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Introduction Definition
Let us consider the quasilinear second-order A real-valued function u(t,x) is called a weak solution
parabolic partial differential equations: to the parabolical partial differential Equation (1) if the
integral identity:

S au- > = 0 a;(t,x, u)—u u@)v(@) |+

at i j=1,. Ia X]- y (1) 0

+b(t,x,u,Vu) = f (t,x), +j (u(2),0(7)) + A{u(r),v(r)))dz +
0

under the initiation conditions: +j-< 8,202 \de s ®)
o \i, | 6 X;

u(0,x) =uy(x),

t t
+I I >dz'
where the u(t,x) is the unknown function, 1 > 0 is a real ’ ’

number and f(t,x) = f is a given function. The term b(t, x, holds for almost every t<[0,T], xeR' and for all veWs, .
u, Vu) is a measurable function of four arguments. ’
The matrix ajj(t,x,u) is a measurable elliptical matrix |

x | size such that there is a number v: 0<v<oo and:

The main object of this paper is the regularity
properties of the solutions to the quasilinear parabolical
partial differential Equation (1) under the conditions that
its coefficients belong to the certain functional classes

| .
2 o Lt £ WECR 2 and functional spaces.

= T |a ! © e conditions of linear growth:

v &S D aytxuEs Ve ) Th diti £li h

1. b(t, x, y, 2) is a measurable function of its arguments
and be L, (R')
2. Function b(t, x, y, 2) t €[0, T] satisfies inequality:

for almost every te[0,T] and xeR'. Or we will
consider a more restrictive condition:

VLGS D txu)Gg < p &P VEER"

el = Ib(t,x,u,Vu)| < 24 ()| VU] + 2, () |u] + £5(X) (4)
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for almost everywhere and almost every t [0, T],
where the functions z,° € PK (A), u, € PK,(A) and
welP(RY).

3. The increase of function b(t, x, y, z) satisfies the
inequality:

b(t,x,u,Vu)-b(t,x,v, <
[b(t,x,u,Vu)—=b(t,x,v, V)| ©)

< 1, (0|V (U =V)| + s ()] — V| ’

almost everywhere and almost every t <[0, T],
where the functions u,” € PK,(A), u; € PK,(A).

Here we introduce the class of form-bounded
functions PK according to formula-definition:

gel (R,d'%): ‘<g\h\z> <

PK,(A) = 11
< ﬂ<A2h,A2h>+C(ﬂ)|| hi;

1
wherea he D[Azj and £>0 is a form-boundary and c(f)

e R%L

The general information on the partial differential
equations and the existence of their solutions can be
found in the extensive literature on the conditions on
their coefficients under which there are the solutions of
these equations in a specific functional space (Adams
and Hedberg, 1996; Gilbarg and Trudinger, 1983;
Ladyzenskaja et al., 1968; Nirenberg, 1994; Veron,
1996; Yaremenko, 2017a; 2017b). O. Ladyzhenskaya, N.
Uraltseva, O.A. Solonnikov developed the Ennio de
Giorgi's method (DeGiorgi, 1968) for establishing a
priory estimation of the solution of such equations. 1960
J. Moser enhance the maximum principle and created a
new method of studying the regularity of the solutions of
elliptic differential equations and Harnack’s inequality
under the assumption that the coefficients are bounded
measurable and satisfy a uniform ellipticity condition,
these results were summarized in the work of
Ladyzenskaja et al. (1968).

A Lebesgue space LP (R', d'x) for 1< p < oo can be
defined as a set of all real-valued measurable functions
defined almost everywhere such that the Lebesgue
integral of its absolute value raised to the p-th power is a
finite number with its natural norm:

1

ol =(flu(x. 1,ndx)
([t <oy

The dual or adjoint space of LP (R, d'x) for 1< p <
has a natural isomorphism with L% (R!, d'x), where

l+£:1 or q:i.
P g p-1
We will use the inequality:

gp p 1
(f.9) <[, lol, <=1l + 2

where f eL’(R"), geL‘(R"), £>0 and its consequence:

(E )= oo |

s L Ui

f1°?

L9 (R")

(R :H HPL"(R')’

The f e LP yields f | f |P? L9 that justify the last
equation (Gilbarg and Trudinger, 1983; Ladyzenskaja et al.,
1968).

