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Abstract: The dreaded COVID-19 is a communicable respiratory disease 

caused by a new strain of coronavirus that causes illness in humans. A study 

of the transmission dynamics of the disease is essential in the control and 

elimination of the disease. In this research work, we made some assumptions 

and employed a deterministic SEIR model in the study of the transmission 

dynamics of the novel coronavirus disease. A mathematical analysis is 

performed on the model. This analysis includes the positivity of solutions of 

the model, boundedness of solution, equilibrium points, basic reproduction 

number, stability and sensitivity analysis. The effects of some sensitive 

parameters of the basic reproduction number of the COVID-19 disease are 

made visible in the numerical solutions of the disease model. These 

simulations which can be employed as a guide in the control and elimination 

of the disease shows that individual’s compliance to government’s laws on 

the use of facemask and social distancing is a major successful tool to be 

positively embraced in the fight against this human enemy. 
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Introduction 

Over the course of time, deadly diseases have ravaged 

the entire world at different points of human existence and 

most of these deadly diseases have caused mankind to live in 

an ocean of untold suffering and want (Balkhair, 2020). 

WHO (2020a) stated that over the past decade, more than 19 

infectious agents have caused several disease outbreaks and 

epidemics. A disease pandemic is a form of epidemic which 

eats into the human population affecting very large number 

of humans (Muthu, 2005). Samal (2014) revealed that the 

infectious nature of these diseases makes them a pandemic, 

not merely because of the fact that they kill people. The 

newest deadly disease is the coronavirus disease, COVID-19 

which is caused by SARS-COV-2, and COVID-19 was 

declared a public health emergency of international concern 

on January 30th, 2020 and a pandemic on March 11th, 2020 

(Balkhair, 2020). World Health Organisation (2020) 

revealed that as of 9th April, 2020, COVID-19 has already 

occupied a dreaded position as one of the worst pandemics 

in the history of man with over 1.39 million infections in 177 

countries and over 85000 deaths globally. COVID-19 was 

first spotted in a sea food market in Wuhan, China in 

December, 2019. Imperial College COVID-19 Response 

Team (2020) opined that proactive containment and 

suppression measures like contact tracing, travel 

restrictions, isolation of confirmed cases, case finding, 

social distancing, closure of institutions, cancelation of large-

scale public gatherings, lockdown measures, etc, are 

viable options to employ in the effective management 

and control of the COVID-19 pandemic. WHO (2020b) 

also stated that it is important to note that              

disease-induced immunity has not been scientifically 

established for COVID-19 and as such, the use of such 

“immunity passport” may increase the risk of continued 

transmission. Mathematical epidemiology has helped 

scientists to address the problems created by infectious 

diseases (Hamer, 1906, Kernmack et al., 1927, May 

and Anderson, 1979, Hethcote, 2000, Thieme, 2003). 

 One of the most common ways to use rates of change 

is the setting up equation showing the relationships which 

exist between unknown functions and their rates of 

change with respect to one or more independent variables. 

These equations are called differential equations. Meng 

(2020) proposed the method steps of establishing an 

ordinary differential equation model, and combined the 

practical exploration of the application of ordinary 

differential equations in mathematical modelling. 

Ordinary differential equations have also been applied to 

population prediction models (Xiaohua and Min, 2013). 

The overall goal of mathematical models is to achieve 

the inequality R0<1, where R0 is a threshold representing 
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the average number of new cases resulting from one 

infectious individual in an entirely susceptible 

population. With R0<1, the stability of the disease-free 

equilibrium is guaranteed either in a local or a global 

sense (Diekmann et al, 1990, Perasso, 2018). Different 

research works have been done on the COVID-19 

pandemic and over 5300 publications have been 

recorded in the database of publications on COVID-19 

of the world health organisation (Eikenberry et al, 

2020). Several works have dealt with the transmission 

dynamics of COVID-19 disease using SIR and SEIR 

model, and many research works predicted a decline in 

secondary infections when all precautionary measures 

are observed globally. (Zeb et al., 2019, Jia et al., 2020, 

Kucharski et al., 2020, Prem et al., 2020).  

In this research work, we build a deterministic model 

for the COVID-19 disease based on some assumptions. 

Based on the disease status of individuals, six mutually 

exclusive compartments are considered. These 

compartments include the susceptible compartment, the 

exposed compartment, the asymptomatic infectious 

compartment, the symptomatic infectious compartment, 

the hospitalised compartment, and the recovered 

compartment, which we denote by S, E, IA, IS, H, R 

respectively. The positivity and boundedness of solution 

is considered. We also analyse the equilibrium points and 

their stability, the basic reproduction number. This paper 

also considers the sensitivity of the parameters of the basic 

reproduction number, and some numerical simulations of 

the model where the effects of two parameters  and  

(where 𝜒 is the rate of transmission and 𝜎 is the average 

compliance level of susceptible individuals to government 

laws on the use of facemask and the social distancing rule) 

on the infectious compartments sizes are studied. 

