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studies constructed scales and modifications have been conducted recently to 

improve (CG) methods. In this paper, a simple modified by its conjugate 

gradient method was proposed. In addition to, established global convergence 

property and sufficient descent condition, under Strong Wolfe line search. 

Numerical result shows that the proposed formula is competitive when 
compared to other well-known (CG) parameters.  
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Introduction 

The nonlinear Conjugate Gradient methods (CG) are 
utilized to find the minimum value of function for 

unconstrained optimization problems. In general, the 

method has the following form: 

 

min ( ),nx R
f x


 (1.1) 

 

where, f: Rn  R is continuous differentiable nonlinear 

function and which gradient denotes by g(x). The CG 

methods are given by an iterative method of the form: 

 

1 , 0,1,2, .,k k k kx x d k      (1.2) 

 

where, xk is the kth iterative point, the k > 0 is a step-

length and dk is the called conjugate gradient search 

direction with: 
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g d if k 

 
 

  
 (1.3) 

 

where, k is a scalar, the step-length k >0 is obtained by 

attainment a one dimensional search, known as the ‘line 

searches’. The most common line searches are exact and 

inexact line searches. The inexact line search has many 

types of methods known as Armijo (Fletcher, 1997), 
Wolfe (1969), Goldstein (1965) and Strong Wolfe 

(Dai and Yuan, 1999; Hilstrom, 1977). In this paper, 

utilized strong Wolfe line search for computed k and 

defined as follows: 
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k k k k k k

f x d f x g d

g x d d g d

 

 

  

 
 (1.4) 

 

where, 0<<<1 are two constants. 

There are at least six well-known formulas fork, 

which are given below: 
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T
DY k k
k T

k k k

g g

g g d


 




 (Dai and Yuan, 1999). 

 

These parameters k (Hestenes and Stiefel, 1952; 

Fletcher and Reeves, 1964; Polak and Ribiere, 1969; 

Hestenes and Stiefel, 1952; Liu and Storey, 1992; Dai and 

Yuan, 1999) are equivalent, when f is a strong convex 
quadratic function with an exact line search. If f is non-

quadratic functional, each choice for the k leads to very 

different performance and convergence of the 
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corresponding algorithms (Andrei, 2011). The behavior 

of convergence of the k's formulas with some line 

search conditions has been established by many authors 

for many years ago (Rivaie et al., 2012; Dolan and 

More, 2002; Goldstein, 1965; Powell, 1977; Powell, 

1984; Dai and Yuan, 1999; Andrei, 2011; Hilstrom, 
1977; Fletcher, 1997; Fletcher and Reeves, 1964; Liu and 

Storey, 1992; Hestenes and Stiefel, 1952; Andrei, 2008; 

Zhang, 2009; Zoutendijk, 1970). Until recently, they are 

seeking for convenient k's that are efficient in a 

numerical performance, possessed global convergence 

and sufficient decent condition. The numerical 

performance of the FR conjugate gradient method has 

often been much slower than that of the PRP conjugate 

gradient method and fewer cases it is faster than PRP. 

The global convergence of the FR method with exact 

line search was fulfilled by Zouttendijk (1970) and also 

Al-Baali (1985) established the FR method is globally 

convergent under strong Wolfe Condition when <0.5, 

overtake Liu and Storey (1992) expanded that result to 

0.5. The CD and DY methods established global 

convergence under Strong Wolfe line search (Dai and 
Yuan, 1999; Hilstrom, 1977) and they have the same 

numerical performance as FR under exact line search. 

The PRP conjugate gradient method has a good 

numerical performance (Powell, 1977), but does not 

have good convergence property (Powell, 1984) and so 

as HS method. The global convergence of the PRP 

method for convex objective function under exact line 

search was established by Polak and Ribiere (1969). 

Powell (1986) proposed a counterexample and showed 

the non-convergent sequence of the PRP method for 

non-convex function, which also applied to the HS 

method. Different modifications of the HS method 
building a nice basis for an upgrade the performance and 

convergence property. For good news that, the 

convergence of the standard HS method with various 

inexact line search does not yet established. One 

important notice is that, when ||xk-xk-1|| is, being small, 

both the nominator and denominator of HS

k  become small 

so that HS

k  might be unbounded (Dai, 2010). Qi et al. 

(1999) established the global convergence of a modified 

HS method, where k takes the form: 

 


1

max 0,m
||

in , .
||

QHL HS

k k

kg
 

    
   

    
 

 

Perry (1977) observed that the search direction in the 

HS method can be written as: 

 

,k k kd P g   

 

where: 

1 .
T

k k
k T

k k

d y
P I

d y

  . 