Let us denote W,”(R',d'x) given Sobolev space for

1< p < oo with a natural norm:

b (

The dual space of W?(R',d'x) for 1< p < o is

W4 (R',d'x) and the dual space of W (R',d'x) for 1< p
< o and %+§:1 is W!(R',d'x), Sobolev spaces are

reflexive (Fijavz et al., 2007).
Let us consider a linear parabolic equation as an
exemplar:

under the conditions 3v,u: 0<v < u<oo such that:
| ) | )
vYEES D at &S S pY &
i=1 ij Ll i=1

and linear perturbation-potential b, (t,x):R' — R".
In traducing the notations:

77
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VoaOVU—

%’\m m\@

0
- o X
bVu=boVu= Z
=1,..

and assuming bea™-bePK,(A) for some g < 1 we
obtain:

\<Vhobh>\s\/,E<Ah,h>+c(ﬂ)$uhn;,

according to the KLMN-theorem, there is a preserving

Co- semigroups of L*- contraction e <n<w

1 2_\/;
such that A, =A+boV. Assuming A is Laplace operator
A = A we are obtaining an estimation:

[(Vhebh)| < JB[h[ +%’Hhuz vheD(A).

The operator B =Vob of the domain
D(B,)={uel’;|Vule i boVuel'} is As-bunded with

relative bound zero namely D(B,)> D(A,) and:

[Bihl, <A, +k(a)[h,, heD(A)

holds for all &> 0 and k() < c. There are s > 0 and £(s)
he D(Al) .
operator A; + Bi of the domain D(A:1) generates Co-
semigroup T, consistent with T! =exp(—t(A+boV))

such that [Ty[,_, < — 1ﬂ - )exp[_t mg(l;/f(s))}t o

< 1 such that jHBle“Athldt <), The
0

The Estimation of the Solutions to the
Equation (1)

For almost every t € [0, T], let us consider the integral
identity:

<U(’[),V(’[)> |B +J-(—<U(T),61V(z’)>+g<u(,[)’v(,[)>)d’[
‘ o o : (6)
J< Mo >d”f (bajde= [(1)er

where functions u(t,x) W, and veW},.
Fort € [0, T] identity (6) can be rewritten as:

78

(u(@),v(@)ly

o 0
j[ (u(z),0.(z)) <Iv];..’laij&ju,a)(iv>}dr
j j (u(z),v()))dr j(b,v)dr

Let us put v(r) =ulu/" () and estimate:

<u(r),u\u\"’2 (z')> A +/1H<u(r),u\u\"’2 (T)>‘dz‘
—<u(r),a, (u \u\pfz (r))>
dr
2l @)

+£+ > aﬁu 0
|11IIla 6x

(1 o 0 for

<,u1(t X)‘VU‘-F,UZ(t X)M >
+J dr
2 \+45(t, %), ulu[*?

()

From (1) under the conditions (4) we obtain (6).
Next, we estimate every term separately:

(@)
<
<' JZI: |a"6%u ai (““pz(f))>:
:4(p 1)

P’ <( (’)j (uupzz(r)»,

. P2 p, 22
denoting w=ulu[ 2z (r) and VW:E‘U‘ 2 Vu:

<[ttt @)

+%Hu\u\p’2 (r)Hq,
O

(sl vol ) = sl ool ) < 2 o ).
<yz(x),w2> < ﬁ(VWoaoVW>+c(ﬁ)HwH2,

(sl <l

p-1 p-1
Ju |

=l u
Applying a form-boundary condition to %<,L11‘VWHW‘>

, Wwe have:

<2l
p

lqw] :<(,ulw)2>% s(,B(VwanVw>+c(/3)HWH2)% ,

using Young and Holder inequalities are obtaining:
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2 2 2 0
I P e e (P

2 2 %
< BHVWH(MVWO ao vw)+c(f)w’)

11 2 2 i
<2 ool e p(ow-ac v (o))

Thus, we have obtained an estimation:

_:[[<6ru(r),(uup2 (r))>+<id;laijai;]u, aix s (’))>J 0

+zﬂ u(r),u\u\"’z(r)>‘df+
IS
( [ = |vwf +& (ﬂ(VWoaoVW>+c(ﬂ)Wz)j(r)jdr

IN

TP+

+

+

t
!
t 2 1 2 P p
j B{VweaoVw)+c(B)|w| +TqHWH +?Hﬂ3H dr.
0

For almost all ! applying <

u @)
- pj<a,u(r),(u\u\p‘z (r))>dr we have had:
p

1 —
S 142

{5

1j(<VWoaoVW>)dT+ﬂj.HWH2dr
0

0

I £[° +*H ulu”?

