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results of the attached references of this paper. 
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Introduction and Preliminaries 

Since 1922 till now many generalizations of Banach 

contraction principle (Banach, 1922) have been achieved. 

For cyclic - mappings, we refer to the references below. 

In particulr; Sahar Mohamed Ali Abou Bakr (2013) 

proved the existence of only one fixed point for both {a, 

b, c}-ntype and {a, b, c}-ctype types of mappings 

defined on closed convex weakly Cauchy subset C of a 

normed space X. 

Definition 1 

Let C be a subset of a normed space X and T be a 

mapping from C into C satisfying: 
 

     

      

|| || || || || ||

max || ||,|| || , , , , 0,1 .

T x T y a x y b x T x

c y T y y T x x y C a b c

    

     
 

 
Then: 

 
(1) T is said to be {a, b, c}-ntype mapping, if 0 < a < 1, 0 

< b, 0  c < 1 = 2 and a + b + c = 1 

(2) T is said to be {a, b, c}-ctype mapping, if 0 c < 1/2 

and a + b + c < 1 
 

Sahar Mohamed Ali Abou Bakr and Ansari (2017) 

introduced new TU cyclic weak contraction C-class 

concept. Namely; TU cyclic weak F---contraction 

type and proved some related fixed point theorems. 

Definition 2 

Let S and T be self mappings on X. Then S is TU  

cyclic  F-- weak contraction mapping on X iff there are: 

(1) A collection of non empty sets  
1

j

i i
A


U  with 

1

j

ii
X A


  

(2) Non-decreasing functions , : [0, ]   , (t) = 0 

iff t = 0 and (t) = 0 iff t = 0 with  continuous, and 

(3) A C class function  F: That is; F: [0, ]  [0, ]   

is continuous and satisfying F(u, v)  u for all u, 

v[0, ] and if F(u, v) = u, then either u = 0 or v = 0 

such that: 

(1) U  is a T-cyclic representation of X with respect to S: 

That is; T(S(A1))  A2, T(S((A2)))  A3,...,T(S(Aj-1))  

Aj and T(S((Aj)))  A1 

(2) The following contractivity condition is satisfied: 
 

       
            

,

, , ,

d T S x T S y

F d T x T y d T x T y



 
 

 

for every xAi, yAi+1, i = 1,2,...,j, where Aj+1 = A1. 
 

In this study; we define the real valued function 

S,(abc): X  X  R+ as follows: 
 

        

      
,

, , ,

max , , ,

, ,

S abc
x y a d x y b d x S x

c d y S y d y S x

x y X

  



 

 

 
where, a, b, c are three real numbers. 

Definition 3 

Let (X, d) be metric space with X A B and S be a 

self mapping on X with: 
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(1) S(A)  B and S(B)  A and 

(2) There are real constants a, b, c[0,1] with: 
 

        ,
, , , .

S abc
d S x S y x y x A y B      

 
Then S is said to be (A,B) generalized cyclic: 
 

(1)  contraction iff a + c + b < 1 

(2)  nonexpansive iff a + c + b = 1 
 

Definition 4 

Let S: XX fulfill the condition: 

 

        

    
,

,

, ,

, , .

S abc

S abc

d S x S y x y

x y x A y B

 

    
 

 

where, ϕ is lower semi-continuous non-decreasing functions 

ϕ: [0, ] [0, ] with ϕ(t) > 0 for t[0, ] and ϕ(0) = 0. 

Then S is said to be (A, B) generalized cyclic: 

 

(1) ϕ - weak contraction iff a + c + b < 1, 

(2) ϕ - weak nonexpansive iff a + c + b = 1. 

 

Definition 5 

Let S: XX be a mapping fulfill the condition: 

 

          

    
,

,

, ,

, , ,

S abc

S abc

d S x S y x y

x y x A y B

 



 

    
 

 

where,  and ϕ are lower semi-continuous non-

decreasing functions , ϕ: [0,]  [0, ] with (t) > 0 

for t[0, ] and (0) = 0 with ϕ(t) > 0 for t[0,] and 

ϕ(0) = 0. Then S is said to be (A, B) generalized cyclic: 

 

(1) -ϕ- weak contraction iff a + c + b < 1, 

(2) -ϕ- weak nonexpansive iff  a +c+b =1. 

