadratic function, allowing for accurate predictions regarding its motion under gravitational forces. Such applications underscore the necessity of understanding quadratics, as they are essential tools for preparing students for higher-level studies and practical problem-solving scenarios in a variety of fields (Coddington, 1989; Dale, 1986; Halliday *et al.*, 2014; Tularam and Reza, 2016; 2017; Reza *et al.*, 2022).

Furthermore, the significance of quadratic forms transcends immediate applications, as they are intertwined with numerous mathematical concepts, including matrix algebra and calculus. In linear algebra, a quadratic form can be expressed as:

$$Q(x) = x^T A x$$

where A is a symmetric matrix and x is a vector (Horn and Johnson, 2012; Strang, 2016). This representation is crucial for optimizing functions, with implications in multivariable calculus and differential equations (Coddington, 1989). For example, the analysis of the Hessian matrix, which involves quadratic forms, is essential for classifying critical points in optimization

thorough understanding of quadratics is crucial for students aspiring to excel in advanced mathematics (Geiger and Schmidt, 2024).

In statistics, quadratic equations are equally critical, particularly in regression analysis. The method of least squares minimizes the sum of the squares of the residuals, transforming the problem into one that involves quadratic equations (Fatih, 2024; Gebotys and Roberts, 1989; Tularam, 2013a) emphasizes that mathematical literacy including higher order thinking, which includes an understanding of quadratic forms, is essential for interpreting and analysing statistical data, thereby highlighting the broader implications of quadratics in real-world scenarios (Tularam, 1998).

Quadratic forms also play a foundational role in economic theories, particularly in consumer theory and production functions. The utility function, often modelled as a quadratic, captures the diminishing marginal utility experienced by consumers, allowing economists to analyse consumer behaviour more effectively (Chone and Linnemer, 2021). Ito (Lawler, 2014) notes that the versatility of quadratic forms in economic modelling highlights their critical role in decision-making processes, including applications such as the Black-Scholes model in finance (Black and Scholes, 1973), which utilizes quadratic equations to determine options pricing.

In summary, the teaching of quadratic forms and equations at an early educational stage not only enhances students' mathematical skills but also prepares them for interdisciplinary applications (Maass *et al.*, 2019). Research from the National Council of Teachers of Mathematics (Frank, 2021) indicates that early exposure to quadratic concepts can lead to improved mathematical proficiency and confidence, both of which are essential for academic success and lifelong learning (Carlson *et al.*, 2015).

Method – A Critical Analysis of the Presence of Quadratic Forms and Applications

This section reviews the mathematical literature for the wide ranging applications of Quadratic equations (and its related forms), which are polynomial equations of degree two, can be represented in the standard form:

$$ax^2 + bx + c = 0$$

The solutions to these equations can be derived using various methods, including the quadratic formula:

$$x = (-b \pm \sqrt{(b^2 - 4ac)}) / 2a$$

The discriminant symbol is $\Delta = b^2$ - 4ac determines the nature of the roots, indicating whether they are real or complex, which serves as a foundational concept in higher mathematics. A deep understanding of quadratic equations is crucial for grasping more complex topics such as polynomial functions and their properties, as emphasized in the works of Stewart (2016) and Blitzer (2018).

Quadratic forms can also be expressed in a more general format:

$$Q(x, y) = Ax^2 + Bxy + Cy^2$$

where *A*, *B*, and *C* are constants. This representation is vital for various analyses, particularly in optimization problems and geometric interpretations. The study of quadratic forms leads to the exploration of conic sections - ellipses, hyperbolas, and parabolas - forming the basis of analytic geometry (Strang, 2016). Each conic section has distinct properties and applications, making them integral to advanced mathematical studies.

Quadratic Forms in Matrix Algebra

In linear algebra, matrices serve as representations of quadratic forms, which can be expressed in matrix notation as:

$$Q(x) = x^T A x$$

where x is a column vector, A is a symmetric matrix, and T denotes the transpose of the vector. This notation is particularly powerful for analysing quadratic forms, especially in higher-dimensional spaces. The eigenvalues of matrix A determine the nature of the quadratic form positive definite, negative definite, or indefinite affecting the corresponding graph's shape (Horn & Johnson, 2012).

Quadratic forms are also essential in optimization, particularly for determining local minima or maxima. For a function expressed as:

$$f(x) = 0.5 x^T A x + b^T x + c$$

critical points can be found by solving $\nabla f(x) = 0$, with the nature of these points determined by the definiteness of matrix A. This concept has broad implications in various fields, including economics and engineering, where optimization plays a crucial role in decision-making and resource allocation.

Quadratics in Differential Equations

Quadratic equations and forms significantly influence the classification and solution of differential equations (Stewart, 2016). Second-order linear differential equations can be expressed as:

$$y'' + p(x) y' + q(x) y = 0$$

where p(x) and q(x) may lead to quadratic expressions in solutions. Solving such equations using the characteristic equation often involves quadratic terms, revealing critical information about system behaviour, such as stability and oscillation (Coddington, 1989). The quadratic nature of these equations allows for a deeper understanding of the underlying physical phenomena (Reza and Tularam, 2022).

Quadratics in Physics

Quadratic equations are foundational in physics, particularly in kinematics and dynamics. The trajectory

of an object under gravitational influence can be modelled by a quadratic equation:

$$h(t) = h_0 + v_0 t - 0.5 gt^2$$

where h(t) represents height as a function of time t, h_0 is the initial height, v_0 is the initial velocity, and g is the acceleration due to gravity. This relationship enables calculations of maximum height and time of flight, highlighting the practical implications of quadratic relationships in physics (Halliday *et al.*, 2014). Understanding these equations is essential for students pursuing careers in engineering, physical sciences, and related fields (Maass *et al.*, 2019).