HE ?HVWHZJF

() |dz
Pl+e®(B(vwoas vw)+c(p) W)

ot—,

L=
3
s
QD
<
s

>+ c(p)wl +

]
E

HusH"

since Julul"* @[ =(|u/*") =[u]” = |wf| we obtain:
_11 t

4P j<onaovW>df+4HwH2dr
0

e

+ l(i+ﬁg ]+,b’ I<VWOaOVW>d
ple’

Lt p
+jinder+jLHﬂ3H“dT.
o P o P

1
S 1+

s(lq+c('g)g +c(B)+
qo p

79

In case of p = 2 there is the next estimation;

t t
%HUHZ ; +j<vanovU>dH4jHuH2df
0

g[ LB s o(p)+ j_[u dr

20° 2
+ E(itﬁg ]+,B J'(Vu aoVuydr
2\ &?

tGZ ¥
+J.?HfH2dr+J.?Hy3H2dr.
0 0

=—— then

\//_3 (—+ﬂg J+ﬁ \/—+
ﬂ:ﬁ(hﬁ) and we are obtaining:

Assuming that &

t t
%HUHZ o +[(Vuoaevu)de + Af|ul dr
0 0

S[Jlﬁ*;(f—)” ﬂ)Jjuzdr
+\/,§(1+\/_)j: (VucaoVud
+\/2'Ej;f2dr+\/2__([u32dr.

The Smoothness of the Weak Solutions to
the Quasilinear Second-Order Parabolic
Partial Differential Equation (1)

Definition

A real-valued function u(t,x)eV7 such that

vrai max|u(t,x)| <« is called a weak bound solution to the

quasilinear second-order parabolic partial differential
Equation (1) if the identity:

{u(@), (D)) Iy +J (u(r),09(7)) + A{u(z),v(2)))dr

®)
t 6 t
+ a; —Uu, dr+ b v f,v)d
.l,).<| ]; | lJa aX| > ’ J. -('J‘< > :
holds for all functions vew}  such that
vrai max|v(t,x)| <o, te[0,T].
For arbitrary function vew?  such that

vrai max|v(t,x)| <o, te[0,T] from that definition of the
weak solution we are obtaining
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—(u(z),0,v(r)) +
(U@, V@)l +£ +< > aij% P V> dr
LT OX) 0%
<[(f, j (u@).v(@)))dr )

+I<y1(t,x)\Vu\ + 14, (6, X)|u] + 215 (8, X), V(z) yd

Let u(t,x) be a weak solution. We denote v_(t,x) the
average of function v(t,x) at t by formulae:

t+h

V- (t, x)_fjv(f x)dz, U, (t,x) = fju(r x)dr (10)

we transform:

T

—f(uhalv>dt = f[(atuhv>dt,

0

—]‘<uatvﬁ>dt =
since:
].u(t)vﬁ(t)dt - Tuh (Ov(b)dt

where the function v(t,x) is tautological equals zero over
t<O0and T>t>T-h.

Remark

The order of averaging and differentiation by x are
interchangeable.
Let us rewrite (6) as:

T-h

J' ((0,u,,V) + A(uy,v))d7

0

0 0 T-h
a—u|,—Vv)+
+J. IJ1 ol an h axi dr = J.<fh,V>dT
0
+(by.v)
Since in the last equality the function veWw}; is

arbitrary, we can assume that v = u, next integrating with
respect to t, we are passing to the limit as h — 0 and are
obtaining:

1
St

Iz,

t
u,u) o ﬂJ.Hqudr
0

a“aﬁu aiu>+<b u)]d I(f,u)dr.