 

Noting that T

kP yk-1 = 0, Pk is an affine transformation 

that transforms Rn into the null space of T

kP yk-1. 

This paper is organized as follows. In Section 2, is 

presented the underlying idea of modification and present 
the modification of the HS conjugate gradient method and 

algorithm. In Section3, we established sufficient descent 

property and global convergence property with the strong 

Wolfe line search, if the parameter  = 0.1. In Section 4, 

preliminary numerical results can be introduced. 

The Modified Method 

The nonlinear conjugate gradient method for 

unconstrained optimizations is uncomplicated and has 
abated memory requirement properties and is very 

effective for large-scale optimization problems, which 

the HS method is one of the most efficient methods. 

However, the standard HS method has nice numerical 

performance but fails in the convergence of non-convex 

functions under the inexact line search technique. 

Therefore, include a simple medication to overcome this 

deficiency, a modified HS formula is defined by: 
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 (2.1)  

 

and ||.|| stands for the Euclidean norm of vectors.  

The formula (2.1) has the following properties: 
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 (2.2) 

 

Lemma 2.1 

Consider any method (1.2) and (1.3) be generated by 

Algorithm 2.1, let >0 and >0 and k =
*MN

k  is given as 

(2.1), then: 

 

1kd        

 

Proof 

We can write (1.3), as: 

 

1,k k k kd g d    
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then, by triangle inequality the above equation become: 

 

1 ,k k k k k kd d g g d       

 

and |k| >0, dividing both sides of above inequality by |k|: 

 

1 .
k k

k

k k

g d
d

 
    (2.3) 

 

is obtain, also 0, 0
k k

k k

g d

 
   and let ,

k k

k k

g d
 

 
  , 

then from (2.3): 

 

 1 .kd      (2.4)  

 

Also from (1.3) and by triangle inequality, is obtain: 
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then, 0, 0
k k

k k

g d

 
   and let ,

k k

k k

g d
 

 
  , 

substitution in the above inequality, is obtain: 

 

1 .kd     (2.5) 

 

The proof is complete.  

Lemma 2.2 

Consider any method (1.2) and (1.3) be generated by 

Algorithm 2.1, let and *MN

k k   is given as (2.1), then: 
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Proof 

From (2.2), if gk dk-1  0, (1.3), *MN

k k  , (2.5) and 

triangle inequality, we have: 
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dividing above inequality by ||gk|| and from (3.2), we obtain: 

 

0 1 .
k

k

d M

g  
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
 (2.7)  

 

From (2.2), if gk dk-1 > 0, (1.3), *MN

k k  , (2.5) and 

triangle inequality, we have: 
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dividing above inequality by ||gk|| and from (3.2), we obtain: 
 

 
0 1 .

k

k

d M

g w  
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
 (2.8) 

 
The proof is complete. 

The Algorithm 2.1 of the *MN

k  method is presented.  

Algorithm 2.1  

Step 1: Initialization. Given x0  Rn, d0 = -g0, k = 0, if g0 

= 0 then stop. 

Step 2: Compute k based on (2.1). 

Step 3: Compute dk based on (1.3), if ||gk||  , then stop; 

otherwise go to the next step. 

Step 4: Compute k > 0 based on (1.4) 

Step 5: Updating new point based on (1.2), if ||gk||  , 
then stop 

Step 6: Set k = k +1 and go to step 3. 
 

Convergence Analysis 

In this section, we will analyze and study the 

convergence properties of *MN

k .  

Sufficient Descent Conditions 

Before giving the sufficient descent conditions, are 

needed the following assumptions. 

Assumption A  

(i) The f(x) is bounded below on the level set Rn and 
continuous, differentiable in a neighborhood N of 

the level set ℓ(x0) = {xRn|f(x)  f(x0)} at the initial 

point x0 

(ii) The gradient g(x) = f(x) is Lipschitz continuous in 

N, so a constant L>0 exists, such that: 
 

  ( ) , , .g x g y Lx y for any x y N     (3.1)  

 
By using the Assumption A and there exists M>0 

such that: 
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 ( ) .g x M x    (3.2)  

 

Theorem 3.1 

Consider any method (1.2) and (1.3) be generated by 

Algorithm 2.1, Assumption A holds and let the step-length 

k be determined by the strong Wolfe line search (1.4), 

where *MN

k k   is given as (2.1), then for all k  0: 

 
2|| || ,holdsT

k k kg d c g   (3.3) 

 

Proof 

If k = 0, then 
0 0

Tg d = -c||g0||2, hence, condition (3.3) 

holds true. We also need to show that for k  1, condition 

(3.3), that is will also hold true. 