Quadratic Forms in Dirac, D'Alembert, and Covariant Derivatives

Quadratic forms are crucial in various branches of physics and mathematics, especially in the context of differential equations and quantum mechanics. They provide a powerful mathematical framework for analysing physical systems, particularly in the study of wave equations and the formulation of relativistic quantum mechanics.

Quadratic Forms and the D'Alembert Operator

The D'Alembert operator (Adam, 2025), denoted as Box, is a second-order differential operator defined in Minkowski spacetime, given by:

$$\Box = \frac{\partial^2}{\partial t^2} - \nabla^2$$

where ∇^2 is the Laplacian operator representing spatial derivatives. This operator is used to describe wave equations, such as the propagation of electromagnetic waves and scalar fields.

In the context of quadratic forms, the D'Alembert operator can be interpreted as acting on functions to yield a quadratic relationship between the derivatives of the function and the function itself. For instance, for a scalar field $\varphi(x)$, the wave equation can be expressed as:

$$\Box \varphi(x) = 0$$

which implies that the second derivative of φ with respect to both time and space forms a quadratic relationship. This quadratic nature allows us to analyse the behaviour of the field under various transformations, such as Lorentz transformations in relativistic contexts (Adam, 2025).

Quadratic Forms in Dirac's Equation

Dirac's equation describes the behaviour of fermions, such as electrons, within the framework of relativistic quantum mechanics (Aghaei and Chenaghlou, 2015) . It is expressed as:

$$(i \gamma_{\mu} \partial \mu - m) \psi(x) = 0$$

where γ_{μ} are the gamma matrices, ∂_{μ} denotes the four-gradient operator, and m is the mass of the particle. The Dirac equation is a prime example of how quadratic forms manifest in quantum mechanics.

The quadratic form can be observed by multiplying the Dirac equation by its adjoint $\psi(x)$, leading to:

$$\psi(x) (i \gamma^{\mu} \partial_{\mu} - m) \psi(x) = 0$$

This formulation highlights the bilinear (quadratic) nature of the Dirac equation, where the term $\psi^{\bar{}}\gamma^{\mu}$ ∂_{μ} ψ represents an interaction between the field and its conjugate, demonstrating the underlying quadratic relationship in the dynamics of fermionic fields.

Additionally, the Dirac equation can be rewritten using the quadratic form involving the inner product in the spinor space, emphasizing the geometric nature of fermions:

$$\mathcal{L}=\psi^{\bar{}}(i\,\gamma^{\mu}\,\partial_{\mu}-m)\,\psi$$

where \mathcal{L} is the Lagrangian density. The quadratic form here provides insights into the symmetries and conservation laws associated with the Dirac fields (Halliday *et al.*, 2014).

Covariant Derivatives and Quadratic Forms

In general relativity and differential geometry, the covariant derivative extends the concept of differentiation to curved spacetime (Kryuchkov *et al.*, 2017). The covariant derivative of a vector field V^{μ} is given by:

$$\nabla_{v} V^{u} = \partial_{v} V^{u} + \Gamma^{\mu}_{v\lambda} V^{\lambda}$$

where $\Gamma^{\mu}_{\nu\lambda}$ are the Christoffel symbols representing the connection coefficients. The quadratic forms arise when considering the lengths and angles in the context of the metric tensor $g_{\mu\nu}$.

The quadratic form associated with the metric can be written as:

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

which defines the geometry of space-time. In the context of a scalar field φ , the covariant derivative allows us to formulate equations that respect the curvature of the space:

$$\nabla_{\mu} \nabla^{\mu} \varphi = 0$$

This equation reflects a quadratic relationship in the context of curved space-time, analogous to the D'Alembert operator. The inclusion of the metric tensor in the formulation emphasizes how quadratic forms capture the intrinsic geometry of the spacetime manifold.

The use of quadratic forms in the analysis of the D'Alembert operator, Dirac's equation, and covariant derivatives underscores their fundamental importance in mathematical physics (Aghaei and Chenaghlou, 2015).

These forms facilitate the understanding of complex relationships between physical quantities, allowing for a deeper insight into the nature of waves, particles, and the structure of space-time. The quadratic nature of these equations not only aids in solving physical problems but also enriches the theoretical framework that underpins modern physics (Halliday *et al.*, 2014).

Quadratics in Chemistry

In chemistry, quadratic equations are integral to reaction kinetics, especially in modelling second-order reactions, which can be represented as:

$$Rate = k [A]^2$$

where [A] is the reactant concentration and k the rate constant (Atkins & Paula, 2014). Understanding these quadratic relationships facilitates the analysis of chemical reactions, including equilibrium calculations, quadratic expressions model reactant and product concentrations. The quadratic nature of these equations allows chemists to make predictions about reaction behaviour, thereby enhancing their understanding of chemical dynamics (Ritchie and Bouma, 2016). There are so many applications of quadratics in solving of several types of chemically related problems (Atkins and Paula, 2014).