80

For an arbitrary function v e

Hjjl,:xiv>+<bh,v>Jdr

V), the integrals:

and:

converge to:

and:

<f,v>dr

ot—

ash — 0soitistrue for V=Y,
For an arbitrary t,,t,e[h, T —h] applying (6) we can
write:

t

J(<aruhvv> + /1<Uh,V>)dr

4

A

assume v=uf, where uX(t,x) = max[u(t,x)-k,0] and we
denote the set of points Py(t) = {xeR": u(t,x)>k, te[0,
TI} R, 1> 2 and Py(t) = {(t,X) € [0, 7 x R: u(zx) >k,
7e[0, T], I>2}, we have:

=10

>+<b,vh>Jdr = T( f,,v)dr,

Lt

o 0
D & UV
OX; O

dr

lHuk(t)H +;[ Vu oaoVu Pkm

R (t)

+1JHU dr

R (t)

(Sl
+\/ﬁ(1+\/_)j Vuecaovu), dr

A e L fa,,,

R (1) B (t)

From (a+b)’ <2(a”+b?), we obtain:
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t t
[l o, d= < z(u K[, o, +K’ [ mes R(z) dTJ.
0 0

Lemma 1

Let element u eV, satisfies following tautology:

(7<u,6f(p>+l<u,(p>)dr

<-11 | &uaai¢’>+<bl(p>]dr

dz' fel?

ot—

+

|
o[

where the ¢ is an arbitrary element of functional
space Wfo([O,T]xR') then element ueV}? belongs

VE ([0.T]xR').

([OT]XR )

that consists of all continuous at t in L%(R") norm elements

with the norm |uf, = max Ju(t)|+|Vu] and the
te[0,T]

Space V*,([0.T]xR') is a subspace of W,
‘2

[O.T]<R'
T 2

following condition I<ﬁ‘“(t+h")_“(t")‘ >dt%0
0

is satisfied.

Proof of Lemma 1

we denote

For arbitrary

4 st

Qe

W, ([0,T]xR")

o-(t,x) x)dz then:

:‘;(—(uh,ar(p) + ﬂ(uh,(/;))dz-

o j o
4U ,
i Jn

put o(t,x) = x(t) ¥(x), where (t) is a smooth function of
time and €W/, (R') . We have:

]

oo

~ [ 2@ (fp)de

(-0.2(@) (U p) + A7 (2) (up.p))dr

0 0
L b d
& ox; ]h'axi >+< "’W>J ‘

2

ij=t,...1

—v

81

SO:

6T<uhvw>+ﬂ<un"/’>+<[__
(0w = (fow) Yy €W (R),

and:

> ay—u

=1,

<6rUh,l//>+ﬂ,<uh,V,>+<[

b, = (1) ¥ W (R,

i

and for arbitrary h,hz, we have:

<aruh1 B aruhz ’l//> + i<uhl N uhz ’l//>

0 0 0
+ a. —Uu — a —Uu ,—
(2] {2 o] )

+<b,11 —bhz,l//> =<fhl - fhz,l//> Yy veO(R'),

assuming that y =u, —u, then we are obtaining:

T uhl _uhz

0
i j=Lo i

%a “ i 2u, —u, [

+
0 0

+<th —bhz,uhl —uh2>:<fhl - fhz,uhl —uh2>,

by integrating with respect to time, we have:

1}
2 +lj
1

t

2

dr

U, —u

1 2
EHuhl ~ U, h,

d d
+T<bh1 b, .u, Uh2>d2'

= [(f, = f,.u, —u, )dr, t,t,e[0,T].

Let pass to limitas h, —0,h, —0 we obtain:
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Huhl — Uy, ||+ %(uhi —th)

P 0
: ['vJ;--,Iaﬁa‘XJUJm _['-lzlv-:---v'aij WJM
o, -b 6 -1, S0

We denote y(x) =Au=u(t+h,x)—u(t,x) then:

T[(@,uh,u(t +h,x)—u(t,x)) +Jdt

" +A Uy, ut+h,x) —u(t, x))

+I<[.,l ."a l’ai

+I<bh,u(t+h,x)—u(t,x)>dt

—o0

(u(t+h,x)—u(t,x))>dt

= J(fh,u(t+h,x)—u(t,x)>dt
and we have:

TMZdHlT(u Aju)dt
J h J h'“h

ql 2

©

= I(Ahf,uh>dt,

-0

0 0 T
a a—)(ju],axiuh>dt +:[O<Ahb,uh>dt

Applying  Holder inequality and

considerations, we have obtained:

previous

= AUl
j 7“ “ulL ®) gt < £(h)—"=20,

—0

that proves the lemma.