Materials and Methods 

We formulate a deterministic 𝑆𝐸𝐼𝑅 model of non-

linear ordinary differential equations for the coronal virus 

disease also known as COVID-19. The model divides the 

population of individuals into six compartments: the 

susceptible individuals, the exposed individuals, the 

asymptomatic infectious individuals, the symptomatic 

infectious individuals, the hospitalised individuals, and 

the recovered individuals denoted by S, E, IA, IS, H, R 

respectively. Basic mathematical analyses are performed 

on the model. These analyses include establishing the 

positivity of solution, the invariant region, the disease-

free equilibrium, the disease-endemic equilibrium, the 

basic reproduction number, the stability of the equilibrium 

points, bifurcation and sensitivity analysis. The 

Mathematica programming software is employed to 

perform some simulations on the model while varying 

some parameter values of the model. 

Model Formulation  

The per capita recruitment rate is Λ and it is assumed 

to occur only in the susceptible class. Susceptible 

individuals (S) become exposed at the rate ( )1  − where 

𝜛 is the force of infection given by
( )1 2A SI I H

N

  


+ +
=  

and 0    1 is the average compliance level of 

susceptible individuals to government laws on the use of 

facemask and the social distancing rule. The rate of 

transmission is given by  = k, where k is the contact rate, 

and 𝜏 is the probability  that a contact is effective enough 

to cause infection. 0 1  1, 0 2  1 0  2   are the 

transmission coefficients of the symptomatic infectious 

(IS) and hospitalised individuals (H). The exposed 

individuals (E) become infectious at the rate 𝛾, with 𝑝 

proportion becoming asymptomatic and (1-p) proportion 

becoming symptomatic. The symptomatic class (IS) is also 

increased by the asymptomatic individuals (IA) at the rate 

. It is assumed that individuals who are tested and 

confirmed positive are hospitalised, hence the 

hospitalised compartment is increased by individuals 

from the exposed class, the asymptomatic class, and the 

symptomatic class at the rate . The recovery rate for 

infected individuals not hospitalised is 𝜉, while the 

recovery rate for the hospitalised individuals receiving 

treatment is . The disease-induced death rate is  and it 

occurs only in the infectious classes. We assume there is 

no disease-induced immunity, hence, after some time, 

some recovered individuals move back into the 

susceptible class at the rate 𝛿. The natural death rate is  

and it occurs in all compartments. The model flow 

diagram is given in Fig. 1: 
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Assumptions of the Model 

The model is based on the following assumptions. 

 

1. Per-capita recruitment occurs only in the susceptible 

compartment 

2. Disease-induced death only occurs in the infectious 

compartments 

3. Individuals leave the hospitalised compartment if and 

only if they have been discharged or they die 

4. Testing rate influences hospitalisation rate, hence 

hospitalization rate is the same for the exposed, the 

asymptomatic and the symptomatic classes 

5. Recovery rate differs for individuals hospitalized and 

not hospitalized 

6. There is no disease-induced immunity 

 

Descriptions of Variables and Parameters 

The descriptions of all variables and parameters of 

the model are clearly presented here as Table 1. 

 
 

Fig. 1: Schematic diagram

 

Table 1: Variables and Parameters 

Variables Description 

S(t) Susceptible individuals at time t 

E(t) Exposed individuals at time t 

IA(t) Asymptomatic infectious individuals at time t 

IS(t) Symptomatic infectious individuals at time t 

H(t) Hospitalised individuals at time t 

R(t) Recovered individuals at time t 

 Parameters description 

 Per capita recruitment rate into the susceptible compartment 

 Force of infection of the susceptible individuals  

 Compliance level of susceptible individuals to 

 government’s laws on the use of facemask and  

 social distancing, measured on a scale of 0-1 

 Rate at which exposed individuals become infectious 

p Proportion of exposed individuals that becomes 

 infectious but asymptomatic 

 Rate at which infected individuals become hospitalised  

 Recovery rate of exposed and infectious individuals 

 Recovery rate of the hospitalised individuals 

 Rate of transmission 

k Contact rate 

 Probability that a contact is effective enough to cause infection 

1 Transmission coefficient of the symptomatic individuals 

2 Transmission coefficient of the hospitalised individuals 

 Rate at which asymptomatic individuals become symptomatic 

 Rate at which recovered individuals become susceptible 

 Disease-induced death rate 

 Natural death rate 

Initial Values S(0) = 206,011,565, E(0) = 28, 074, IA(0) = 21,000, IS(0) = 17,000 H(0) = 10,943, R(0) = 43,998 
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Results 

In this section, we present our results starting with 

the basic results such as non-negativity of solution, 

where we establish that the solution of the model is 

non-negative for all values of time, t. The invariant 

region and boundedness of solution is also presented in 

this section. Boundedness of solution ensures that the 

size of each compartment, and hence the total 

population size, is bounded by a positive constant, K. 

Non-Negativity of Solution 

We want to verify that the solution of the sys. 1 is 

non-negative for all values of t. Let us consider the 

following theorem. 

Theorem 1 (Positivity of Solution)  

Suppose




6( , , , , , ) : (0) 0, (0)

0, (0) 0, (0) 0, (0) 0, (0) 0

A S

A S

S E I I H R S E

I I H R

 =  

    
, then 

the solution set {S, E, I, R} is positive for all t0. 

