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Abstract: The objective of this paper is the study the following nonlinear 

elliptic problem involving a weight function: 
 

-div(a(x)) = f(x, u) in  and u = 0 on  (P) 
 

where,  is a regular bounded subset N and N  2, a(x) is a nonnegative 

function and f(x, t) is allowed to be sign-changing. We employ variational 

techniques to prove the existence of a nontrivial solution for the problem (P), 

under some suitable assumptions, when the nonlinearity is asymptotically 

linear. Then, we prove by the same method the existence of positive solution 

when the function f is superlinear and subcritical at infinity. 
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Introduction with Main Results 

In the present paper, we investigate the existence 

result for the following nonlinear elliptic equation 

involving sign-changing nonlinearity: 
 

    , ,

0 ,

div a x u f x u in

u on

   


 

 (1.1) 

 

where,  N , N  2, is a smooth bounded open set, 

a(x) is a nonnegative function and also the function f(x, t) 

is an indefinite nonlinearity. 
This problem is nonlinear and in Physics, Dynamics 

and Biology nonlinear problems have many interest 
since they are able to explain the evolution of a system. 
If we change some parameters or the nonlinearity, the 
system undergoes transitions mainly the existence of 
solutions: We have the bifurcation phenomena. The 
problem (1.1) is the stationary position of the problem 
induced in 1952 by (Turing, 1952): 
 

    ,
u

div a x u f x u
t


  


 

 

which modules the interaction between species and 

chemicals in a morphogenesis phenomenon in 

Biology, where u is the density and f(x, t) represents 

the diffusion-interaction of substances. The term          

-div(a(x)u) indicatess the substance of diffusion 

through the given system. 

When a is a constant function, many authors have 

studied the problem (1.1) with asymptotically linear 

nonlinearity. For this reason, (Mironescu and 

Radulescu, 1993; 1996) considered the problem: 
 

 

0 ,

u g u in

u on

  


 
 (1.2) 

 
and supposed the assumptions: 

 

(G1) g:   a C1 positive function 

(G2) The function g is increasing 

(G3) The function g is convex 

(G4) 
 

lim
t

g t

t
= ℓ  (0, +). 

 

When f is superlinear and ℓ = (0, +), the problem 

(1.2) was studied in (Brezis et al., 1996; Martel, 1997) 

and the references therein and it is generated to the p-

Laplace operator in (Filippakis and Papageorgiou, 2006; 

Sanchón, 2007). The same problem with Bi-Laplace 

operator has been studied in (Arioli et al., 2005; Abid et al., 

2008; Saanouni and Trabelsi, 2016b; Wei, 1996). 

When the function a(x) is a smooth on   and f(x, t) = 

g(t), with the same conditions (G1)-(G4), the problem 
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(1.1) was studied by (Saanouni and Trabelsi, 2016a). 

The condition g(0) > 0 was capital in their work. 

On the other hand, the problem (1.1) was treated by 

(Zhou, 2002), when a is a constant function but the 

asymptotically linear nonlinearity depends on x and t. 

More precisely, the author consider the case when: 

 

(F1) The function f(x, t) is continuous on  , f(x, t)  

0 for t  0 and f(x, t)  0 for all t > 0, for all x  

(F2) 
 

0

,
lim
t

f x t

t
= p(x), with 0  p(x)  L () and 

||p(x)|| < 1, with 1 > 0 is the first eigenvalue of 

  1

0,H   

(F3) 
 ,

lim
t

f x t

t
= ℓ <  uniformly in a.e. x; 

(F4) 
 ,f x t

t
is nondecreasing with respect to t in (0, +), 

for a.e. x. 

 

and he proved also that the bifurcation phenomena occurs. 

As a recent work, we can cite that (Li and Huang, 

2019) a generalized quasilinear Schrödinger equations 

with asymptotically linear nonlinearities. They supposed 

that the nonlinearities f(t) depend only on t and they 

proved that the problem has positive solutions. For the 

superlinear nonlinearities, the Schrödinger equations was 

investigated by (Li et al., 2020). Throughout this paper, 

we assume different type of conditions. The nonlinearity 

f(x, t) does not have to be positive and it is 

asymptotically linear (ℓ finite) or super linear at  . 