A Priori Estimation of the Solution to (1)

Let us assume that ellipticity condition and (4), (5)
are satisfied and all weak solutions u(t,x) of the V7, are

a

bounded, we will show that ueH" 2
and estimate the norm |u[’.

for certain o >0

Assume ueV), for arbitrary element ¢eW?,
have tautology (6) and we obtain an estimation:

(@), o)

we

j (u(@),0,0(2))+ 2{u(@), 0(z)))d7

82

o 0
a—Uu,—o)dr
i o% >

J(b @ dT

Lt

+ﬂ f @ ‘dr

since for arbitrary element ¢eW?,
condition is executed:

the following

(00} ae{<{ {0l s
SO:
(U@ 0@k j (u(@),.0,0(2)) + 2{u(@), 0(z)))dz

< 901+ o)+

t,
+|(t.0) e,
b4

let us put ¢(t,x)=(£(t,x)) u(t,x)=&%, and integrate by

parts, we are obtaining

1 2 "
EHU(T)é(T)H K(s) 't +

. [_<uz(f)g(7),arg(r)>K(§) +Jd
©)

4 +/1<u2(z'),§2(r)>

where the K(9) is a cube in R' with an edge length of 6.
Next, we estimate:

(i [Vl ul g ()| < Ja? (2

<2 s @) e Pwuiaf ),

Nivulel
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s ) ("))

<p(ve -a-ve)re(p)e,
similarly:

</13§ ( ><H‘u3§

)il <

<(p(ve-a-vey (Al

and:

2 11
Jrulf <3

2
2 2
v j .

These we have had the following inequality:
lue)e ),
Z E)
+K£<i‘;;.‘|a”&u ox, (u§ (7))>

<Juesel,

dr

K(9)

+j(Kluv«:H+KzH:H+K3<«: D97

t
+K4J(F(f ,gZ)HUH)K(J) dr
t

where K, K1, Ky, K3 are positive constants depended on
the initial conditions and constants ¢ &,.., & are
arbitrary constants, such that:

(G o)

1 2 2 22
. ?ﬁ<V§ caoVE >+c ,6')H§ H +
E 2 2|2

3 e a2bo

it is possible to presume &* =c¢f, where € is a constant.

Thus we have obtained a prior estimation for the solution
to the equation (1).
Let us assume the function ueV/ is a solution to the

<

equation (1) then for an arbitrary element veW}(R',d'x)

such that vraimax|v(t,x)|<e, te[0,T], we have an

integral equality:

83

u@).v@) +J.(—<u(r),atv(r)>+ﬂ(u(r),v(r)))dr

o2 oo
+g<., A&
i

+

t

J. dr.

0

+

We put V=U and obtain:

1 t
@I s +2[Ju de
0

0 0
Ay Z a; |——uu dr
<[6Xi i, j=T...1 J@Xi >

The right part can be estimated similarly to previous
considerations with an application of Holder and Young
inequalities.

The elliptic condition can be presented as:
vEeR!

viel < X a8g < ulelf

ij=1,...,1

so form B(&,v) Z a,](;vj defines a certain metric and

ij=1,..

> aév; <[€], v where the norm |||, is generated by
ij=1,...1

the form B. Then there is a constant .y such that
IE], <7 [|€] so the estimation " a;&v; < y||£]|v] is true.
ij |

Thus, we have obtained that there is a constant C;
such that:

A (”u] u><c Jaullu].
OX. O

Theorem 1

(11)

Assuming that the Cauchy’s problem:

0 0 0
—u+Au——|a. (t,x,u)—u |+b"(t,x,u,Vu) = f(t,x),
ot axi{.,( )8xj ] ( )=f{tx)

u(0,x) =uy(x),
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under the form-bounded of © and vralmaxa <o

conditions has a solution ueWp,, then the solution
belongs W/, .

The Existence of the Solution to the
Parabolic Partial Differential Equation (1)
Theorem 2

The quasi-linear parabolic partial differential
Equation (1) under the conditions (4), (5) has the

solution from W/ ([0, T]xR').