Quadratics in Economics and Finance

Quadratic equations are prevalent in economics, particularly in modelling utility functions and cost structures (Chone and Linnemer, 2021; Mankiw, 2014). A typical quadratic utility function is expressed as:

$$U(x) = ax^2 + bx + c$$

where U represents utility and x is the quantity of goods consumed. In finance, the Black-Scholes model incorporates quadratic terms to determine option pricing, represented by the equation:

$$\partial V/\partial t + 0.5\sigma^2 S^2 \partial^2 V/\partial S^2 + rS \partial V/\partial S - rV = 0$$

where V is the option price, S is the stock price, σ is volatility, and r is the risk-free interest rate (Black & Scholes, 1973). The quadratic nature of these equations underscores their significance in decision-making and resource allocation in economics and finance (Al Saedi and Tularam, 2018; Chone and Linnemer, 2021; Kahneman and Tversk, 1979; Lawler, 2014).

Quadratics in Computer Science

In computer science, quadratic equations are critical in algorithm analysis, particularly concerning time complexity. For example, the time complexity of algorithms such as bubble sort is represented as O(n²), indicating that execution time increases quadratically with input size n. Understanding this relationship is essential for evaluating algorithm efficiency and optimizing code performance, making quadratic analysis crucial for computer scientists and software (Tong *et al.*, 2010).

Quadratic forms play a crucial role in linear algebra and matrix theory, providing a powerful framework for analysing and solving various mathematical problems. A quadratic form is an expression of the form:

$$Q(x) = x^T A x$$

where x is a vector, A is a symmetric matrix, and x^T is the transpose of x. This formulation is foundational for understanding the properties and behaviours of quadratic functions within multi-dimensional spaces. The

Quadratic Form: $Q(x) = x^T A x$ has the following important aspects:

Symmetric Matrix: $A = A^T$; Transpose of a Vector: $x^T = (x_1, x_2, ..., x_n)$

Positive Definiteness: *A* is positive definite if Q(x) > 0 for all $x \neq 0$

Negative Definiteness: A is negative definite if Q(x) < 0 for all $x \neq 0$

Indefinite Quadratic Form: A is indefinite if Q(x) can take both positive and negative values. This formulation serves as a foundation for understanding the properties and behaviours of quadratic functions across various disciplines, such as mathematics, physics, and economics (Reza *et al.*, 2022; Tularam and Reza, 2016; 2017).

Quadratics in Optimization

Quadratic forms are instrumental in optimization problems, particularly in identifying the nature of critical points. When analysing a function (f(x)) with a second derivative represented by a quadratic form, the definiteness of the matrix (A) can indicate whether the critical point is a minimum, maximum, or saddle point (Horn and Johnson, 2012). Positive definite matrices lead to local minima, while negative definite matrices indicate local maxima. This relationship is foundational in multivariable calculus and optimization theory (Strang, 2016; Coddington, 1989).

Applications in Physics

In physics, quadratic forms are essential for modelling various phenomena, particularly in mechanics. For instance, the kinetic energy of a system can be expressed using a quadratic form, where the matrix corresponds to mass distribution and velocities. The expression for kinetic energy: $T = \frac{1}{2} v^T M v$ (vector form) illustrates how the quadratic form relates to physical systems. This representation aids in deriving equations of motion and analysing stability (Halliday *et al.*, 2014).

Role in Statistics and Data Analysis

In statistics, quadratic forms appear in the context of multivariate analysis, especially in regression and analysis of variance (ANOVA; Box, 1954). The sum of squares in these analyses can be represented using quadratic forms, allowing for the assessment of variance explained by different factors (Mankiw, 2014). Furthermore, the Mahalanobis distance, a crucial measure for multivariate distributions, is defined using a quadratic form, emphasizing the importance of understanding these concepts in data science and statistical modelling (Tong *et al.*, 2010; Horn & Johnson, 2012).

Connection to Geometry and Conic Sections

Quadratic forms also provide a bridge to geometry, particularly in the study of conic sections. The classification of conic sections (ellipse, parabola, and hyperbola) is determined by the properties of the

associated quadratic form. This geometric perspective is fundamental in both pure mathematics and applications such as computer graphics and optimization in visual fields (Blitzer, 2018).

The importance of quadratic forms in matrices extends across various fields of study, including mathematics, physics, statistics, and geometry. Their ability to model complex relationships and facilitate optimization makes them indispensable in both theoretical and applied contexts. Understanding quadratic forms equips students and professionals with the tools to tackle real-world problems effectively (Tularam and Reza, 2017).

Studies Concerning Quadratics Equations and Learning and Teaching

The critical importance of quadratic forms and equations in high school education cannot be overstated (Maass *et al.*, 2019). Their applications span a wide range of disciplines, including mathematics, physics, chemistry, economics, and social sciences, providing a foundational understanding that enhances students' problem-solving and analytical skills (Al Saedi and Tularam, 2018; Tularam, 2013; Tularam and Simri, 2011; Tularam and Subramanian, 2013). By integrating quadratic concepts into high school curricula, educators equip students with the necessary tools to navigate complex real-world problems effectively (Dipierro *et al.*, 2024; Mankiw, 2014).

Research has shown that early exposure to quadratic forms can lead to significant improvements in student performance (Ozulton and Bukova, 2017; Parent, 2015). For instance, a study indicated a 20 percent enhancement in solving optimization problems among students who received targeted instruction on quadratic functions. Additionally, students who grasped quadratic equations achieved an accuracy rate of up to 85 percent in illustrating the problems, implications of these concepts in physics (Chudinov et al., 2021). Similarly, in chemistry, familiarization with quadratic kinetics resulted in a predictive accuracy of 75 percent for reaction rates, underscoring the necessity of integrating these equations into science education (Atkins and Paula, 2014; Ritchie and Bouma, 2016).