More precisely, we make the following assumptions: 

 

(V1) f C   ; f(x, 0) = 0 and f(x, t)t  0 for all (x, 

t)   ; 

(V2) 
 

0

,
lim
t

f x t

t
< 1, uniformly for x, where 1 is the 

first eigenvalue of the operator -div(a(x)  ), with 

Dirichlet boundary condition on  

(V3) 
 

0

,
lim
t

f x t

t
= ℓ, uniformly for x. 

(V4) 
 ,

lim
1rt

f x t

t 
 = 0, uniformly in x for some r(2, 2*), 

here and hereafter: 

 

*

2
2

2 2

2.

N
if N

N

if N




 
 

 

 

Also, the weight function a(x) is nonnegative and for 

this reason we will use weighted Sobolev spaces. 

We remark that a non-trivial solution for the Eq. (1.1) is 

nonzero a critical point of the following functional: 

     
21

, ,
2

J u a x u dx F x u dx
 

     

 

with: 

 

   
0

, , .
t

F x t f x s ds   

 

In order to investigate the existence of nonzero 

critical point of J, we will apply Mountain Pass Theorem 

introduced by (Ambrosetti and Rabinowitz, 1973). The 

most difficult property that J has to satisfy the compactness 

condition, which is also called the Palais-Smale condition 

and often, one requires a technical condition introduced 

as this introduced in (Ambrosetti and Rabinowitz, 1973; 

Rabinowitz, 1986) and called Ambrosetti - Rabionowitz 

condition, that is: 

 

    00 ,  , ,     ,F x t f x t t for all t t and x     (AR) 

 

for some  > 2 and t0 > 0. 

Sometimes, other type of condition were made as in 

the following papers (Costa and Magalhaes, 1994; 

Costa and Miyagaki, 1995; Jeanjean, 1999; Schechter, 

1995; Stuart and Zhou, 1996; 1999). When the 

nonlinearity is asymptotically linear, we can not suppose 

the condition (AR) because it gives: 

 

 
2

,
lim
t

F x t

t
   

 

and so: 

 

 ,
lim .
t

f x t

t
   

 

In this study, we will not use (AR) or any assumption 

when we prove the existence of critical point for the 

functional J. 

Our results state as follows. 

Theorem 1.1 

Assume that (V 1), (V 2) and (V 3) are satisfied and 

ℓ(0, 1). Then, we have: 

 

(i) If 0 < ℓ < 1 and the following condition holds 

(V 5) 
 ,f x t

t
 is nondecreasing function with 

respect to t in (0, +) and nonincreasing in (-, 0). 

Then, there is no solution with one sign for 

problem (1.1) 

(ii) If ℓ > 1, then the problem (1.1) admit a non-trivial 

solution 
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(iii) If ℓ = 1 and (V 5) holds, then problem (1.1) admit a 

positive solution u  1

0 ,H a (resp. negative solution) 

if and only if there exists a constant c0 > 0 (resp. c0 < 

0) such that u = c01 and f(x, u) = 1u, with 1 is a 

positive eigenfunction associated to 1 (see section 2). 

Theorem 1.2 

Assume that (V 1) - (V 5) are satisfied and ℓ = +. 

Then the problem (1.1) admit a positive solution. 

In the present paper C and Ci denotes positive 

constants, which may change from line to another. 

Variational Formulation 

Consider  N , N  2, a regular bounded open set 

and throughout this paper, we denote: 
 

   
1

, 1 .
p pp

p
u u dx for p and u L


      

 

Let a(x)L1() be a nonnegative function and 

followed by (Calanchi et al., 2017), set: 
 

      21

0 0, ; .H a cl u C a x u


       (2.1) 

 
Set: 

 

 , .u a x u dx 


     

 
and the norm: 
 

  
1

2 2 .u a x u dx


   

 
Weighted Sobolev spaces have been developed and 

studied for a long time and we can refer to (Drabek et al., 

1997; Kufner, 1985). 

