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Abstract: In this study, Ito form for normal bonds trading where maturity 

periods cross over to COVID-19 pandemic period is presented. It is shown 

that normal bonds in this period experience path reversals respective to their 

canonical paths. The criterion used in arriving at this striking result is also 

presented. As a key recommendation, it is necessary that bondholders enact 

flexible pricing laws that strengthen the issuer to continue trading in the present 

COVID-19 pandemic time through the reverse path identified in this study.  
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Introduction 

The advent of COVID-19 pandemic has altered the 

dynamics of many stochastic processes. As at the 6th of 

February 2023, the number of infected persons stands at 

671,706,853 to which 6,844,645 deaths were recorded1. The 

expectation that global bond traders are a significant fraction 

of these figures is not only likely but realistic. Liang (2020) 

asserts that if a significant chunk of bond traders lies in the 

COVID-19 infected class then the bond market incurs huge 

losses due to rapid sales at giveaway prices. Thus, if there are 

many COVID-19 infected bond traders in countries known 

for raising bonds, economic breakdown and meltdown may 

happen unless adequate trade precautions are taken. One 

precaution is the adoption of new hybrid bond pricing 

models that can curb emerging pandemic arbitrage in 

markets. For more on the subject of hybrid models for 

optimization purposes, we refer the reader to the works of 

(Alhawarat et al., 2021; Salleh et al., 2022). 
Similarly, if many issuers die in a small time as in the 

case of the dreaded COVID-19 pandemic figures above, 
holders will struggle in receiving proportionate coupon 
payments. Under this condition, bond corporations will be 
unable to make capital payments on both secured and 
unsecured loans and will face serious challenges such as 
total collapse leading to loss of resources (Brown, 2006). 
The unfortunate collapse of silicon valley bank USA is a 
good example in this respect. Another realistic instance 
when bondholders will not receive payment from issuers 
is when bond-raising countries operate under lockdowns and 
other forms of COVID-19 restrictions. In this case, issuers 
are not fully paid salaries and wages due to changing work 

 
1Data retrieved from the John Hopkins University Dashboard on the 
6th of February 2023@9.10 am 

forms leading to a rising rate of defaults (Buchheit and Gulat, 
2002). Here, transaction strains are developed and can lead 
to acute financial losses. To mitigate these losses and many 
others, newer bond pricing models for the COVID-19 
pandemic time are needed to save investment resources. 

For instance on 23rd March 2020, the announcement 
for investment grade bonds was made. This 
announcement pushed the price of the bond by 7% on 
exercise with no signal effect on stock prices. This 
shocking bond-stock price path resulted in investors 
flocking to stocks instead of bonds (Haddad et al., 2021) 
because of additionally envisaged risks attached to bond 
dynamics sequel to the pandemic. At the moment, global 
bond market operates under additional risk that increases 
both rates and rise of defaults (Zaghini, 2023). Since 
COVID-19 pandemic has created additional risk 
measures in reality, then the need to incorporate this 
realism where maturity periods take longer than 
expected default times to wade away price 
informativeness (Dávila and Parlatore, 2018), or feedback 
effect (Sani et al., 2020; Edmans et al., 2015; Cofnas, 2016) 
and ripple effect (George and Beard, 2023) cannot be 
over-emphasized. In this case, the feedback effect will 
change speculators’ decision on bonds which eventually 
lead to mispricing in both the short and long terms. For 
instance in the long term, bond markets will lose their fair 
share of profit margins to stocks since profit margins 
depend on the correctness of pricing models employed in 
both time and space (Joyner, 2006). Consequently, it is 
crucial to develop newer bond pricing models especially 
where maturity times cross over to the pandemic time. In 
this respect, we construct a new stochastic bond pricing 
model for cross-over bonds. First, the maturity time is 

mailto:2023@9.10
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redefined in view of lengthy default tendencies (Goldie and 
Kluppelberg, 1988; Mikosch, 1999; Foss et al., 2013).  

Chao and Zou (2018) studied flood related Catastrophe 

(CAT) bond prices and established the CIR-copula-POT 

model with stochastic rates showing that maturity dates 

affect bond prices. Shao (2015) considered both seismic and 

nuclear catastrophes and showed that bond prices are 

affected by extended maturities and defaults (Shao et al., 

2015). Shao et al. (2017) studied CAT bond prices as a 

sequence of compound inhomogeneous Poisson processes 

disturbed by a diffusion process and came up with a semi-

Markov model that examined the claim's inter-arrival times. 