 

Definition 6 

Let S: XX be a mapping fulfill the condition: 

 

     

          , ,

,

, , , , ,
S abc S abc

d S x S y

F x y x y x A y B



      
 

 

where,  and ϕ are lower semi-continuous non-

decreasing functions , ϕ: [0, ]  [0, ] with (t) > 0 

for t[0, ], (0) = 0, ϕ(t) > 0 for t[0,], ϕ(0) = 0 and 

F is a C class function. Then S is said to be (A, B) 

generalized cyclic: 

(1) F--ϕ- weak contraction iff a +c + b< 1, 

(2) F--ϕ- weak nonexpansive iff a+c+b=1. 

 

Example 

Let X = [-1, 1], A=[-1, 0], and B = [0, 1]. Define 

S:XX as: 

 
,

3

,
2

z
if z A

S z
z

if z B


 

 
 


 

 

It is clear that S is cyclic with respect to the 

representation A B of  X.  Endow X  with the metric d(x, 

y) = |xy|, cosider ϕ(t) = t, (t) = t, and F(t, s) = 
1

2
t s , 

then the operator S is generalized cyclic F--ϕ-

 1 1 2

9 12 3

   
   
   

 weak contraction w.r.t (A, B). In fact, let 

xA and yB. Then we have: 

 

      

      

 

 

   

 

1 1 2

9 12 3

1 1
, , ,

9 12

2
max , , ,

3

1 1 2
max ,

9 12 3 3 2 3

1 1 2

9 12 3 3 2

1 1 2 1

9 12 3 3 2 9

2
5 .

9 9

S

x y d x y d x S x

d y S y d y S x

x y x
y x x y y

x y
y x x y

x y
y x x y y x

x
y y x

   
   
   

  



       
               

       

   
          

   

       

   

 

 

    

 

     

          , ,

,
3 2 2 3 2 3

1 2 9 6
3 2

6 9 4 4

2 1 11 2 1
5 5 5

9 2 2 9 2

, , , , .
S abc S abc

x y y x y x
d S x S y

y x y x

y x y x y x y x

F x y x y x A y B 

 
        

 

 
    

 

    
           

    

     

 

Remark 

If  ,( ) ( , ) ( , ) , ,S abc x y ad x y x y X    that is if b=c=0, 

then we have the usual contraction or nonexpansive 

mapping acoording to the value of a, a<1 or not. One 

can see some related fixed point theorems proved in the 

attached references below. 

In the light of the particular cases; F(u, v) = u-v and 

= Id; the identity mapping, we noticed the following: 
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(1) The class of all (A,B) generalized cyclic F--ϕ  

weak non-expansive is wider than the class of all (A, 

B) generalized cyclic F--ϕ- weak contraction. 

(2) The class of all (A, B) generalized cyclic F--ϕ- 

weak nonexpansive is wider than the class of all (A, 

B) generalized cyclic -ϕ-  weak nonexpansive. 

(3) The class of all (A, B) generalized cyclic F-ϕ- 

weak contraction is wider than the class of all (A, B) 

generalized cyclic -ϕ-  weak contraction. 

(4)  The class of all (A,B) generalized cyclic -ϕ- 

weak nonexpansive is wider than the class of all 

(A,B) generalized cyclic -ϕ-  weak contraction. 

(5) The class of all (A,B) generalized cyclic -ϕ- 

weak nonexpansive is wider than the class of all 

(A,B) generalized cyclic ϕ- weak nonexpansive. 

(6) The class of all (A,B) generalized cyclic ϕ- weak 

nonexpansive is wider than the class of all (A,B) 

generalized cyclic ϕ- contraction. 