For completeness, recall that the space  1

0 ,H a is a 

Hilbert space and the embedding  1

0 ,H a ↪  1

0H   is 

continuous and so there exists a constant C such that 

1
0H

u  C||u|| for all u  1

0 ,H a , where 1
0H

u the standard 

norm on  1

0H  . Also, for q[2, 2*] the embedding: 

 

 1

0 ,H a ↪  qL   

 

is continuous but it is compact if q[2, 2*). 

Let J:  1

0 ,H a  be functional of class C1 

defined by: 
 

     
21

, ,
2

J u a x u dx F x u dx
 

     (2.2) 

where: 

 

   
0

, , .
s

F x s f x t dt   

 

Definition 2.1 

u  1

0 ,H a  is called solution of the Eq. (1.1) if for 

all   1

0 ,H a : 

 

   , ,a x u dx f x u dx 
 

      (2.3) 

 

Hence, a solution of the problem (1.1) can be found as 

critical point of functional J. Before starting the Mountain 

Pass Theorem, we introduce the following definition. 

Definition 2.2 

Let H be a Banach space and a functional 

JC1(H, ). We say J satisfies the Palais Smale (PS) 

condition if any sequence {un} H such that J(un) 

converges in  and J(un)  0 in H, the dual space of 

H, the sequence {un} has a convergent subsequence. 

Proposition 2.1 (Mountain Pass Theorem 

(Ambrosetti and Rabinowitz, 1973)) 

Let H be a Banach space, J a functional in C1(H, ) 

satisfies the (PS) condition, J(0) = 0 and: 

 

(i) There exist ,  > 0 such that J(u)  , for all u in 

the boundary of B(0, ) 

(ii) There exists yH\B(0, ) such that J(y) < 0 

 

Then, the functional J admit a critical point xH such 

that J(x)   > 0. 

At the end of this section, recall that 1 denotes a 

normalised positive eigenfunction associated to the first 

eigenvalue 1. 1 satisfies: 

 

  1 1 1

1

1 2

0

1.

div a x in

on

  





   



 




 (2.4) 

 

Proof of the Theorem 1.1 

We begin by proving the two geometric properties. 

Lemma 3.1 

Assume that (V 1) - (V 3) hold and ℓ(0, +). Then, we 

can find two positive numbers  > 0 and  > 0 satisfying: 

 

   1

0, , ; .J u forall u H a u      
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Proof 

Using (V 2), there exist 0(0, 1) and 0 satisfying: 
 

    2

1 0

1
, 1

2
F x t t    (3.1) 

 

for all |t|  0. 

From (V 3), for 1  q  
2

2

N

N




, we can have a 

constant C > 0 verifying: 
 

 
1

,
q

F x t C t


  (3.2) 

 

for all |t|  0. 

So, we have: 
 

   
12

1 0

1
, 1 ,

2

q
F x t t C t for all t for all 


    

 
and then: 
 

   
2 2 1

1 0 2 1

1 1
1

2 2

q

q
J u u u C u 




     

 

Since 
2

1 2
u  ||u||2 (by definition of 1) and by 

continuous embedding result, we get: 
 

 
1

0 1

1
.

2

q
J u u C u

 
   (3.3) 

 

Set ||u|| =  > 0 small enough, we get J(u)  , where 

 = 2

0

1

2
  -C1q+1. 

In the next lemma, we prove the second geometry 

property. 

Lemma 3.2 

Suppose that (V 1) and (V 3) hold and 1 < ℓ, ℓ . 

Then, there exists w  1

0 ,H a , with such that J(w) < 0 

and ||w|| > . 

Proof 

For t > 0, consider the function: 
 

     
2

2

1 1 1, .
2

t
t J t F x t dx   


     

 

By (V 1) the function F(x, t)  0 and the Fatou’s 

Lemma gives: 

 

 
 

 

2 1 2

1 122

1

,1 1
lim lim .