Proof

To prove the existence of the solution to (1) we
construct the sequence of approximate solutions

{un(t.X)}, m=1,2,.... to the equation:

2u+ﬂhu—i ai.(t,x,u)iu +b(t,x,u,vVu) = f,
ot ox | " o

i

as {u, (t,x)}= {Zc )o x)} where the elements {gn(x)}
n=1.2,.. form the basis of W?(R') with the properties
(pn9)=6;, and max|¢,¢,|<c <. The functional

coefficients c¢]'(t) of {um(t,x)}:{icim(t)gpi(x)} are
i=1
determined by:

(Ol ) + A(Ups 0, )

0, 2
6X Pn

>+<b'fﬂn>=<f.(oﬂ>,n=1,2 ..... m
and initial conditions:

¢'(0)=(Up @, (x)), n=1,2,...,m

From the initial conditions for t € [0,T] we are
obtaining from ellipticity

=LZ..m,

follows uniformly boundedness of the solutions over t e
[0,T], to show this we multiply the Equation (1) by ¢
and a sum of n up to m then we obtain the inequality:

1 t t
EHum(t)H2 + I(Vum caoVu, )dr+ EJ.;HumHZ dr

g[j_+zf+c<ﬁ ]fu for

84

(1+\/_)j[ Vu,caoVu,)
0
{gfzdwﬂmr-

We will apply the following lemma.
Lemma 2

Let w(t) be a positive absolute continuous function
such that w(0)=0 and for almost all t<[0,T] holds the
inequality:
d
E"'(t) <c(ty(t) + F(t) (12)

where the c(t) and F(t) are positive integratable on [0, T]
functions. Then:

w(t) < exp[jc(r)drﬁ F(z)dz, (13)
0 0
and:
%y/(t) < c(t)exp[:[c(r)d z']_:[ F(r)dr+F(t) . (14)
Since u, € L’(R') there is an estimation:
max X2 (c (t)) Lr[]%HUmHZ < const.
Functions ¢ (t)=(u"(t,x), ¢,(x)), m,n=1,2,... are

(u,

continuous on [0,T]. On the interval [t,t+At], we can
t+At
<
it

estimate:
t+At t+At

+ J (f.p)dr+2 J (Up. 0, )dT

+I+At<ﬂl(t,X)VUm + 1, X)|u,| +>d7

v\t X), @,
Sc”ttft[<i j;..l >]d7

t+At

-Ac, I lu,[|d7
t

)

0
"% o Pn

0
a;—U,
| 6

2

i,j=1,...

0
a;—Up,
6xj
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t+At
+c,const(B) J' HumH2 dr
t

t+At

+c,const(B) _[ (Vu,caovu, )dr
II+A1 ) t+At )
+cnconst(,8)[ I [ dz+ j 45| dr]
t t
< Const(n, p,l)At.

Thus, constants Const(n,¢,l) depend on n, ¢,1 but do
not depend on m under the condition m>n so:

<e(a0)lg,] 0.

Applying the diagonal method we are obtaining that
the sequence ¢"”,i=1,2,... converges uniformly on

[0,T] to a certain continuous function c,(t),n=1,2,.... for
every n. The sequence of functions c,(t),n=12,...

determines the function u(t,x) as a L?(R')-weak uniformly
on [0, T] limit of the functional sequence

{um<t,x>}={icim ot

Zc ¢(x). To show the weak convergence we

x)} that  converges  to

consider the equality:

(300 =) = 35000 (8 -
( o~ Y (Vg (/)HJ,

n=s+1

and apply estimation:

sconst( i (v., )ZJ;

n=s+1

(10, 5 (v

n=s+1

Let s be large enough number so for any fixed real
number ¢ there is inequality:

1
const( i (v,gan)zj2 gg

n=s+1

and for large enough m(i) the first sum also less that g

for all t [0,T].
Let us show that the function u is a solution to the
Cauchy problem for (1). For arbitrary function

V=307 (10, (),

where the d(t)

are arbitrary

85

continuous functions with bounded weak derivatives, we
consider the equality;

t

(U, (7). V(D)) Iy +I(—<Um(r),atv(2’)> +A(u, (7). v(2)))dz

0

+i< lel Ia,]aiu v>dr+j (b,v)d i(f,v)dr.

The g, is the set of functions un and p=Ugp,, , the set

¢ isdense in W, . Passing to the limit as m—oo we obtain:

j (—(u(2),0v(z)) + A{u(z),v(2)))dr

t B 5
£<i,jz1,;..,|aij64>(ju’a)<iv>d7
F t
!