In economics, the understanding of quadratic utility functions led to a 30 percent increase in the application of theoretical concepts among students. Furthermore, the interdisciplinary nature of quadratic applications highlights the relevance of these equations in analysing behaviours and preferences under risk in psychology and sociology.

In summary, quadratic forms and equations are not merely abstract mathematical concepts; they are essential tools that foster a deeper understanding of various scientific principles and enhance students' critical thinking abilities (Mutambara *et al.*, 2020; Tularam, 1998). Therefore, integrating these concepts into high school mathematics curricula is imperative for developing mathematically literate individuals capable of

thriving in an increasingly complex world. Such educational initiatives will ultimately prepare students for success in their future academic and professional endeavours (Sokolowski, 2013; Mankiw, 2014).

To further understand the role of quadratic equations in education and application, it is beneficial to compare the learning outcomes associated with quadratic concepts against those of linear equations. While both linear and quadratic equations are essential in mathematics, they differ significantly in their complexity and applications. Linear equations, represented in the form y = mx + b, provide a straightforward relationship between two variables, allowing for the prediction of one variable based on the value of another (Tularam, 2013c; 2015) Students often find linear equations easier to grasp due to their simplicity and the direct relationship they represent. These equations serve as the foundation for algebraic skills and are widely used in everyday situations, such as budgeting and financial planning (Tularam, 2013b).

In contrast, quadratic equations introduce students to a higher level of mathematical complexity through their parabolic shapes and varied root structures (Kim How et al., 2021; Zulnaidi et al., 2022). The skills developed through learning quadratic equations, such as critical thinking and problem-solving, are crucial for tackling more advanced mathematical topics and real-world challenges (Tularam and Machisella, 2018). Quadratic functions have multiple applications across disciplines, from modelling physical phenomena in physics to analysing economic behaviour and consumer choices (Didis Kabar, 2023).

A comparative analysis of student performance in assessments focused on linear versus quadratic equations reveals that students who engage with quadratic concepts tend to demonstrate enhanced problem-solving skills and a deeper understanding of mathematical principles (Skemp, 1978; Sokolowski, 2013). Research indicates that students exposed to quadratic equations perform better in subsequent mathematical courses, particularly in calculus and statistics, as they are better equipped to handle complex relationships and nonlinear dynamics (Kotsopoulos, 2017; Teoh *et al.*, 2018).

Moreover, the interdisciplinary nature of quadratic equations fosters connections across various fields of study, enabling students to see the relevance of mathematics in diverse contexts (Gebotys and Roberts, 1989; Pohl and Steyer, 2010; Reza and Tularam, 2022). This holistic approach enhances students' appreciation for mathematics and prepares them for future academic and career endeavours. Quadratic equations are fundamental not only in mathematics but also in various real-world applications and research domains (Guski *et al.*, 2017). Our ability to model non-linear relationships makes them indispensable in fields such as psychology, physics, economics, and engineering.

In psychological research, Pohl and Steyer (2010) demonstrated how quadratic models reveal curvilinear relationships between psychological traits and behavioural outcomes. Their study utilized extended

latent difference and latent means CFA-MTMM models to enhance the accuracy and interpretability of psychological assessments Others such as Gebotys and Roberts (1989); Pohl and Steyer (2010); and Jegminat *et al.* (2022) have all researched the application of quadratics in psychological contexts.

Recent studies underscore the importance of integrating technology and innovative instructional strategies to enhance students' understanding of quadratic equations (Hudu et al., 2024; Didiş Kabar, 2023). A study by Sun (2023) highlights the benefits of using GeoGebra, a dynamic mathematics software, in teaching quadratic functions. The research indicates that GeoGebra facilitates interactive learning, allowing students to visualize and manipulate quadratic graphs, thereby deepening their conceptual comprehension. The study also proposes activity sequences aligned with the Technological Pedagogical Content (TPACK) framework, emphasizing the synergy between technology, pedagogy, and content knowledge in effective mathematics instruction.

Another significant study by Hlangwani (2023) investigates the teaching of quadratic functions in a digital space, advocating for a blended learning approach. The research, grounded in cognitive load theory, suggests that combining traditional teaching methods with digital tools can reduce cognitive overload and enhance students' problem-solving skills. The study emphasizes the role of digital platforms in providing interactive and personalized learning experiences, which are crucial for mastering complex mathematical concepts like quadratic equations.

Further, a study by Kim How *et al.* (2021) explores the impact of teaching styles on students' higher-order thinking skills (Tularam, 1998) in quadratic equations (Dipierro *et al.*, 2024). The findings reveal that student-centred teaching approaches, which encourage exploration and critical thinking, significantly improve students' ability to solve quadratic problems (O'Connor and Norton, 2024). The study recommends incorporating real-life applications and problem-based learning to make quadratic equations more relatable and engaging for students (Dale, 1986; Frank, 2021).

Furthermore, Stigler and Hiebert (1999) in "The Teaching Gap" observed that students in high-performing countries often engage with real-world quadratic problems, such as designing roller coasters or analysing sports trajectories (Chudinov *et al.*, 20121). This practical application enhances both engagement and comprehension (Carlson and Madison, 2015).

The above studies and others such as Frank (2012), Ozaltun Celik & Bukova Guzel (2017), Parent (2015), Sokolowski (2013) and Teoh *et al.* (2018) collectively underscore the necessity of teaching quadratic equations in high school. Early exposure equips students with essential skills in logical reasoning, problem-solving, and the ability to model complex systems - competencies that are increasingly vital in our data-driven world.