Proof 

Let us consider the first equation of system (1): 

 

( )
( )

( ) (1 ) ( ).
dS t

R t S t
dt

   =+ − − +
 

 

Observe that: 

 

( )
( )

(1 ) ( )
dS t

S t
dt

   − − +  

 

By separation of variables, and applying the initial 

condition S (0) = S0 0, we obtain: 

 

( )0( ) (1 ) 0
t

S t S e   − − +   (2) 

 

Similarly: 

 

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0.A sE t I t I t H t R t t        

 

Thus, the solution of the model (1) is positive for all 

values of t  0. This completes the proof. 

Invariant Region and Boundedness of Solution 

Another way to establish that the sys. 1 is well-

posed is to study the invariant region in which the 

solution to the sys. 1 is biologically relevant. Consider 

the following theorem. 

Theorem 2: The set 

 

 6( , , , , , ) : 0 /A S A SS E I I H R S E I I H R N + + + = =   + +  +  (3) 

 

Is positively-invariant for the model 1. 

Proof 

Consider the total population N (t) of individuals at 

time 𝑡, given by: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )A sN t S t E t I t I t H t R t= + + + + +  

 

Observe that: 

 

( )( ) ( ) ( ) ( )

( ) ( )

A sN t I t I t H t

N t N t



 

= − + +

−  −
 

 

By separation of variables, we obtain: 

 

3( )
tc e

N t


 

−
 −  

 

Taking limit as ,t → we obtain: 

 

( )N t



  (4) 

 

Equation 4 is referred to as the threshold population 

level. Therefore, the feasible solution set of system (1) 

enters and remains in the region: 

( ) 6, , , , , : 0 ( ) ( ) ( ) .A S A SS E I I H R S E I t I t H t R N


+

 
 =   + + + + + =  

 

If the population is higher than the threshold population 

level, the population of individuals reduces 

asymptotically to the carrying capacity. If ,N



 then 

the solution of the sys. 1 remains in Γ for all t > 0. 

Therefore, the region  is positively invariant. This 

completes the proof. 

Disease-Free Equilibrium 

The point where the human population is free from the 

dreaded COVID-19 is worth analysing. This is the 

Disease-Free Equilibrium (DFE) point of the model (1). It 

is denoted by 𝔼0. We obtain 𝔼0 by solving system (1) with 

the right hand side equated to zero and letting E = IA = IS 

= H = R = 0 Thus, we obtain: 
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( )0 0 0 0 0 0

0 , , , , , ,0,0,0,0,0A SS E I I H R


 
= =  

 
 (5) 

 

Theorem 3: 

The model (1) admits a unique DFE. 

Proof 

Substituting E0 into the system (2) shows that all the 

derivatives are equal to zero, hence, the DFE is unique. 

This proves the theorem. 

Basic Reproduction Number 

We now turn our attention to the average number of 

secondary infections caused by a single infectious 

COVID-19 patient within an entirely susceptible 

population during his/her infective period. This number 

which is referred to as the basic reproduction R0 is a very 

important dimensionless quantity in mathematical 

epidemiology. The next generation matrix due to is 

employed in obtaining R0. Let us consider the infected 

compartments X(t) = (E(t)), IA(t), IS(t), H(t)) in the form 

X'(t) =  (t) – v(t) where:  

( )

( )

( ) ( )

( ) ( )

(1 ) ( )

0

0

0

( )

( ) ( )
.

1 ( ) ( ) ( )

( ) ( ) ( ) ( )

A

A S

A S

S t

and

E t

p E t I t
v

p E t I t I t

I t I t E t H t

 

   

     

     

   

 
 −
 
 =
 
 
 
 

 + + +
 
− + + + + + 

=  
− − − + + + + 
 
− + + + + +  

 

 

Evaluating the Jacobian of the matrices  and , 

respectively, at the disease-free equilibrium we obtain: 
 

( )

10(1 ) (1 ) (1 )

0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0

0 0

1 0

F and

p
V

p

     

   

     

     

     

 − − −
 
 =
 
 
  

+ + + 
 
− + + + +
 =
 − − − + + +
 
− − − + +  

 

 

( )( )

( )( )( )
( )( )( ) ( )

( )

( )( )( ) ( )( ) ( )( )

1

1
0 0 0

1
0 0

1 1
0

1

p

V
p

   



             

      

                     

       

                            

−

 
 + + +
 
 
 

+ + + + + + + + + + + 
 =  − − + + +

 
 + + + + + + + + + + + + + + + + +
 

+ + + + 
 + + + + + + + + + + + + + + + + + + + + + 

 

 
and hence: 
 

( ) ( )
( )( )

( )( )
( )( )

121 2 3 4

1

1

2 2

2 3

( 1) ( 1)1( 1)

0 0 0 0
, ,

0 0 0 0

0 0 0 0

(1 )

,

pk k k k p

FV wherek

k k

               

                    

   

   
 

        

        

−

− + + + −  + + + + −−
+ − 

+ + + + + + + + + + + + + + + + = =
  + + +
 
  

 
+ − 

+ + + + + +−  = + =
+ + + + + + +

( )( )
( )( )

1 2 2
4

(1 ) (1 )
, .k

          

         

+ + + − −
=

+ + + + + + +
 

 

Using 
( 1) 0FV I− − = we obtain the following 

eigenvalues for the matrix 1FV − : 
 

( )( )
( )( )

( )( )
( )( )

1 2 3

12

4

0,

( 1)1 ( 1)

and

pp

  

                

                    


   

= = =

− + + + −− + + + + −
− −

+ + + + + + + + + + + + + + + +
=

+ + +

 