2t t

F x t
t dx

t t


  


 

    (3.4) 

It follows from (V 3) that: 
 

 
2

2

1 12

1 1
lim .

2 2t
t dx

t
  


    

 
So: 

 

  1

2

1
lim 0.

2 2t
t

t





    

 

We have  1lim
t

J t


= - and so there exist 

w  1

0 ,H a  with ||w|| >  and J(w) < 0. 

Proof of the Theorem 1.1 

(i) Suppose that u is a positive solution or negative 

solution   1

0 ,H a for (1.1). From the Definition 2.1 and 

the conditions (V 1) - (V 3) and (V 5), we obtain: 
 

   
2 2,a x u dx f x u u dx u dx

  
      (3.5) 

 

which gives 1  ℓ. This finish the proof of (i). 

(ii) Let 1 < ℓ. If we consider Lemma 3.1 and Lemma 

3.2 in mind, we have only to prove the (PS) condition for 

the functional J given by the formula (2.2). For this, 

consider {un} a (PS) sequence of J: 
 

   
21

, ,
2

n n nJ u u F x u dx


    (3.6) 

 

 nJ u d as n   (3.7) 

 

for some d  and: 
 

 
*

0 .nJ u as n     (3.8) 

 

Step 1 (If {un} is bounded in  1

0 ,H a , then {un} is 

relatively compact) 
 

Suppose that {un} is bounded in  1

0 ,H a . By 

compact embedding result, we get up to subsequence: 
 

 

 

1

0

2

,   , ,

,   

, . . .

n

n

n

u u converges weakly in H a

u u converges strongly in L

besides

u u a e in



 

 

 

 
where, ⇀ denotes the weak convergence. From (3.8), we 

obtain: 

 

   
2

, , 0n n n n nJ u u u f x u u dx


     (3.9) 
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and also, for all   1

0 ,H a : 

 

   . , 0.n na x u dx f x u dx 
 

      (3.10) 

 
So: 

 

      1

0, 0 , ,n ndiv a x u f x u in H a      (3.11) 

 

where,  1

0 ,H a  indicates the dual space of  1

0 ,H a . 

From (V 1) - (V 3), f(x, un)  f(x, u) in L2() and so: 
 

      1

0, , .ndiv a x u f x u in H a     (3.12) 

 
As in (Meyers, 1963), we prove that the operator L = 

-div(a(x) ) is an isomorphism between  1

0 ,H a  and 

 1

0 ,H a  so: 

 

    1 1

0, , .nu L f x u in H a   (3.13) 

 

Step 2 ({un} is bounded in  1

0 ,H a  

 
By contradiction. We suppose that the sequence {un} 

is unbounded. Up to subsequence, we have: 
 

.nu as n   

 
Let: 

 

, .n
n n n

n

u
w t u

u
   

 
The sequence {wn} verifies: 

 

 

 

1

0

2

    ,

    

n

n

w converges weakly to w in H a

w converges strongly to w in L




 

 
and also: 
 

   .nw converges to w a e in   

 

for some w in the space  1

0 ,H a . From the condition 

(V 3), there exists C2 > 0 such that: 
 

 
2

,
, 0,

f x t
C for all t and x

t
    (3.14) 

 
so: 
 

   
2 2

2

,,
.

n

n n n

nn

f x uf x t
u dx w dx C w dx

uu
  

     (3.15) 

From (3.9), the left hand side of (3.15) converge to 1 

and then: 

 

0w   

 

By using (3.10), we get: 

 

 

 
 1

0

.

,
0 , .

n

n

n

n

a x w dx

f x u
w dx for all H a

u



 





 

   




 (3.16) 

 

By using step 1, we know that: 

 

   . . ,na w d a d      
 

       (3.17) 

 

for all   1

0 ,H a . Since un(x) = ||un||wn(x), we deduce 

that limn+ un(x) = , whenever w(x)  0. Let: 

 

 

  
 

 

 

,
0

0 0

n

n

n n

n

f x u x
if u x

g x u x

if u x


 

 




 

 

From (3.14), the sequence {gn} is bounded on  and 

so it is weakly star convergent in L(), up to 

subsequence to a function g. 