+[{bv)dr +(u(z). () = [(f.v)dr

0

for any function ve p.
Let us assume v=u,_—¢ then we have:

(Up (@)U, =)

+j[—<um(r).at(um—w)(r)>+ .
ol +4 (U (7). (U, — ) (7))

S0:
} 0
£<. =10 ! an m.axi(um—(ﬂ)>df
(Up (@) Uy — @) |y +
=— +j u (0 )(T)>+ dr +
ol +4 U n(@) (U - )(T))
J{bo
+j<f,(um—¢)>dr
and:



Mykola Yaremenko / Journal of Mathematics and Statistics 2020, VVolume 16: 76.89

DOI: 10.3844/jmssp.2020.76.89

U (0.2, (4, ~9)(0)) ]d,
u n(7), (U - )(T)>
<i‘i;..‘.‘|aij &um aixi(um _(0)>d1
T_.:'J.<f’(um_(ﬂ)>d7

+(Uy, )

I

+[(b,(u, -

!
!

1 _
_EHumHz |:;:)

+ function |lu, - ¢]) = 0
we fix the function @ and pass to the limit as m—oo obtain:

j( (U(),0,(u=-p) (@) + 2(u(@).(u-p)()))dr

<IJ ‘| a; 6X —Uu, Xi( _¢)>d'[

u (p dz'—fHuH|

+

t
!
t
+(b.(
0
t
il
+(u,9) =5 + function (Ju — ¢[|) = 0

In the last inequality, we put v = u and have:

l t

Sl +/1£HU(T)H2 dz

t 6 6 t t
,—u)d b,uldz = |{f,u)d

+£<i’j;m|a”a—xju aXiu> r+£< u)dr !( u)dr

Since vegp, for arbitrary m therefore for arbitrary

function vep = lem , we have:
j(—(u(r),a1 (u=v)(2)) + A{u(z),(u-Vv)(z)))dr

'(t[<| j=ll ” 6X 0 xi (U—V)>dz‘+j;<b (U
e

vydz + functlon(Hu VH)

+

—v)>dr

Since the set ¢ is dense in W? therefore for any & >0
and any function ¢ g, we can put v = u-gp and estimate:

&[(~(u(2),0,0(0)) + A{u(z), 0())) d

= >df+gj<b,¢>df

0

p)dr + functlon( ) =0

86

We pass to the limit as &0 have:
t

[({u@).0,0(2) + 2(u(2).0(2)))d7

0

t a t
+£<I ,Z‘ Ia.JBTU axlgo>dr+J (b,p)d l‘(f,(/))drzo,

Since the set g is dense in w?, from the last
inequality, the estimation:

[(~(u),00(@)) + A(u(), (7)) d

t a t
J ke o oo
0 \i,j=1...1 0

is true for arbitrary ¢ W, which means that function
ueW,.? is a solution to (1).
Remark

The monotonousness can be proven as:

] ~(Up (7) = ¥(2),8, (U, (7) = V() +
o+ (U (7) = V(2), Uy (7) - V(7))

0
8;(z,x,U,)—u, -

t XJ

+I 7 Z 5

0 ij=1,..1 a (T X V)—V
OX;

dr
o (U () -V(2))

:_',_,

+/1Hu (r)- V(T)H

0

t
+[{b(z. .y, Vu,) = b(z, X,v,VW),u, () - V(7)) d7
Z aij(T'X'um)aium_
X

0
]dr
ij=1,....1 j

+<u (r) - v(r),u,(r) - V(T)>|o
dr
- aij(r,x,v)aiv,axi(um(f)—v(f))

t
+f
0

[ Uy () =V(2),8, (U (1) ~ V(7))
i,j=1...1 j i

¢ /b(z,x,u,,Vu,)=b(z,x,v,V),u () -
+£ ) dr
+u, (@) V@[ I

I( (w,0,w) + 2w )

0
a; (7, X,U,)—U, —
Z IJ( )6X

i, =1, i

0 0
- Z a; (r,%X,V)—v,—w
i j=Tol 5Xj OX

t
+f
0
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1(1 2 5 2
p[?\\vWH v B(vweao )+ c(8)w] ))

—B(Vwoaovw)+c(B)|w +w)[ I,

since \b(t, XU, Vu, ) =b(t, x,v,Vv)\ < ;z‘,(x)\v(um —v)\
+us(X)|u, —v| and we had denoted w = (un-v) and
estimated:

2

5</‘4 >

2 2 2
< 2 9= 2 (s’
1

2 2\3
5*HVWH(NVWOaOVW>+C(ﬂ)HWH )

1
p

I/\

( |Vl + (,B(VWOaoVW>+c(ﬂ)HWH2)J,

and:

= (u-v))={

<p(Vweoa OVW> c(p HWH

W)

The Regularity of the Solution to the Cauchy
Problem for the Parabolic Equation (1)

Theorem 3

Assume that there is a sequence of parabolic partial
differential equations:

gu + A% _ 2 a;" (t, x)iu
ot OX; ox; (15)
+b* (t, x,u,Vu) = f*(t,x),

and each equation satisfies the conditions of the existence of
the solution (1) with the same coefficients’ restrictions for
all values of the parameter 7=1,2,.....,. Let us denote the

to the

sequence of the weak solutions u* eV/,, z7=1,2,

Cauchy problems for the Equations (15) under initial
conditions u*(0,X) = ¢,” . Let the conditions:

lim|lu, - ;7| =0,

> (a3

i =,

lim =0;

50

!mj<f(r,~)— f*(z,),n)dz =0;

t
lim j <
e el

0

,77>dr=0,

IR 1

87

are satisfied, these equations mean that the coefficient of
(15) converge to the coefficients (1) and additional
condition:

1 U 1

<OV (u-u?)

+ 4

is executed.
Then the sequence of the weak solution u*eV(,

to the Cauchy problems for the equations (15)

under the initial conditions u*(0,x)=¢,’ converges to the

weak solution to the Cauchy problem for the equation (1)
under the initial condition u(0,x)=u, in V.

Proof

The proving will be accomplished according to the
schema:

e compose the integral identity for the solution u(t,x)
to the Cauchy problem for the equation (1) under the
initial condition u(0,x) = uo and for the sequence of

the weak solutions u* eV, z=1,2,.....to the Cauchy

problems for the equations (15) under the initial
conditions u’(0,x) =g,

subtract integral identity for the solution u®eV/,

z=1,2,.... from the integral identity for the solution
u(t,x), the results of these subtractions are written as
the integral identity for the differences v? = u-u?
obtain the priory estimations for the differences v* =
u-u?

apply the priory estimations to substantiate the
passing to the limit limv* =0 in V/; topology.

>0

Let us compose the integral identity for the (1):

(u@)m@) +j(—<u(r),atn(r)> + 2{u(@)n(@)))de

+J<.,1 Y axin>dT+I<bv’7>dT=i<f,r7>dr

for an arbitrary  eW,%, and the integral identities for the
Equations (15):

(W@ @)l +[(~(u* @).00()) + 2* (u* (@) n(2)) ) de

=[(f*(,)m)dr

ot_,,-.
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for an arbitrary neW},, after the subtraction, we are
obtaining the equation:

(v'@)n@);
(-(vZ(f),atn(T» +/1<Vz(r),77(r)>)d‘r

+

+

)

> (au(r,~)—aif(r,~))a‘iu,(,fxn>dr

j i

+

T —

0 0
a’(r,)—Vv',—n)d
. A EIg v 77> r

J

I
_

+

Ot ¢ Ot O+ O

(b(z,,u,Vu) ~b* (z,-,u", Vu*),p)dr

(f(z.) =t (z,)m)dr.

I
c—

Let us estimate the term
.t[ (a.v(r,~)—af(r,~))iu,in dr , since:
0 \i,j=L...1 ! ! axj 0
lim| > a,(z,x)-a;'(z,X)

Z—0

- !m\/-[< 4 2y(r.) -2y’ (7.)

t
0

2
>dr=0

therefore:

lim < Z (aij(r,.)—aijZ(r,.))gu,ai 77>d1—0,

P g
] 1

applying the notation v* = u-u? and fact v' eW2 , we
have had:
, 0

i Ay
ij=1....1 aXi

8, ()2 v, 2 )de
j=1,....1 6X]- axi

oy —

G
—V
6xj

From the conditions we have:
t
lim [(f(z,) - £*(z,),7)dr =0,
0

Since:

m}(\b(r,-,u,w) —b*(z,u,Vu) ,77>dr =0,
0

and n=v*, we obtain:

<

z
<o

<3 Sl

b*(z,-,u,Vu) —b*(z,-,u*,vu?)

)

vz>

Vv? v’

z
+ s

2
+0? HVVZ

)

2\ o

VZ

2
+£?

(1,
3l
SO:

v

“1c(B)

e [ = (v () < o

similarly, the term containing s can be estimated. After
reducing similar terms, we obtain the statement of the
theorem.
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