 
It follows that the spectral radius and hence the basic 

reproduction (R0) number is given by: 

( )( )

( )( )
( )( )( )

( )( )

( )( )( )

0

1

2

(1 )

(1 ) (1 )

1
.

p
R

p

  

        

       

            

      

          

−
=

+ + + + + + +

− − + + + +
+

+ + + + + + + + + +

− + + +
+

+ + + + + + + +

 (6) 

 

It is clearly seen that the basic reproduction number 

(R0) above is sponsored by a combination of three sets of 
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individuals. The first term shows that when an infectious 

individual is introduced into an entirely susceptible 

population, susceptible individuals become exposed and a 

proportion of these exposed individuals become infectious 

but asymptomatic. The total time spent by this proportion 

both in the exposed and asymptomatic compartments is 

given by 
( )( )

1

        + + + + + + +
 and the 

combined rate is (1 )p  − . The second term accounts for 

susceptible individuals who become exposed, infectious 

without symptoms but later developed symptoms of the 

disease. The total time spent by this proportion is 

( )( )( )

1

            + + + + + + + + + +
and the 

combined rate is ( )( )1 (1 ) (1 )p       − − + + + + . The 

third term accounts for individuals who become exposed, 

then infectious with symptoms of the COVID-19 disease, 

and are later hospitalised. The total time spent by this 

proportion is 
( )( )( )

1

          + + + + + + + + +
 and 

the combined rate is ( )2 (1 ) .       − + + + +  

Endemic Equilibrium 

We now uncover the equilibrium point where the 

disease is persistent in the population. This is the endemic 

equilibrium point 𝔼∗of the model (1). To obtain this point, 

we equate the system (1) to zero and solve the resulting 

steady state system. For simplicity, we set: 

 

, , , , ,A s
A s

S E I I H R
s e i i h

N N N N N N
= = = = = =  

 

and note that ( )
* * *

1 2e A si i h   = + + .Thus, we obtain 

( )* * * * * *

* , , , , ,A SE s e i i h r= as given below: 

 

( )( )

( ) ( )

( )

( )( )

( )( )

( ) ( )( )

( ) ( )( )( )

( )( ) ( )( )

*

* *

* *

* *

*

*

1

1

( 1 )

( 1 )

es

s

A s

s s

s

s

s ai

e i
p

p
i i

p

i i

h i
p

r i
p

        

     

   

    

          

        

              

          





 =

 + + + + + + +

= −
− + + + + −

 + + +
 =−
 − + + + + −


=
 + + + + + + + +
 = −

+ + − + + + + −

+ + + + + + + + + + +
= −

+ + + − + + + + −







 (7) 

 

where: 

 

( )( ) ( ) ( )( )( ) ( )( )( )
( )

1 2 2

0

*

0

1 1 ( )

)) / ( ( )( )( )( )(( 1 )( ) ).

( ( )( )(( 1 )( ) ) / ( ( )(s

a p

R p

i R p p

                                   

                        

             

= − − − − − − − − − − − − − + + − + + + + − + + + + + + +

+ + + + + + + + + + + + + + − + + + + −

= −  − − − − − − + + + + − − +

( )( )
1

1 2 0

2 0

) ( 1 )( ) ( )

( )( ( )(( )(( ) ) ( ( )( ) ( ) )

( )( )( ( ) ( ( ) ( ) ( )( ))).

R

R

             

                                     

                           

+ + − + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

 

 

Stability Analysis 

We now examine the stability of the equilibrium 

points. Here, we consider the local stability of the DFE 

and the global stability of DEE. They are presented in the 

theorems below. 

Theorem 4 

The DFE is locally asymptotically stable if R0 < 1. It is 

unstable whenever R0 > 1. 

Proof 

Consider and evaluate the Jacobian matrix for the 

coupled system of Eq. (1) at the disease-free equilibrium. 

This Jacobian matrix is denoted by J𝔼0  and is given below: 
 

( ) ( ) ( )

( ) ( ) ( )

( )

( )

0

1 2

1 2

0 1 1 1

0 1 1 1 0

0 0 0 0

0 0 0

0 0

0

p
J

p

         

           

     

      

     

     

 − − + − + − +
 

− − − − − − + − − + − − + 
 − − − − −
 =

− − − − − 
 − + +
 
 − + 

 

Observe that: 

 

( )

( ) ( )( )

( )( )

0 0

( ) 3 6 3 3 0.

( ) 1 ( )

etrace J

det J R

       

         

        

= − + + + + + + + 

= − − + + + + + + +

+ + + + + + +

 

 

Noting that, from the expression of 𝑅0 given in Eq. 6: 

 

( )

( )
( )

( )( )

( )
0

2
11

.
1

1

R

p

   


       


               

+ + +
= −

 − ++ + + +
 − + + −
 + + + + + + + + + + + +
 

(8) 

 

Now, using the condition that det (JE0) > 0, we obtain: 
 

0 1.R   

 

Therefore, the DFE (𝔼0) is locally asymptotically 

stable whenever 0 1.R  This completes the proof. 
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Theorem 5 

The DFE is globally asymptotically stable if 0 1R  . 

Proof 

To prove the global asymptotic stability of the DFE, 

we use the method of Lyapunov functions. Let us define 

the Lyapunov function 𝐿 as: 

( )( ) ( )

( ) ( )

( ) ( ) ( )

1 1

1

1 1

1 1 1
.