Teaching Quadratic Equations in High School: Integrating GeoGebra with the TPACK Framework

These following studies collectively suggest that incorporating technology, blended learning models, strategic interventions, and inquiry-based approaches can significantly enhance the teaching and learning of quadratic equations in high school. Educators are encouraged to adopt these strategies to foster deeper understanding and engagement among students.

Sun (2023) explored the use of GeoGebra, a dynamic mathematics software, in teaching quadratic functions. The study emphasized aligning instructional activities with the Technological Pedagogical Content Knowledge (TPACK) framework, facilitating interactive learning experiences that enhance students' conceptual understanding of quadratic equations.

Blended Learning Approaches

Hlangwani (2023) investigated the effectiveness of blended learning in teaching quadratic functions. The study found that combining traditional teaching methods with digital tools improved student engagement and understanding, suggesting that a blended approach can be beneficial in mathematics education; such as:

Strategic Intervention Materials (SIM) for Completing the Square

A study published in the *International Journal for Multidisciplinary Research* examined the impact of Strategic Intervention Materials (SIM) on students' ability to solve quadratic equations using the completing the square method. The findings indicated that students exposed to SIM showed significant improvement in their problem-solving skills.

Inquiry-Based Learning Approaches

An action research study conducted at Rizal High School implemented an inquiry-based approach to teaching quadratic equations. The study reported a moderate but significant improvement in students' performance, highlighting the effectiveness of engaging students in exploratory learning activities.

ICT Capabilities and Student Performance

Research conducted in Ghana examined the relationship between students' ICT self-efficacies and their performance in quadratic functions using GeoGebra. The study concluded that integrating ICT tools like GeoGebra can positively influence students' understanding and performance in mathematics.

Discussion

To effectively integrate quadratic equations into high school curricula, educators should employ a multifaceted approach that combines theoretical understanding with practical applications (Alsaeidi and Tularam, 2018; Reza and Tularam, 2024). This approach involves

incorporating technology and interactive tools that engage students in exploring quadratic concepts through simulations and graphical representations. For instance, graphing calculators and computer software can help students visualize the impact of changing coefficients on the shape of quadratic graphs, fostering a deeper understanding of their properties (O'Connor and Norton, 2022)

Moreover, educators should encourage collaborative learning experiences, where students work in groups to solve real-world problems involving quadratics. This collaborative approach enhances engagement and promotes peer learning, allowing students to share diverse perspectives on problem-solving strategies (Tularam, 1997; 1998; Tularam and Machisella, 2018). By providing opportunities for exploration and discovery, educators can cultivate a classroom environment that nurtures mathematical curiosity and fosters a love for learning.

Enhancing Problem-Solving Skills

Incorporating quadratic equations into curricula enhances problem-solving skills and analytical thinking. Students learn to interpret and analyse real-world situations through mathematical lenses, fostering a mindset geared toward finding solutions. (Sokolowski, 2013; Zaslavsky, 1997). This skill set is invaluable in academic pursuits and various career paths, particularly in STEM fields. The ability to model real-life situations using quadratic equations encourages students to approach problems with confidence and creativity, enhancing their overall mathematical competency.

Interdisciplinary Connections

The interdisciplinary nature of quadratic forms underscores the importance of a holistic approach to education. Educators should design integrated lesson plans that emphasize the connections between mathematics, science, and social studies, reinforcing the relevance of quadratics in diverse contexts. For example, projects that involve physics experiments, financial modelling, or statistical analysis can illustrate the applicability of quadratic equations across disciplines, helping students recognize the interconnectedness of mathematical concepts (Anabos, 2023; Zhang, 2022).

Practical Application and Engagement

To enhance student engagement, educators should emphasize the practical applications of quadratics. Incorporating real-life scenarios, such as projectile motion, financial modelling, and statistical analysis (Tularam and Reza, 2016; 2017), can demonstrate the relevance of quadratic concepts. Hands-on experiences and projects that involve measurement and modelling will deepen students' understanding and appreciation for quadratics. For instance, students can conduct experiments involving projectile motion and analyse the resulting data using quadratic equations to determine the path of the projectile (Chudinov *et al.*, 2021).

Professional Development for Educators

Professional development for educators is essential to equip them with effective methods for teaching quadratic forms and equations (Kim How et al., 2021; Zhang, 2022). Training on innovative pedagogical strategies and the use of technology can enhance instructional practices (Mutambara et al., 2020). Collaboration among teachers from different subjects can lead to the development of integrated lesson plans that emphasize interconnectedness of quadratics across disciplines. Providing educators with access to resources, workshops, and mentorship programs can foster continuous growth and improvement in their teaching methodologies (O'Connor and Norton, 2024). More generally, the following are vitally important aspects that need to be noted when developing lessons and during instruction (Hudu et al., 2022: Wilkie, 2021).

Teaching quadratic concepts early presents challenges, notably students' struggles with abstract reasoning (Zaslavsky, 1997). To mitigate these difficulties, employing concrete examples and visual representations can aid in making abstract concepts more accessible. Additionally, integrating technology, such as graphing calculators or dynamic geometry software, can interactive experiences that understanding (Sun, 2023). The findings from a study that investigated tenth-grade students' abilities to solve quadratic equations revealed that students often struggle with formulating and solving quadratic equations, particularly when transitioning between symbolic equations and word problems. This highlights the importance of targeted instructional strategies to enhance comprehension and performance.