Numerical analysis showed that the price of CAT bonds will 

decline when the threshold level is decreased, the time to 

maturity is increased and the likelihood of default also 

increased. Lee and Yu (2002) explored how CAT bonds 

relate to the financial market in the presence of rising default 

risks and showed that both moral hazards and baseline risks 

significantly can lower bond trade. 
Nowak and Romaniuk (2017) studied CAT bonds related 

to investor risk-taking and showed that adjusted bond pricing 
models can wade away arbitrage tendencies better than 
non-adjusted bond pricing models (Romaniuk, 2003). 
Ma and Ma (2013) studied CAT bonds with non-
homogeneous Poisson losses given interest rate uncert
ainty, loss severity, and claim arrival intensities and 
showed that interest rates rise bond prices when the 
maturity time bracket is [0.25, 2.5]. Hofer et al. (2020) studied 
CAT bond pricing where associated risk is defined in a fixed 
interval and showed that threshold losses and expiration 
times have significant roles in arbitrage-free pricing. Tao et al. 
(2009) studied pricing models for earthquake-related 
catastrophes and stated the needed techniques for 
estimating personal insurance under seismic related 
deductibles. Vaugirard (2004) stated that the subject of 
pricing CAT bonds boils down to computing the first 
passage times for some jump diffusion stochastic 
processes under certain risk assumptions.  

Egami and Young (2008) studied CAT bonds where 

inter-arrival claims follow the Poisson diffusion process 

and showed that prices are indifferent. Ma et al. (2017) 

developed a bond pricing model for zero coupon CAT 

bonds with stochastic Poisson arrivals and showed that 

hazards and interest rate risks affect zero coupon bond 

prices. In general, it is imperative to note that CAT bonds 

are hedging financial options as in Galeotti et al. (2013); 

Bodoff and Gan (2009); Lai et al. (2014); Gürtler et al. 

(2016). De Spiegeleer and Schoutens (2011); Baz and 

Chacko (2004); Rebonato (2018) described how existing 

bond models devoid of extra-uncertainties (Szczygielski et al., 

2021; Lyócsa et al., 2020; Albulescu and Grecu 2023) are 

distinct from those ones where coupon payments assumed the 

paths of long-tailed processes (Norman et al., 2020). Thus for 

completeness, linking the times to maturity with the pandemic 

time is important for aided efficiency especially where default 

times assumed the path of the COVID-19 pandemic. 

Materials and Methods 

We consider a bond  whose non-pandemic trading time 

price at maturity p(, T) is quoted as: 
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where, T ≥ 0 is the time to maturity parameter of , ε is the 

ratio of monthly coupon payment to prevailing monthly 

market interest rate, χ is one on prevailing monthly market 

interest rate and ϕ is the face value of . We suppose that the 

same  is to be traded and exercised in the present COVID-19 

pandemic period with p(, T) → p(, F (T)) such that: 
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Here, F  ∈  is a bridge-in-price function sequel to 

changing trading intervals generated by the COVID-19 

pandemic on  with the property that: 
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If the path of F (, T) assumes the path of a wiener 

process {W(, T): T ≥ 0} through the maturity parameter 

T ≤ t, then the guarantee of the existence of at least one 

natural homomorphism φ such that: 
 

: →  (4) 
 
is established. In this case, φ is a homomorphism between 

rings with identities onto . 

Proposition 1 

The homomorphism φ in (4) such that: 
 

( ) ( )( ): , , ,F T F T W T  →   (5) 

 

is sub-exponential with parameter  ≥ n provided that φ 

is measurable. 

Proof 

Fix (ω ∈ Ω) → x and apply the isomorphism of 

(Arnautov and Ermacova, 2014; Kulabokhov, 2019) on 

the right-hand side of (5). Consequently: 
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The mini parameter γ ∈  is the intensity due to x 

fixed. Thus, one can write (6) in view of (3) respective of 

a natural number  as: 
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Since, ≥ 2 in (7), the bond price p(, T) in (1) must 

admit some sub-exponentially due to induced COVID-19 

pandemic effects as in (2). In this case, the quoted price 

p(, F (T)) in (2) holds good whenever  is within the 

dreaded2 pandemic period with the representation3 as in 

(7) and such that: 
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Equation (8) is an Ito process (Øksendal and Øksendal, 

2003). Let: 
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such that: 
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Then by Ito’s formula on g(.), one obtains that: 
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and that: 
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Here: 
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Finally: 
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Here again: 
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Hence, by combining (11), (13), and (15), one obtains4 that: 
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Corollary 1 

Under (3) and (4), the price of  fluctuates with drift 

α and volatility σ given by: 
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1C =  (20) 

 