A

S

L S
s

E I

I H R

      

        

       

= +
− + + + +

+ +
+ + + + + + +

+ + +
+ + + + +

 

 
Then: 
 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )
( )

( )
( )

( )( ) ( )

1 1 1 1 1

1

( )(1 ) (1 )

1

1

S

A S A SA
A S

dL dS dE dI dH dR

dt dt dt dt dt dt

I I E E I I H tdL R S p E p E I
S E I I H R

dt

dL p
S

dt

               

       

                    



       

= + + + + +
− + + + + + + + + + +

+ + + + + + − − +
 = − + − + − + − + − + −

− + + + + + + + + + + + + + +


 = − +

− + + + + + ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )( )

( )( )

21
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1 1

1(1 )
1 1 1

1

1
1

A S

p s
E

N

s
I I H R

N N

dL

dt

       

                     

       

                 



   

   − −
+ + + − + + + + −      + + + + + + + + + + + + + + +   

    −−
+ + + − + + − + −         + + + + + + + + + + − +     


  −

 − + ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
1 2

1 (1 )
1 1

(1 ) (1 )
1 1 1

1
A S

pp
E

N

I I H R
N N

d

       

                           

       

                   

    − − 
+ + + + − + + + + −        + + + + + + + + + + + + + + + + + + +   

    −  − 
+ + + − + + − + −         + + + + + + + + + + − +     

 ( ) ( ) ( ) ( ) ( ) ( )

( )

0 0 0 0 0 0

0

1 1 1 1 1 1

1

A S

A S

L
R R E R I R I R H R R

dt

dL
R E I I H R

dt






 − + − + − + − + − + −

 
  − + + + + + 

 

 

 

So 0
dL

dt
  if 0 1.R   Observe that 0

dL

dt
=  if the disease 

free equilibrium ,0,0,0,00


 
 
 

. It follows immediately by the 

principles of [28] that the disease-free equilibrium is 

globally asymptotically stable if 0 1R  .  

Theorem 6 

If 0 1R  , the endemic equilibrium𝔼e of the system (1) 

is globally asymptotically stable. 

Proof 

In investigating the nature of R0 for the global stability 
of the disease endemic equilibrium, we employ the 
method of Lyapunov functions. Define: 
 

* * * * * * * * * * *

* * *

* * * *

* * *

( , , , , , ) A
A S A A A

A

S
S S S

S

S E I
L S E I I H R S S S ln E E E ln I I I ln

S E I

I H R
I I I ln H H H ln R R R ln

I H R

    
= − − + − − + − −    
     

     
+ − − + − − + − −     

    

 

 
Calculating the derivative of 𝐿 along the solution of 

(1), we obtained: 
 

* * *

* * *

1 1 1

1 1 1

A

A

S

S

dL S dS E dE I dI

dt S dt E dt I dt

I dI H dH R dR dL
A B

I dt H dt R dt dt

    
= − + − + −    
     

     
+ − − + + −  = −     

    

 (9) 

where: 
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     

      

      


      

  
      


 

=  + − + + − + + + +

+ + + + + + + −

+ + + + + + + +

+ + + + + + + + +


+ − + + + + + + +

−
+ + + + + + + + + +

− 
+ + + ( )

( )
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*
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I
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E I I RI I E H HR
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 
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+ + +
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Observe that: 

 

i. * * * * * *0 , , , , , ,A A S S

dL
iff S S E E I I I I H H R R

dt
= = = = = = =  

ii. 0
dL

if A B
dt

   

 

It follows that the singleton set 𝔼* which is the endemic 

equilibrium of the system (1) is the largest compact invariant 

set in ( ), , , , , : 0A S

dL
S E I I H R

dt

 
 = 

 
. Therefore, 𝔼* is 

globally asymptotically stable in  if A  B [2]. 
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Sensitivity Analysis 

Sensitivity analysis shows which parameter has 
high impact on R0. The approach used by Kizito and 
Tumwiine (2018) is employed here to compute the 
sensitivity indices of the parameters The normalized 
forward sensitivity index of R0 that depends 
differentiability index on a parameter 𝜐, is defined as: 
 

0 0

0

R R

R








= 


 (10) 

From Eq. 6 and 10, we obtain the following results: 
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           

               

   





 + + + −

+ +  + + + + + + + + + + + + 

− + + + +
= − 

 + + + + −
+ + − + + + + + + + +  + + + + + + + + + + + + 

+

=

( )( )
( )

( )

( )

( )
( )
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2

1 1
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21 1

) 2( ) 2( )

( )
0.

(1 )

p p

p

              


              

       
   

               

  + + + + + + + + + + + −
  + +

  + + + ++ + + + + + + +   
 + + + + −

+ + + + +  + + + + + + + + + + + + 

 

 

where: 
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( )( )
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2
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b

                               

                       
     

                          

= + + + + + + − + + + + + + + + + + + + + + +

 + + + + + + − + + − + + + −
 = + + + + + + +
 + + + + + + + + + + + + + + + ++ + + + + 
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p

p
b
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   

               

                   
    

                      

  
 − 
 + + + +  

 + + + + −
= + + + + +  + + + + + + + + + + + + 
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p

p
b

 


             

        
   

               

  
 −   + −   + + + + + + + + + + +    

  

 + + + + −
= + + + + +  + + + + + + + + + + + +   
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We observe that , p, , 1 and 2 are the most sensitive 

parameters of the basic reproduction number R0. 