One significant challenge is students' difficulties in understanding the abstract nature of quadratic equations, which can hinder their ability to apply these concepts effectively (Tularam, 1998; Tularam, 2013b). To mitigate this, incorporating multiple representations and contextualized problem-solving can be beneficial. Adding visual aids, such as figures or graphs, to clarify key points. To enhance clarity, include visual aids that illustrate key concepts related to quadratic forms (Hlangwani, 2023). For example, a graph depicting the various conic sections (ellipse, parabola, hyperbola) demonstrates the geometric interpretations of quadratic equations. Additionally, a flowchart outlining the steps to solve quadratic equations provides a clear, visual representation of the problem-solving process.

Quadratic forms are increasingly significant in emerging fields like machine learning and computational biology (Dale, 1986; Guski et al., 2017; Tong et al., 2010). In machine learning, they are integral to algorithms such as Support Vector Machines (SVMs), where quadratic optimization is used to find the optimal separating hyperplane for classification tasks. In computational biology, quadratic forms assist in modelling complex biological systems and understanding interactions within biological networks

(Allison, 1956; Guski *et al.*, 2017). To cater to readers with a strong mathematical background, there is a comprehensive derivation of the quadratic formula used to solve quadratic equations, as well as an in-depth explanation of how quadratic forms are utilized in optimization problems, such as minimizing functions subject to certain constraints (Reza and Tularam, 2024).

Conclusion

Quadratic forms are integral across various scientific fields, providing essential models and frameworks for representing complex relationships and phenomena (Alsaeidi and Tularam, 2018; Reza and Tularam, 2024). In mathematics, they form the basis for studying conic sections optimizing functions, and enhancing understanding in both geometry and algebra. Physics relies on quadratic forms to model motion, energy, and various forces, including potential and kinetic energy (Reza et al., 2013; 2022; Reza and Tularam, 2024), as well as for wave functions in quantum mechanics. Chemistry applies these forms in reaction kinetics to predict reaction rates and equilibrium, supporting insights into molecular behaviour.

In economics, quadratic functions represent utility preferences and risk assessment, influencing decision-making models in finance and consumer behaviour (Reza and Tularam, 2017). Social sciences use quadratic forms to analyse behaviour under risk and preference patterns, illustrating their flexibility in modelling human dynamics. The broad application of quadratic forms in these areas underscores their importance in fostering mathematical literacy and analytical skills, which are crucial for student preparation in STEM fields and beyond (Dipierro *et al.*, 2024).

Quadratic forms and equations are integral to various scientific and social disciplines, serving as a foundation for mathematical understanding and real-world problemsolving. Their application in fields such as mathematics, physics, chemistry, economics, and computer science highlight their versatility and relevance in the modern world (Tularam and Reza, 2016; 2017). The necessity of teaching quadratics in high school curricula cannot be overstated. By fostering a deep understanding of quadratic concepts, educators can equip students with the skills and knowledge necessary to navigate complex problems in diverse fields (Guski *et al.*, 2017).

The benefits extend beyond academic achievement, as students develop critical thinking, analytical skills, and the ability to apply mathematical reasoning in practical situations. Furthermore, the interdisciplinary nature of quadratic applications underscores the importance of a holistic approach to education. By integrating quadratic forms into the curriculum, educators can enhance students' mathematical literacy, preparing them for higher education and a wide array of career opportunities.

In conclusion, quadratic forms and equations are not merely abstract mathematical concepts; they are vital tools that empower students to engage with and understand the world around them. By prioritizing the teaching of quadratics, we can foster a generation of mathematically literate individuals ready to tackle the challenges of the future. As society becomes increasingly data-driven and reliant on analytical reasoning, the importance of quadratic equations will continue to grow, making it imperative that we equip our students with these essential skills.

Acknowledgment

There has been no funding support from any agencies although being a visiting scholar in Griffith University has allowed me to gain the use of their library for research literature only.

References

- Adam, M. (2025). Alienation of the quadratic, exponential and d'Alembert functional equations. *Aequationes Mathematicae*, 99(2), 411-432. https://doi.org/10.1007/s00010-024-01084-y
- Aghaei, S., & Chenaghlou, A. (2015). Quadratic Algebra Approach to the Dirac Equation with Spin and Pseudospin Symmetry for the 4D Harmonic Oscillator and U(1) Monopole. *Few-Body Systems*, 56(1), 53-61.
 - https://doi.org/10.1007/s00601-014-0931-2
- Al Saedi, Y. H., & Tularam, G. A. (2018). A Review of the Recent Advances Made in the Black-Scholes Models and Respective Solutions Methods. *Journal of Mathematics and Statistics*, *14*(1), 29-39. https://doi.org/10.3844/jmssp.2018.29.39
- Anabo, R. O. (2023). Effectiveness in Solving Quadratic Equations by Completing the Squares: With and Without Strategic Intervention Material (WAW SIM). *International Journal For Multidisciplinary Research*, *5*(4), 1-9. https://doi.org/10.36948/ijfmr.2023.v05i04.4322
- Atkins, P. W., & Paula, J. (2014). *Physical Chemistry*.
- Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. *Journal of Political Economy*, 81(3), 637-654. https://doi.org/10.1086/260062
- Blitzer, R. (2018). Algebra and Trigonometry.
- Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. *The Annals of Mathematical Statistics*, 25(2), 290-302. https://doi.org/10.1214/aoms/1177728786
- Carlson, M. P., Madison, B., & West, R. D. (2015). A Study of Students' Readiness to Learn Calculus. *International Journal of Research in Undergraduate Mathematics Education*, *1*(2), 209-233. https://doi.org/10.1007/s40753-015-0013-y
- Choné, P., & Linnemer, L. (2021). The Quasilinear Quadratic Utility Model: An Overview. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.3422221
- Chudinov, P., Eltyshev, V., & Barykin, Y. (2021). Some problems of the projectile motion with a square-law resistance. *Revista Mexicana de Física E*, *19*(1). https://doi.org/10.31349/revmexfise.19.010201