By (V 3) and the fact that un(x) not equal to zero a.e. 

in , the function g(x) = ℓ, for a.e x. Now, if we 

consider the second term of (3.16), we have: 
 

 
 

, n

n n n

n

f x u
w dx g x w dx

u
 

 
   

 
That is: 

 

 ,
.

n

n

n

f x u
w dx w dx

u
 

 
   (3.18) 

 
From (3.16), (3.17) and (3.18), we have: 

 

  
0 ,

div a x w w in

w in

   


 

 (3.19) 

 

hence w = c1 and ℓ = 1. This is impossible since we 

have supposed that 1 < ℓ < . We deduce {un} is 

bounded in  1

0 ,H a . 

 
Step 3 (Conclusion) 

 

By Proposition 2.1, the Eq. (1.1) has a nontrivial 

solution. 
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(iii) Suppose that ℓ = 1. Set u a positive solution for 

(1.1) or negative solution. If we take  = 1 in (2.3), we get: 

 

 1 1. , .a u f x u 
 
     (3.20) 

 

Consider the Eq. (2.4), multiply it by u and integrate, 

we obtain: 
 

  1 1. .a x u dx u dx 
 

     (3.21) 

 

From (3.20) and (3.21), we get: 
 

   1, 0.f x u u dx


   

 
From (V 3) and (V 5), the constant C in the inequality 

(3.14) will be equal to ℓ and since 1 > 0, we obtain f(x, 

u) = ℓu a.e. in . This means f(x, u) = 1u and then u is 

an eigenfunction associated to the simple eigenvalue 1, 

so u = c1 for some constant c > 0 or c < 0 according to 

the sign of u. 

Conversely, if ℓ = 1, u = c1 for some constant c  0 

and f(x, u) = 1u. Then, u is a solution of (1.1). 

Proof of the Theorem 1.2 

First, we begin by proving the geometric properties. 

Lemma 4.1 

Assume that (V 1), (V 2), (V 4) hold and ℓ = +. 

Then, there exist positive numbers ,  verifying: 

 

   1

0, , ; .J u u H a u       

 

Proof 

Using (V 4), there exist C2 > 0 and t0  1 such that for 

all |t|  t0, |f(x, t)|  C2|t|r-1. As in Lemma 3.1 and by using 

(V 2), we can find 0(0, 1) such that: 

 

     2

1 0 2

1
, 1 , , .

2

r
F x t t C t x t       (4.1) 

 

Therefore: 

 

   
2 2

1 0 22

1 1
1 .

2 2

r

r
J u u u C u      

 

From the definition of 1 and the choice of r, we get: 

 

   
2 2

1 0 2

1 1
1 ,

2 2

r
J u u u C u      

 

that is: 

 
2

0

1
.

2

r
J u u C u   (4.2) 

 

In the inequality (4.2), we choose ||u|| =  > 0 small 

enough, we get J(u)   for some  > 0 since 2 < r. 

Now, we pass to the second geometric property of the 

Proposition 2.1. 

Lemma 4.2 

Suppose that the function f satisfies (V 1), (V 3), (V 

4) and (V 5) with ℓ = +. Then, I(t1)  - as t  +, 

where 1 is a normalised positive eigenfunction 

associated to 1. 

Proof 

We have: 

 

   
2

2

1 1 1, ,
2

t
J t F x t dx  


    

 

that is: 

 

   
2

1 1 1, .
2

t
J t F x t dx  


    (4.3) 

 

From (V 5), we deduce: 

 

   0 2 , , .F x t tf x t   (4.4) 

 

for all (x, t)  and so, for a fixed x the function 

 
2

,F x t

t
 is nondecreasing. Therefore, it follows from 

(V 3) that: 

 

 
2

,
.

F x t

t
   

 

So, there exists b > 1 and a constant C3 > 0 such that 

F(x, t)  2

2

b
t + C3 for all t > 0. The equality (4.3) gives 

 

 
2

2
2

1 1 1 32
.