Increasing the values of these parameters (especially the 

value of  whose sensitivity index is +1), while keeping 

the other parameters fixed, increases the value of R0. Also 

keeping the values of , p, , 1 and 2 fixed while 

increasing the values of the other parameters of R0, 

decreases the value of R0. 

Bifurcation Analysis 

In this section, we shall employ the centre manifold 

theorem contained in the theorem below. The parameter 

values in Table 2 are also substituted, when necessary, in 

order to simplify expressions. 

Theorem (Castillo-Chavez and Song, 2004): 

Consider the following general system of ODEs with a 

parameter : 

 

2( , ), : ( ),n ndy
f y f and f C

dt
   =  (12) 

 

where, 0 is an equilibrium point of the system (that is,
(0, ) 0f    ) and assume. 

: (0,0) (0,0)i
x

j

f
AI A D f

x

 
= =  

  

is the linearization 

matrix of matrix of the system (12) around the equilibrium 

point 0 with  evaluated at 0. Zero is a simple eigenvalue 

of A and other eigenvalues of A have negative real parts; 

A2: Matrix A has a right eigenvector w and a left vector 

v (each corresponding to the zero eigenvalue). 

Let fk be the kth component of f and: 

 
2

, , 1

2

, 1

(0,0),

(0,0),

n
k

k i j

k i j i j

n
k

k i

k i i

f
a v w w

x x

f
b v w

x 

=

=


=

 


=

 





 

 

The local dynamics of the system (1.18) around 0 is 

totally determined by the signs of a and b: 

 

i. a> 0, b> 0 when < 0with 1,0  is locally 

asymptotically stable, and there exists a positive 

unstable equilibrium; when 0 1,0  is unstable and 

there exists a negative and locally asymptotically 

stable equilibrium 

ii. 0, 0 0 1,0a b when with      is unstable; when 

0 1, 0 is locally asymptotically stable, and there 

exists a positive unstable equilibrium 

iii. 0, 0 0 1,0a b when with      is unstable, and there 

exists a locally asymptotically stable negative 

equilibrium; when 0 1,0 is stable, and a positive 

unstable equilibrium appears 

iv. 0, 0a b when    changes from negative to positive, 

0 changes its stability from stable to unstable. 

Correspondingly, a negative unstable equilibrium 

becomes positive and locally asymptotically stable.  

v. Particularly, if a > 0 and b > 0 then a backward 

bifurcation occurs at 0 =  

 

Now, let 1 2 3 4 5 6, , , , , .A sS x E x I x I x H x R x= = = = = = Then 

we can write system (1) as: 

 

( )

( )

( )

( )

( )

( ) ( )

1
6 1

2
1 2

3
2 3

4
2 3 4

5
3 4 2 5

6
2 3 4 5 6

(1 )

(1 )

 

(1 )

( )

dx
x x

dt

dx
x x

dt

dx
p x x

dt

dx
p x x x

dt

dx
x x x x

dt

dx
x x x x x

dt

   

     

     

     

   

   


=+ − − +




= − − + + +



= − + + + +


 = − + − + + +


 = + + − + +


 = + + + − +
  

 

In more concise form, (11) is written as: 

 

( )
dx

F x
dt

=
 

 

where, 1 2 3 4 1 2 3 4( , , , ), ( , , , )x x x x x F f f f f= = . We recall the 

Jacobian matrix (J𝔼0) of the system (1) at the disease free 

equilibrium: 

 

( ) ( ) ( )

( ) ( ) ( )

( )

( )

0

1 2

1 2

0 1 1 1

0 1 1 1 0

0 0 0 0

0 0 0

0 0

0

p
J

p

         

           

     

      

     

     

 − − + − + − +
 

− − − − − − + − − + − − + 
 − − − − −
 =

− − − − − 
 − + +
 
 − + 

 

 

Let us take χ as the bifurcation parameter. Observe that 

from Eq. (8), with R0 = 1, we have the critical value of * 

given by: 

 

( )

( )
*

1 2
1 1(

( 1 )
( )(

p

   


        


               

+ + +
= −

 − + + + + +
− + + − 

+ + + + + + + + +  + + + + 

 (14) 

 

From the characteristic equation of J𝔼0 given by

0
1 0

E
J − = , we obtain the eigenvalues: 
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1 2

3 4

5

17

6

0.499466, 0.243136,

0.160792, 0.003555,

0.000034,

3.331512703558856 10 0

 

 



 −

= − =−

= − = −

=−

=−  

 

 

Hence, 0 is a simple eigenvalue of J𝔼0 and other 

eigenvalues have negative real parts. We now solve for 

the right eigenvector 1 2 3 4 5 6( , , , , , )Tg g g g g g  of the 

Jacobian matrix 0( )JE . 