Proof 

This result is a consequence of (18) as in (Øksendal and 

Øksendal, 2003). Thus, if the COVID-19 process hits the 

bond price process in (1), then the result is a transformed 

process (8) whose features are those of the geometric 

Brownian motion (18). The path of (18) (T × ω × W(T, )) 

→ (pω(T, W(T, ))) is measurable in view of (Øksendal 

and Øksendal, 2003). Solving for pT gives: 
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Table 1: α, σ Trends versus T in COVID-19 Times 

T(years) α σ 

    0 11.51300000 0.0000000 

    1 21.34200000 3.4112000 

    2 5.92190000 0.8528100 

    3 1.62960000 0.2076000 

    4 0.64778000 0.0631710 

    5 0.33685000 0.0233970 

  10 0.05464200 0.0008679 

  35 0.00181910 1.7451e-06 

  50 0.00065513 2.9402e-07 

  70 0.00024677 5.4734e-08 

  85 0.00013987 2.0741e-08 

100 8.67930e-05 9.2048e-09 

 

Table 1 shows α and σ paths for selected T. From 

the said table, the impact of the noise parameters can 

be deduced. For instance, in 2023, bond prices will drift 

about 65% of their non-pandemic face values at 6% 

frequency due to the COVID-19 pandemic. 

Interestingly in 2029, the price of the same asset drifts 

only around 5% at a frequency lesser than 1%. 

Results and Discussion 

For further numerical discussions, we simulate (21) to 

study the path of (2) in the light of the 80-20 Pareto 

distribution assuming that 80% of bond wealth is in the 

hands of 20% bondholders who are infected by the 

COVID-19 pandemic. We also simulate the bond price 

model in (1) to study the changes in the path between the 

two models. The following remarks hold good. 

Remark 1 

If T is Pareto 80-20 and positively increasing in R 

sequel to defaults, then the constants C0, C1, and C3 

decrease while C2 increases. 

Table 2 presents the constant values C0, C1, C2 and 

C3 against T≤100 years. From the said table, it is clear 

that C0 values decrease slowly to 0.05 at T = 10 years. 

This trend is followed by a constant pattern of C0 ≃ 0 

for T>10 years. Clearly, the general trend for C0 is that 

of a bond constant decreasing as T increases. In this 

case, C0 represents the component of the prevailing 

interest rate during the pandemic. From Table 2 again, 

C1 decreases to 0.02 where T = 5 years. This trend is 

followed by C1 ≃ 0 afterward for all T>5 years. As a 

trend, C1 decreases as T increases in the pandemic 

period. The same trend in path is taken by C3 as a 

function of T. On the contrary, C2 starts with a value of 

3.4112 at T = 1 year and steadily increases to 0.04 at 

time T = 4 years. It can be conjectured that the 

decreasing Ci′s emanated from the hidden effects of the 

COVID-19 pandemic on the existing model (1). 

Remark 2 

Suppose B is quoted where T is sub-exponentially 80-20 

Pareto-tailed sequel to the COVID-19 pandemic or any of its 

arguments. Then p(, F (T)) is astronomical in the short term. 

Table 3 presents the path analysis of p(, F (T)) as in 

(18) and that of p as in (1). Clearly, at T = 1 year, pT 

skyrockets from $1000 to an astronomical value of 

$16,729,000,000. Again, At T = 2 years and T = 3 years 

respectively, the bond price values are $370,310,000 and 

$232,080. Here, the COVID-19 pandemic created 80% 

uncertainties in the bond market causing investors to 

flee to other financial markets as in Ma and Ma (2013) 

under high-level uncertainty, trader loss severity, and 

high claim arrival intensities. Bond traders will choose 

to cash in to treat COVID-19 pandemic symptoms 

without minding the price. As a result, bond markets 

lose control over the short-term maturities. Afterward, 

bond prices show signs of stability in both time and 

space. For instance, in the year 2029, the bond 

exercised at $1000 will trade at $1494 via the canonical 

model and at $1742 via the stochastic model developed 

in this study. 

Remark 3 

Under the 80-20 pareto COVID-19 pandemic tail, the 

price of  reverses its path to a monotonically decreasing 

path within the same maturity interval. 

This information is clear from Table 3 showing that the 

price of the bond p climbs consistently from $1000 at T = 0 to 

approximately $6000 at T = 100 years. On the other hand, p(, 

F (T)) declines towards extremely low values close to $1000 

as time to maturity T approaches 100 years. In this case, the 

paths assumed by the two models are opposite in direction and 

strictly monotonic agreeing with (Shao et al., 2015) that 

showed that the price of CAT bonds is most likely to reverse 

when the threshold level is decreased, the time to maturity is 

increased and the likelihood of default increases. This further 

proves the strength of the methodology designed and 

presented in this study. 