(7) The class of all (A,B) generalized cyclic  

nonexpansive is wider than the class of all (A,B) 

generalized cyclic ϕ- weak nonexpansive. 

(8) The class of all (A,B) generalized  cyclic  

nonexpansive is wider than the class of all (A,B) 

generalized cyclic  contraction. 

(9) The class of all (A,B) generalized cyclic  

nonexpansive is wider than the class of all {a, b, c}-

ntype mappings. 

(10) The class of all {a, b, c}-ntype mappings is wider 

than the class of all {a, b, c}-ctype mappings. 

 

In this study, the real valued function S,T,(abc): X  

XR+ is defined as: 

 

        

      
,

, , ,

max , , , ,

S T abc
x y a d x y b d x S x

c d y T y d y S x

  


 

 

where, S, T: XX are two self mappings and a, b, c are 

three real numbers. 

We introduced the following fascinating definition 

for joint-cyclic mapping: 

Definition 7 

Let (X, d) be a metric space with A B , S, T: XX 

be two self mappings and a, b, c  [0, 1] be three real 

numbers satisfying: 

 

(1) The cyclic condition: S(A) B and T(B) A 

(2) The contractivity condition: 
 

      

 

, ,

, ,

, ( ,  )

( ( ,  )) ,  ,

S T abc

S T abc

d S x T y x y

x y x A y B

 

    
 

where, ϕ is lower semi-continuous non-decreasing 

function ϕ: [0, ] [0, ] with ϕ(t) > 0 for t[0, ] 

and ϕ(0) = 0. 

 

Then S and T are said to be joint (A, B) generalized 

cyclic: 

 

(1) ϕ- weak contraction types iff a + c + b < 1 

(2) ϕ- weak nonexpansive types iff a + c + b = 1 

 

Definition 8 

Let (X, d) be a metric space with X A B , S, T: 

XX be two self mappings and a, b, c[0, 1], b  0 be 

three real numbers satisfying: 

 

(1) The cyclic condition: S(A) B and T(B)  A 

(2) The contractivity condition: 

 

          

    
, ,

, ,

, ,

, , ,

S T abc

S T abc

d S x T y x y

x y x A y B

 



 

    
 

 

where,  and ϕ are non-decreasing functions , ϕ: 

[0, ][0, ] with (t) > 0, ϕ(t) > 0 for t [0, 1] 

and (0) = 0, ϕ(0) = 0,  is continuous and ϕ is 

lower semi-continuous. 

 

Then S and T are said to be joint (A,B) cyclic 

generalized: 

 

(1) -ϕ- weak contraction types iff a + c + b < 1 

(2) -ϕ- weak nonexpansive types iff a + c + b = 1 

 

Definition 9 

Let (X, d) be a metric space with X A B , S,T: 

XX be two self mappings and a, b, c[0,1] b  0 be 

three real numbers satisfying: 

 

(1) The cyclic condition: S(A) B and T(B)  A 

(2) The following contractivity condition: 

 

     

          , , , ,

,

, , , , ,
S T abc S T abc

d S x T y

F x y x y x A y B



      
 

 

where,   and ϕ are non-decreasing functions , ϕ: 

[0, ] [0, ] with (t) > 0, ϕ(t) > 0 for t[0, ] 

and  (0) = 0, ϕ(0) = 0,  is continuous, ϕ is lower 

semi-continuous and F is some C class 

function.Then S and T are said to be joint (A,B) 

generalized cyclic: 
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(1) F--ϕ- weak contraction types iff a + c + b < 1 

(2) F--ϕ- weak nonexpansive types iff a + c + b = 1 

 

We have the following: 

Remarks 

(1) The class of all joint (A,B) generalized cyclic F--

ϕ- weak nonexpansive types is wider than that of 

joint (A,B) generalized cyclic -ϕ- weak 

nonexpansive types. 

(2) The class of all joint (A,B) generalized cyclic  F--

ϕ-  weak nonexpansive types is wider than that of  

joint (A,B) generalized cyclic F--ϕ- weak 

contraction types. 