 

( ) ( ) ( )

( ) ( ) ( )

( )

( )

1 2

1 2

1

2

3

4

5

6

0 1 1 1

0 1 1 1 0

0 0 0 0

0 0 0

0 0

0

0

0

0

0

0

0

p

p

g

g

g

g

g

g

         

           

     

      

     

     

 − − + − + − +
 

− − − − − − + − − + − − + 
 − − − − −
 

− − − − − 
 − + +
 
 − + 

   
   
   
   
  =  
   
   
   

  
  

 

 

Solving the system, we obtained: 

 

2 2

3 2

4 2

5 2

6 2

1 2

0

0.3401250329581882

0.7014911672925501

1.4130787654005668

37.13412317260833

5310.96330321312

g g

g g

g g

g g

g g

g g

= 

=

=

=

= −  
 

Similarly, solving for the left eigenvector (h1, h2, h3, 

h4, h5, h6), we obtained: 

 

1 6 2 2

5 2

4 2

3 2

0, 0,

0.5963375639770276 ,

0.9857481094090845 ,

1.7031307539191602 .

h h h h

h h

h h

h h

= = = 

=

=

=

 

 

We now compute 𝑎and 𝑏. From the formula: 
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, , 1

24

0

, , 1

( ,0,0,0),

( ,0,0,0),

k
k i i

k i j i j
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k i

k i j i

f
a h g g s

x x

f
b h g s

x 

=

=


=

 


=

 




 

 

and considering only the non-zero components (h2, h3, h4, 

hs) of the left eigenvectors, we obtained: 

2

2 2

2 2

0.023055651043759232 0,

2529.779752835934 0.

a g h

b g h

= − 

= −   
 

Since a< 0 and b< 0 when < 0 with || << 1, E0 is 

unstable; when 0 <  << 1, E0 s locally asymptotically 

stable, and there exists a negative unstable equilibrium 

Observe from Fig. 2, the bifurcation plot (the infectious 

compartment against the basic reproduction number). It is 

seen that the system exhibits forward bifurcation, and the 

disease endemic equilibrium is globally asymptotically 

stable when R0> 1. We also see an unstable negative 

endemic equilibrium with R0< 1. 

Numerical Simulations 

Here, we carry numerical simulations in order to 

study the progression of the infection over a course of 

two years by varying the rate of transmission () and 

the compliance level () of susceptible individuals to 

government’s laws on the use of facemask and social 

distancing. The parameter values used for these 

simulations are presented in Table 2 below and the 

simulations are shown in Fig. 3-8. 

Simulation with  = 0.151725 and  = 0.7. 

In simulating the model with  = 0.151725 and  0.7, we 

observed 96% increase in the population of the hospitalised 

compartment within the first six months, which thereafter, 

begins to drop; but for a period of fifty months, this 

compartment is reduced by 82%. This is shown in Fig. 

3. We also noticed a 9% increase in the population of 

the symptomatic infectious individuals for the first two 

months, and for a period of fifty months, this 

compartment is reduced by 95%. Figure 3 also shows 

97 and 98% drops in the population of the exposed 

class and the asymptomatic infectious class respectively, 

for the said period of time. 

Simulation with  = 0.3 and  = 0.7 

In this simulation with an increased rate of 

transmission, we observed that for the first eight 

months, there is a 123% increase in population of the 

hospitalised compartment, and for a whole period of 

fifty months, the compartment is reduced by 9% only. 

This is shown in Fig. 4. There is an 11% increase in the 

symptomatic infectious compartment for first three 

months. Thereafter, a 74% drop in the population size 

is observed for the said period of 50 months. This 

simulation also revealed that 93% and 76% of 

individuals leave the exposed compartment and 

asymptomatic infectious compartment for the said 

period of time. 
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Simulation with  = 0.05 and  = 0.7 

Figure 5 shows the simulation of the system with a 

small rate of transmission,. In this simulation, we 

observed that the hospitalised compartment increased by 

83% within the first five months and for a period of fifty 

months, it has dropped by 94%. For a period of two 

months, the symptomatic infectious compartment 

increased by 2%, and for the period of fifty months, it has 

dropped by 99%. For the first ten months, we noticed a 

remarkable drop in the exposed compartment and the 

asymptomatic compartments, and by the end of the fifty 

months period, they have been lowered by over 99.9% of 

their population sizes. 

Simulation with  = 0.151725 and  = 0.35 

Figure 6 shows the simulation of the system with a 

lowered compliance level, 𝜎, of susceptible individuals 

to government’s laws on the use of facemask and social 

distancing. The simulation shows that for a period of 

thirteen months, the hospitalised population has 

increased by 142%, and the compartment is reduced by 

only 55% at the end of the fifty-month period. The 

simulation reveals that the symptomatic compartment 

increased by 18% in the first three months, and for the 

said period of fifty months, it only reduced by 53%. We 

also observed that for the first ten months, only 64 and 

36% of individuals left the exposed compartment and 

the asymptomatic compartment respectively, and these 

compartments are reduced by only 82 and 47% at the 

end of the fifty-month period. 

Simulation with  = 0.151725 and  = 0.9 

In simulating the system with a high level of 

compliance, 𝜎, of susceptible individuals to government’s 

laws on the use of facemask and social distancing, we 

observed that within the first five months, the hospitalised 

compartment increased by 82%, and with a fast rate, this 

compartment is reduced by 98% within the said period 

of fifty months. This is shown in Fig. 7. The simulation 

shows that within a period of twenty months a 

remarkable result is achieved for the exposed 

compartment and the asymptomatic compartment, and 

for a period of forty months, over 99% of individuals 

have exited the exposed, asymptomatic and           

symptomatic compartments. 