If 
1

T

k kg d 
 0, from (1.3) multiply by gk and second 

inequality of (1.4), we get: 
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From (1.4), (2.2), (3.4), we get: 
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 (3.5) 

 
Substitution (2.5) in to (3.5) and (3.2), is obtained: 
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If 
1

T

k kg d 
> 0, from (1.3) multiply by gk and from 

(1.4), is obtained: 
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Substitution (2.5) in to (3.7) and (3.2), is obtained: 

 

2
1 .

( )

T

k k k

M
g d g

w



 

 
   

 
 (3.8)  

 

from (3.6), (3.8), is obtained (3.3). And this completes 

the proof of Theorem.  

Global Convergence Properties 

The following lemma, called the Zoutendijk 
condition, is usually used to prove global convergence of 

CG method. It was given by Zoutendijk (1970). 

Lemma 3.2 

Suppose that x0 is an initial point for which Assumption 

A holds. Consider any method in the form (1.2) and (1.3), 

where dk is a descent direction and k satisfies the strong 

Wolf condition line search (1.4). Then we have: 
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Proof 

We get from the second inequality of (1.4): 
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This together with the Lipchitz condition (3.1), implies: 
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Based on the Assumption A, we get from the first 

inequality of (1.4) that: 
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From (3.12) and (3.11), the Zoutendijk condition 

(3.9) holds.  

Lemma 3.2 is equivalent to the following inequality: 
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Now, the global convergence Theorem of the formula 

*MN

k  is established. 

Theorem 3.2 

Suppose that the Assumption A holds. Consider any 

CG method in the form of (1.2) and (1.3), where k is 

obtained by the strong Wolfe line search (1.4). Also, the 

descent condition holds. Then: 
 

liminf || || 0.k
k

g
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  (3.14)  
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Proof 

To prove Theorem 3.2, contradiction is used. That is, 
if Theorem 3.2 is not true, then a constant ϵ > 0 exists, 

such that: 
 

 kg   (3.15) 

 
Rewriting (1.3) as: 

 

1,k k k kd g d    

 
and squaring both sides of the equation, we obtain: 
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Dividing both sides of (3.17) by ||gk||4 and from (2.5), 

Cauchy-inequality, is obtained: 
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and from (2.7), is obtained: 
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from above inequality, we take 
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suppose that the (3.14) does not hold. Then, there exists 

ϵ > 0, such that (3.15) holds for all k  0. Then the above 

inequality become: 
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Therefore, from (3.18) and (3.13), it follows that: 
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From (2.2), if 
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> 0 and an equation (3.16), we get: 
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dividing both sides of the above inequality by ||gk||4 and 

from (2.5), Cauchy-inequality, is obtained: 
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then from above inequality and (2.8), is obtained: 
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suppose that the (3.14) does not hold. Then, there exists 

ϵ > 0, such that (3.15) holds for all k  0. Then the above 

inequality becomes: 
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Therefore, from (3.20) and (3.13), it follows that: 
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Then from (3.19), (3.21) contradicts (3.13) and this 

shows that (3.14) holds. The proof is complete. 

Numerical Result 

In this section, most of the problems from Andrei 
(2008); have been used to test and analyze the efficiency 

of *MN

k compared to FR, HS and CD. Stopping criteria is 

set to ||gk||  ϵ where ϵ = 10-6. As suggested by Hilstrom 

(1977); for each of test problem, four or five initial points 

starting are used. All runs are performed on a PC ACER 

(Intel® Core™ i3-3217u CPU @ 1.8 GHZ, with 4.00 GB 

RAMS, Windows 10 Home Premium). Numerical results 

are compared based on the number of iterations and CPU 

time. Every problem mentioned in Table 1 is solved using 
Matlab12 subroutine programming. The strong Wolfe line 

search is being used as to give the inexact value of the 

step-size. The performance results are shows in Fig. 1 and 

2 respectively, using a performance profile introduced by 

Dolan and More (2002). 
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Fig. 1: Performance profile based on the number of iterations 
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Fig. 2: Performance profile based on the CPU time 
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Table 1: A list of problem functions  