 

Table 2: C_0, C_1, C_2, C_3 versus T in COVID-19 times 

T(years) C_0 C_1 C_2 C_3 

    0 11.5130000 0.0000000 0.0000000 0.0000000 

    1 3.41120000 3.4112000 -3.4112000 39.273000 
    2 1.43910000 0.8528100 -0.8528100 9.8183000 

    3 0.73683000 0.2076000 -0.1698500 1.9555000 

    4 0.42640000 0.0631710 -0.0421140 0.4848600 
    5 0.26852000 0.0233970 -0.0129980 0.1496500 

  10 0.05330100 8.6791e-04 -2.5530e-04 2.9389e-03 

  35 0.00181830 1.7451e-06 -1.4933e-07 1.7193e-06 
  50 0.00065504 2.9402e-07 -1.7627e-08 2.0294e-07 

  70 0.00024676 5.4734e-08 -2.3448e-09 2.6995e-08 

  85 0.00013987 2.0741e-08 -7.3182e-10 8.4254e-09 
100 8.67910e-05 9.2048e-09 -2.7609e-10 3.1786e-09 
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Table 3: p and p_T versus T in COVID-19 times 

T(years) P($) P_T($) 

    0 1000.0 1000.0000000 

    1 1049.5 1.6729e11 

    2 1098.9 3.7031e08 

    3 1148.4 2.3208e05 

    4 1197.8 17044.0000000 

    5 1247.1 6048.8000000 

  10 1493.6 1742.1000000 

  35 2717.0 1065.8000000 

  50 3443.7 1033.3000000 

  70 4404.2 1017.4000000 

  85 5118.3 1012.0000000 

100 5827.1 1008.7000000 

 
Table 4: p and p_T versus T in COVID-19 times 
T(years) P($) P_T($) 

   0.0 1000.0 1000.0000000 

   1.0 1049.5 1.6729e11 

   2.0 1098.9 3.7031e08 

   3.0 1148.4 2.3208e05 

   4.0 1197.8 17044.0000000 

   5.0 1247.1 6048.80000000 

10.0 1493.6 1742.1000000 

11.0 1542.9 1608.9000000 

11.1 1547.8 1597.8000000 

11.2 1552.7 1587.0000000 

11.3 1557.6 1576.5000000 

11.4 1562.6 1566.3000000 

11.5 1567.5 1556.3000000 

11.6 1572.4 1546.7000000 

11.7 1577.3 1537.3000000 

11.8 1582.2 1528.2000000 

11.9 1587.2 1519.3000000 

   12 1592.1 1510.7000000 

   13 1641.3 1435.6000000 

   35 2717.0 1065.8000000 

 

Remark 4 

There exists a unique price for B identical to both models. 

Table 4 shows p(, F (T)) when T = 11.2 years is $1587 

which coincides with p at T = 11.9 years. At this point, the 

coincidental price represents the equilibrium price where the 

canonical model perfectly transformed itself onto the 

stochastic model. By proposition 1, p(, F (T)) extends the 

canonical model onto the COVID-19 pandemic times at this 

maturity period. As a consequence, it is clear that the 

stochastic model has a root in the canonical model as claimed 

and analyzed in this study. 

Remark 5 

The 80-20 pareto tail containing COVID-19 trading 
times are normal bonds under long T. 

Table 3 shows p(, F T)) against selected values of T. 
From the said table, it is clear that a bond with a $1000 face 
value has p(, F (T)) ranging from $1742.1 to $1008.7 

for T≥10. Clearly here, the pattern of long maturity 
times is being much closer to the face value of the bond 
during the COVID-19 pandemic. Again, bond prices 
enter the normal region in volatility hence, normal 
under maturity periods T≥10. 

Conclusion 

We design a CAT bond pricing model for normal 

bond trading during the COVID-19 pandemic time and 

provide its Ito representation and analysis. The work 

discovered a major result showing the existence of a 

relationship between CAT bonds of the COVID-19 

pandemic with that of earthquakes as in Romaniuk 

(2003). Again, we have shown the existence of path 

reversals for COVID-19 pandemic CAT bonds. This 

result agrees with (Shao et al., 2015) for earthquakes 

CAT bonds. As a recommendation, since CAT bonds 

with short-term maturity periods are astronomically 

expensive in the 80-20 pareto tail region containing the 

COVID-19 pandemic, it is better to issue bonds in the 

mid-term to wave foreseen uncertainties. Finally, the 

work posits that CAT bonds within 80-20 pareto tail 

containing COVID-19 trading times attained steadiness 

under long maturity periods with equilibrium points 

around the eleventh year of the COVID-19 pandemic. 
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