Simulation with  = 0.05 and  = 0.9 

In simulating the system with a very low rate of 

transmission and a very high level of compliance to 

government’s laws on social distancing and the use of 

face mask, we observed that within the first two months 

and five months, the symptomatic infectious 

compartment and the hospitalised compartment only 

increased by 5 and 74% respectively. Thereafter, they 

begin to drop at a very fast rate. We observed a 

remarkable reduction of over 99% in the number of 

exposed individuals and asymptomatic individuals, 

within the first twenty-two months. The symptomatic class 

has also been reduced by over 99% in a period of thirty-five 

months; and the hospitalised compartment has been reduced 

by over 99% within the said period of fifty months. 

 

 

 

Fig. 2: Bifurcation plot (forward bifurcation) 
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Fig. 3: Simulation with χ = 0.151725 and σ = 0.7 

 

 
 

Fig. 4: Simulation with χ = 0.3 and σ = 0.7 

 

 
 

Fig. 5: Simulation with χ = 0.05 and σ = 0.7 
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Fig. 6: Simulation with χ = 0.151725 and σ = 0.35 

 

 
 

Fig. 7: Simulation with χ = 0.151725 and σ = 0.9 

 

 
 

Fig. 8: Simulation of system (1) with χ = 0.05 and σ = 0.9 
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Table 2: Values of variables and parameters 

Parameter symbol Value (day-1) Source 

 0.037269 Assumed 

 0.003521 Estimated 

 0.700000 Assumed 

 0.000034  

 0.196078 Lauer et al. (2019; Li et al., 2020) 

k 0.433500  

 0.350000 Assumed 

p 0.500000 Ferguson et al. (2020) 

 0.080000  

 0.151725 Estimated 

 0.035210 Rabajante, (2020) 

 0.100000 Assumed 

 0.073000  

 0.042550 Rabajante (2020) 

1 0.400000 Assumed 

2 0.200000 Assumed 

 

Discussion  

This study has considered a deterministic model and 

analysis for the covid-19 infection. The model divides the 

population into six mutually-exclusive compartments, 

which are the susceptible compartment, the exposed 

compartment, the asymptomatic infectious compartment, 

the symptomatic infectious compartment, the hospitalised 

compartment, and the recovered compartment denoted by 

𝑆, 𝐸, 𝐼𝐴, 𝐼𝑆 , 𝐻, 𝑅 respectively.We have established that all 

solutions of the model are positive. This is necessary for 

the biological relevance of the model. We have also 

shown that the total population is bounded. These results 

were obtained when establishing the qualitative behaviour 

of the model. We also obtained the disease-free 

equilibrium and the endemic equilibrium of the model. 

The basic reproduction number, (R0), of the covid-19 

disease was obtained via the next generation matrix, and 

the expression for 𝑅0consists of three terms; the first term 

shows that when an infectious individual is introduced 

into an entirely susceptible population, susceptible 

individuals become exposed and a proportion of these 

exposed individuals become infectious but asymptomatic. 

The total time spent by this proportion both in the exposed 

and asymptomatic compartments is given by 

( )( )

1

        + + + + + + +
 and the combined rate is 

p(1-). The second term accounts for susceptible 

individuals who become exposed, infectious without 

symptoms but later developed symptoms of the disease. 

The total time spent by this proportion is 

( )( )( )

1

            + + + + + + + + + +
and the 

combined rate is ( ) ( )( )( )1 1 1 p       − − + + + + . 

The third term accounts for individuals who become 

exposed, then infectious with symptoms of the COVID-

19 disease, and are later hospitalised. The total time spent 

by this proportion is

( )( )( )

1

          + + + + + + + +
 and the combined 

rate is ( )( )2 1       − + + + + . The stability 

analysis was carried out and it was shown that the disease-

free equilibrium is globally asymptotically stable if R0 1 

and the endemic equilibrium is globally asymptotically 

stable if R0 1.The sensitivity analysis revealed that the 

rate of transmission (),the proportion (p) of exposed 

individuals that becomes infectious but asymptomatic,  

the rate () at which exposed individuals become 

infectious,  the transmission coefficient (1) of the 

symptomatic individuals, and the  transmission 

coefficient (2) of the hospitalised individuals are the most 

sensitive parameters of the basic reproduction number 𝑅0. 

 

Conclusion 

The bifurcation analysis done in this work via the 

centre manifold theory, revealed that the system exhibits 

a forward bifurcation. Numerical simulations were carried 

out, first on the endemic equilibrium, for the validation of 

the result of the bifurcation analysis; secondly, 

simulations were carried out on the model, using different 

combinations of values of the rate of transmission () and 

the compliance level () of susceptible individuals to 

government’s laws on the use of facemask and social 

distancing. It was observed that when < 0.1 and > 0.8, the 

number of infected individuals are greatly reduced at a very 

fast rate. Thus, in order to curtail and possibly eliminate the 

COVID-19 disease from a given population, the rate of 
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transmission of the disease must be minimized (since  = k, 
this can be achieved by reducing the contact rate, 𝑘, with 

infected  individuals and surfaces), and individuals in the 

population must adhere strictly to government’s laws social 

distancing and the use of facemask. 
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