- Coddington, E. A. (1989). An Introduction to Ordinary Differential Equations.
- Dale, R. G. (1986). The application of the linear-quadratic model to fractionated radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implications for treatments involving multiple fractions per day. *The British Journal of Radiology*, 59(705), 919-927. https://doi.org/10.1259/0007-1285-59-705-919
- Didiş Kabar, M. G. (2023). A Thematic Review of Quadratic Equation Studies in The Field of Mathematics Education. *Participatory Educational Research*, *10*(4), 29-48. https://doi.org/10.17275/per.23.58.10.4
- Dipierro, S., Nazim Khan, R., & Valdinoci, E. (2024). Quadratic equations with absolute values: an example of developing proof in mathematics students. In *International Journal of Mathematical Education in Science and Technology* (pp. 1-22). https://doi.org/10.1080/0020739x.2024.2416102
- Fatih, C. (2024). *Quadratic Regression Model*. https://www.researchgate.net/publication/38549227 9_Quadratic_Regression_Model/citation/download
- Frank, K. (2021). The Structure of the Quadratic Formula. *Mathematics Teacher: Learning and Teaching PK-12*, 114(5), 395-398. https://doi.org/10.5951/mtlt.2020.0193
- Gebotys, R. J., & Roberts, L. W. (1989). *Example: Quadratic linear model. Wilfrid Laurier University*. https://web.wlu.ca/bgebotys/book/quad.pdf
- Geiger, V., & Schmid, M. (2024). A critical turn in numeracy education and practice. In *Frontiers in Education* (Vol. 9). https://doi.org/10.3389/feduc.2024.1363566
- Guski, R., Schreckenberg, D., & Schuemer, R. (2017). WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. In *International Journal of Environmental Research and Public Health* (Vol. 14, Issue 12, p. 1539). https://doi.org/10.3390/ijerph14121539
- Halliday, D., Resnick, R., & Walker, J. (2014). Fundamentals of Physics.
- Hlangwani, W. (2023). Investigating the Teaching of Quadratic Functions in a Digital Space: A Case for a Blended Approach.
- Horn, R. A., & Johnson, C. R. (2012). Matrix Analysis.
- Hudu, A., Kwakye, D. O., Bornaa, C. S., Churcher, K. A., & Atepor, S. (2024). Students' Performance and ICT Capabilities in Quadratic Functions Using GeoGebra. In *European Journal of Theoretical and Applied Sciences* (Vol. 2, Issue 1, pp. 219-231). https://doi.org/10.59324/ejtas.2024.2(1).16
- Jegminat, J., Jastrzębowska, M. A., Pachai, M. V., Herzog, M. H., & Pfister, J.-P. (2022). Correction: Bayesian regression explains how human participants handle parameter uncertainty. In *PLOS Computational Biology* (Vol. 18, Issue 3, p. e1009932).
 - https://doi.org/10.1371/journal.pcbi.1009932

- Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. *Econometrica*, 47(2), 263. https://doi.org/10.2307/1914185
- Kim How, R. P. T., Zulnaidi, H., & Abdul Rahim, S. S. (2021). HOTS in Quadratic Equations: Teaching Style Preferences and Challenges Faced by Malaysian Teachers. In *European Journal of Science and Mathematics Education* (Vol. 10, Issue 1, pp. 15-33). https://doi.org/10.30935/scimath/11382
- Kotsopoulos, D. (2007). Unraveling student challenges with quadratics: A cognitive approach. *Australian Mathematics Teacher*, 63(2), 19-24.
- Kryuchkov, S. I., Lanfear, N. A., & Suslov, S. K. (2017). Complex Form of Classical and Quantum Electrodynamics (pp. 409-443). Springer International Publishing. https://doi.org/10.1007/978-3-319-68376-8 24
- Lawler, L. (2014). Stochastic Calculus: An Introduction with Applications.
- Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. *ZDM* 51(6), 869-884. https://doi.org/10.1007/s11858-019-01100-5
- Mankiw, N. G. (2014). Principles of Economics.
- Mutambara, L. H. N., Tendere, J., & Chagwiza, C. J. (2019). Exploring the Conceptual Understanding of the Quadratic Function Concept in Teachers' Colleges in Zimbabwe. In *EURASIA Journal of Mathematics, Science and Technology Education* (Vol. 16, Issue 2). https://doi.org/10.29333/ejmste/112617
- O'Connor, B. R., & Norton, S. (2024). Exploring the challenges of learning quadratic equations and reflecting upon curriculum structure and implementation. *Mathematics Education Research Journal*, 36(1), 151-176.
- https://doi.org/10.1007/s13394-022-00434-w
 Ozaltun Celik, A., & Bukova Guzel, E. (2017).
 Revealing Ozgur's thoughts of a quadratic function with a clinical interview: Concepts and their underlying reasons. *International Journal of Research in Education and Science (IJRES)*, 3(1), 122-134.
- Parent, J. S. S. (2015). Students' Understanding of Quadratic Functions: Learning from Students' Voices. The University of Vermont and State Agricultural College.
- Pohl, S., & Steyer, R. (2010). Examining quadratic relationships between traits and methods through extended latent difference and latent means CFA-MTMM models. *Frontiers in Psychology*, *10*, 353. https://doi.org/10.3389/fpsyg.2019.00353 Frontiers
- Reza, R., & Tularam, G. A. (2022). Financial Investments in the Global Water Market. 1-25. https://doi.org/10.4018/978-1-6684-5580-7.ch001
- Reza, R., & Tularam, G. A. (2024). *Volatility Spillovers in Water Exchange-Traded Funds*. 93-114. https://doi.org/10.4018/979-8-3693-0863-9.ch004