2 2

t b
J t t C       

 

Then: 

 

  2 1
1 0.

2

b
J t t





   

 

So, the Lemma 4.2 is proved. 

Similar to the proof of the Lemma 2.3 in (Zhou, 

2002), we can prove the following result. 
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Lemma 4.3 

Assume that the condition (V 5) holds and ||un|| is a 

sequence in  1

0 ,H a such that < J(un), un > 0. Then, 

up to a subsequence: 
 

   
21

, 0.
2

n n

t
J tu J u t

n


     (4.5) 

 

Proof of the Theorem 1.2 

Now, we suppose that f(x, t) is superlinear and it is 

subcritical at +. Let us prove that the problem (1.1) has 

a nontrivial positive solution. 

In order to get the result from Proposition 2.1 and with 

Lemma 4.1 and Lemma 4.2 in mind, we have to prove that 

the functional J satisfies compactness property. 

Let {un} a (PS) sequence in  1

0 ,H a  at level d, this 

means that it satisfying the conditions (3.7) and (3.8). 

Following the same scheme of the proof of Theorem 1.1 

result (ii), we have to prove that the sequence {un} is 

bounded in  1

0 ,H a  and the theorem follows. Suppose 

that {un} is not bounded and consider: 
 

,n
n n n

n

u
w and s c u

c u
   (4.6) 

 
where c > 0 a positive real number. 

It is clear that the sequence (wn) is bounded in 

 1

0 ,H a , hence there exists w   1

0 ,H a  such that, we 

have the following properties: 
 

 

 

1

0

2

, ,

,

n

n

w w in H a as n

w w in L as n

  

   
 

 
up to subsequence and also: 
 

    . .nw x converges to w x for a e x in   

 
Therefore: 

 

      . . ,nw x converges to w x a e in    

 

and also: 

 

 2 ,nw w in L    (4.7) 

 

since for any function vL2(): 

 

.
2

v v
v


  

 

Now, let + = {x; w+(x) > 0}. 

From the fact that un(x) = c||un||wn(x), we get 
nu (x)  

+ a.e. in +. By exploiting (4.7) and ℓ = +, we obtain 

that for all B > 0, there exists n0, for all n  n0: 
 

  
 

     
2 2,

.
n

n

n

f x u x
w x B w x

u x



 


  (4.8) 

 
It follows from (3.9) that: 

 

 
 

 
 

 
 

2 2

2

2

2

,1
lim lim

,
lim

,
lim .

n

n n
n n

n

n

n
n

n

n

n
n

n

f x u
w w dx

c u

f x u
w dx

u

f x u
w dx

u





 











 

 











 

 
We deduce by that: 

 

 
2

2

1
,B w dx

c 




   

 

for all B > 0 and so mes(+) = |+| = 0 where mes is the 

Lebesgue measure. Then: 
 

0 .w in    

 

Therefore,   lim , 0n
n

F x w x dx


 and we get: 

 

  2

1
.

2
nJ w as n

c
   (4.9) 

 
If we apply Lemma 4.3, we have up to subsequence: 

 

       21
1 .

2
n n n n nJ w J t u t J u

n
     (4.10) 

 

where, tn = 
1

nc u
. From (4.10), (4.9) and (3.7) we get 

2

1

2c
 d, this is for any c > 0. 

So, the Theorem 1.2 is proved. 2 

The Theorem 1.2 holds also when the function f(x, t) is 

superlinear and subcritical at - and the proof is the same. 

Conclusion 

A weighted elliptic problem with indefinite 

asymptotically linear nonlinearity is investigated in the 

present paper. Under suitable conditions, we prove the 

existence or the nonexistence of nontrivial solutions. 

Then, we consider the same problem when the 

nonlinearity is super-linear and in the same time 
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subcritical and we prove an existence result. We use 

variational method in the proof of the existence of such 

solutions without using the Ambrosetti-Rabionowitz 

condition (AR) or any other condition of the same type. 
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