No Functions N Initial points 

1 Zettl 2 (-10,-10),(-3,-3),(8,8),(20,20),(30,30) 

2 Six-hump camel back 2 (-7,-7),(-2,-2),(3,3),(10,10) 

3 Three-hump Camel back 2 (-3,-3),(2,2),(8,8),(13,13) 

4 Trecanni 2 (-10,-10),(-5,-5),(7,7),(20,20),(30,30) 

5  Hager (2,4,10,100) (-5,…,-5),(-1,…,-1),(3,…,3),(7,…,7) 

6 Raydan1 (2,4,10,100) (-3,…,-3),(2,…,2),(5,…,5),(10,…,10) 

7 Shallow (6,10,100,500,1000) (8,…,8),(20,…,20),(40,…,40),(100,..,100) 

8 Extended Tridiagonal2 (4,10) (-6,…,-6),(-1,…,-1),(2,…,2),(5,…,5) 

9 Extended Maratos (2,4,10,100,500,1000) (-9,…,-9),(-5,…,-5),(2,…,2),(6,…,6),(10,…,10) 

10 Extended Tridiagonal1 (4,6,10,100,500,1000) (2,…,2),(8,…,8),(14,…,14),(28,…,28) 

11 Himmelblau (4,10,100,500,1000) (5,…,5),(11,…,11),(17,…,17),(31,…,31) 

12 Generalized Quartic (2,10,100,500,1000) (-5,…,-5),(2,…,2),(7,…,7),(11,…,11) 

13 Extended Rosenbrock (4,10,100,500,1000) (3,…,3),(6,…,6),(11,…,11),(23,…,23) 

14 Extended Denschnb (4,10,10,100) (-5,…,-5),(-1,…,-1),(3,…,3),(10,…,10) 

15 Arwhead (2,4,100,500,1000) (10,…,10),(50,…,50),(100,…,100),(200,…,200) 

16 Freudenstein and Roth (4,10,100,500,1000,5000) (-6,…,-6),(-3,…,-3),(1,…,1),(7,…,7) 

17 Flethcr (4,10,100,500) (-7,…,-7),(-2,…,-2),(5,…,5),(17,…,17) 

18 Extended White &Holst (4,10,100,500,1000) (-8,..,-8),(-3,…,-3),(2,…,2),(10,…,10) 

19 powell (4,100,500,1000) (-5,…,-5),(-1,…,-1),(3,…,3),(10,…,10) 

20 Extended Penalty (2,4,6,10,100,500,1000,5000) (-3,…,-3),(-1,…,-1),(2,…,2),(8,…,8) 

21 Levy (2,10,100,500) (-8,…,-8),(-2,…,-2),(3,…,3),(7,…,7) 

22 Styblinski-Tang (4,10,100,500) (-5,…,-5),(-1,…,-1),(2,…,2),(4,…,4) 

23 Leon (2,6,10,100,1000) (-1,…,-1),(0,…,0),(0.5,…,0.5),(1.2,…,1.2) 

24 McCormick (2,6,10,50) (-1,…,-1),(1,…,1),(2,…,2),(4,…,4) 

25 Chichinadze (4,10,100,500) (-10,…,-10),(-2,…,-2),(5,…,5),(20,…,20) 

26 Schaffer (2,10,100,500) (-50,…,-50),(-3,…,-3),(10,…,10),(30,…,30) 

 

The performance profile is used to introduce the 

notion of a means to evaluate and compare the 

performance of the set solvers s on a test set p. 

Assuming ns solvers and np problems exists, for each 

problem p and solver s, they defined tp,s = computing 

time (the number of iterations or CPU time or others) 

required to solve problems p by solver s. They 

compared the performance of problem p by solver s 

with the best performance by any solver on this 

problem using the performance ratio: 
 

 
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.
min :

p s

p s

p s
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Suppose that a parameter rM  rp,s for all p and s are 

chosen and rp,s = rM if and only if solver s does not 

solve problem p. The performance solver s of given 

problems have to be the best, but we would like to 

obtain all evaluation performance of the solver, then it 
was defined: 

 

   ,

1
: .p ss

p

P t size p P r t
n

    

 

The P(t)s was probability for solver sS that a 

performance ratio rp,s was within a factor tR of 

efficient ratio. Then, function Ps was the cumulative 

distribution function for the performance ratio. The 

performance profile P: R [0,1] for solver was a non-

decreasing, piecewise and continuous from the right. 

The value P(1)s is the probability that the solver will 

win over the rest of the solvers. In all, a solver with 

high values of P(t)s or at the top right of the figures are 

preferable or represent the best solver. 

Figures 1 and 2 show that MN* method is an 

efficient numerical performance, it can solve all the test 

problem and reach 100%. The numerical performance of 

the well-known conjugate gradient coefficients FR, HS 

and CD is divided into two groups; first group which is 

related to HS is given better in numerical performance 

than the second one which is related to FR and CD. The 

first group numerical performance seems to be less 

efficient than MN* method, it solves only 85% of the 

problems, but it is better than the second group 

numerical performance, which is solved only 80%. The 

numerical performance of MN* method seems to be 

robust and efficient when the first group and the second 

group are compared numerical performances. Hence, the 

formula MN* is robust and efficient. 
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