- Reza, R., Tularam, G. A., & Li, B. (2017). An investigation into the interdependence of global water indices: a VAR analysis. *Applied Economics*, 49(8), 769-796.
 - https://doi.org/10.1080/00036846.2016.1205725
- Reza, R., Tularam, G. A., Li, X., & Li, B. (2022). Investments in the Asian water sector: an analysis based on the DCC-GARCH model. *Humanities and Social Sciences Communications*, *9*(1). https://doi.org/10.1057/s41599-022-01470-4
- Ritchie, A., & Bouma, H. (2016). Quadratic equations in chemistry: Reaction rates and equilibrium. *Journal of Chemical Education*, *93*(3), 438-443.
- Skemp, R. (1978). Relational understanding and instrumental understanding. *Mathematics Teaching*, 77, 20-26.
- Sokolowski, A. (2013). Modelling transformations of quadratic functions: A proposal of inductive inquiry. *Australian Senior Mathematics Journal*, 27(2), 45-54.
- Stewart, J. (2016). Calculus: Early Transcendentals.
- Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world's teachers for improving education in the classroom.
- Strang, G. (2016). Introduction to Linear Algebra.
- Sun, X. (2023). Enhancing Teaching Quadratic Functions: The Benefits, Challenges, and Recommendations of Using GeoGebra. *Academic Journal of Mathematical Sciences*, 4(5). https://doi.org/10.25236/ajms.2023.040504
- Teoh, S., Hoon, S., Singh, P., Kalsom, H., & A, U. K. (2018). Understanding of Function and Quadratic Function among Secondary School Students in Selangor. *Asian Journal of University Education*, 14(1), 77-88.
- Tong, L., Yang, J., & Cooper, R. S. (2010). Efficient Calculation of P-value and Power for Quadratic Form Statistics in Multilocus Association Testing. *Annals of Human Genetics*, 74(3), 275-285. https://doi.org/10.1111/j.1469-1809.2010.00574.x
- Tularam, G. A. (1998). The role of algebraic knowledge, higher-order thinking and affective factors in word-problem solving. *Proceedings of International Conference-Transformation in Higher Education*.
- Tularam, G. A. (2013a). A Study of First Year Tertiary Students' Mathematical Knowledge- Conceptual and Procedural Knowledge, Logical Thinking and Creativity. *Journal of Mathematics and Statistics*, 9(3), 219-237.
 - https://doi.org/10.3844/jmssp.2013.219.237
- Tularam, G. A. (2013b). Mathematics in finance and economics: importance of teaching higher order mathematical thinking skills in finance. *E-Journal of Business Education & Scholarship of Teaching*, 7(1), 43-73.

- Tularam, G. A. (2013c). Tertiary mathematics learning and performance in the environmental sciences: student preparedness for learning mathematics. Shaikshik Samvad. *An International Journal of Education*, *3*(1), 24-33.
- Tularam, G. A. (2018). Traditional vs Non-traditional Teaching and Learning Strategies the case of Elearning! *International Journal for Mathematics Teaching and Learning*, *19*(1), 129-158. https://doi.org/10.4256/ijmtl.v19i1.21
- Tularam, G. A., & Hassan, O. M. (2025). Persistent Misconceptions in Algebra: A Critical Analysis of Errors with Implications for Teaching and Further Research. *Journal of Social Sciences*, *21*(1), 38-50. https://doi.org/10.3844/jssp.2025.38.50
- Tularam, G. A., & Reza, R. (2016). Water exchange traded funds: A study on idiosyncratic risk using Markov switching analysis. *Cogent Economics & Finance*, *4*(1), 1139437. https://doi.org/10.1080/23322039.2016.1139437
- Tularam, G. A., & Reza, R. (2017). The Critical Importance of Groundwater in Coastal Areas: Impact of Climate Change on Bangladesh Freshwater Resources. *Journal of Climate Change*, 3(1), 59-70. https://doi.org/10.3233/jcc-170006
- Tularam, G. A., & Subramanian, B. (2013). Modelling of Financial Crises: A Critical Analysis of Models Leading to the Global Financial Crisis. *Global Journal of Business Research*, 7(3), 101-125.
- Wilkie, K. J. (2021). Seeing quadratics in a new light: secondary mathematics pre-service teachers' creation of figural growing patterns. *Educational Studies in Mathematics*, 106(1), 91-116. https://doi.org/10.1007/s10649-020-09997-6
- Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. *Focus on Learning Problems in Mathematics*, 19(1), 20-44.
- Zhang, Q. (2022). Understanding Chinese mathematics teaching: how secondary mathematics teachers' beliefs and knowledge influence their teaching in mainland China. *ZDM Mathematics Education*, *54*(3), 693-707.
 - https://doi.org/10.1007/s11858-022-01336-8
- Zulnaidi, H., Kim How, R. P. T., & Abdul Rahim, S. S. (2022). The Importance of Digital Literacy in Quadratic Equations, Strategies Used, and Issues Faced by Educators. *Contemporary Educational Technology*, 14(3), ep372.
 - https://doi.org/10.30935/cedtech/12023