(3) The class of all joint (A,B) generalized cyclic -ϕ-

 weak nonexpansive types is wider than that of 

joint (A,B) generalized cyclic -ϕ- weak 

nonexpansive types. 

(4) The class of all joint (A,B) generalized cyclic -ϕ-

 weak nonexpansive types is wider than that of 

joint (A,B) generalized cyclic -ϕ- weak 

contraction types. 

(5) If S, T are continuous self mappings on (X, d), then 

restriction of the mapping S,T,(abc): AB   for 

every xA, yB: 

 

     

         
, ,

, ,

, max , , ,

S T abc
x y a d x y

b d x S x c d y T y d y S x

 

 
 

 

is continuous. 

(6) If A,B are two compact subsets of the metric space 

(X, d) and S, T are continuous self mappings on X, 

then the restriction of the mapping S,T,(abc): AB 

   attains its infimum as well as its supremum 

at some points in A  B 

 

This paper shows that if S and T are two joint 

generalized cyclic F--ϕ- weak nonexpansive types 

mappings, then they have only one common fixed point. 

In particular, every cyclic C class generalized -ϕ- 

weak nonexpansive mapping has a unique fixed point. 

The existing functions F,  and ϕ give extensions of 

many results of the references attached in this study. 

Main Results 

We have: 

Theorem 1 

Let (X, d) be metric space and A,B be two compact 

subsets of which X A B . If S, T: X  X are 

continuous joint (A, B) generalized cyclic F--ϕ- weak 

nonexpansive mappings on X, then there is only one 

point z  X such that S(z) = z = T(z) A B . 

Proof 

Let v0 be arbitrarily chosen element in X. Then v0 is 

either in  A or in B, if v0 is in B, then v1 = T(v0)  A, v2 = 

S(v1)  B, v3 = T(v2)A and then define by induction: 
 

   2 2 2 1 2 1 2 0.n n n nv S v B and v T v A n         (2.1) 

 
First, suppose n is an odd natural number. Then: 

 

        

         

    

1 1

1 1, , , ,

1, ,

, ,

, , ,

, .

n n n n

n n n nS T abc S T abc

n nS T abc

d v v d S v T v

F v v v v

v v

 

 



 

 





  

 

 (2.2) 

 

Since  is non-decreasing, we see that: 

 

     

    

      
    

    
     

     

1 1, ,

1 1 1

1

1 1 1

1

1 1 1

1 1

,

, ,

max , , ,

, ,

max , , ,

, , ,

, , .

n n n nS T abc

n n n n

n n n n

n n n n

n n n n

n n n n n n

n n n n

d v v v v

a d v v bd S v v

c d T v v d S v v

a d v v bd S v v

c d v v d v v

a d v v b d v v cd v v

a b d v v cd v v

 

  



  



  

 

 

 



 



  

  

 

 
Thus: 

 

     1 1 1, , , .
1

n n n n n n

a c
d v v d v v d v v

b
  

 
   

 

 
Therefore: 

 

         

     

     

1 1 1, ,

1 1

1 1

, , ,

, ,

, , .

n n n n n nS T abc

n n n n

n n n n

v v a b d v v cd v v

a b d v v c d v v

a b c d v v d v v

  

 

 

   

  

   

 

 
hence: 
 

       1 1 1, ,
, , ,n n n n n nS T abc

d v v v v d v v     . (2.3) 

 
Continuing gives: 

 

     

     

1 1, ,

1 1 2, ,

, ,

, ,

n n n nS T abc

n n n nS T abc

d v v v v

d v v v v

 

  

 

  
. (2.4) 
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Second; by a similar method when n is an even 

natural number, we obtain the same conclusion as 

inequalities (2.4). Hence the sequences {d(vn+1, vn)}nN 

and {S,T,(abc)(vn+1, vn)}nN are monotonic non-increasing 

and bounded below by 0, thus their limit exist, each 

equals its infimum. 

On the other side; they have the same infimum 

because of the inequalities (2.4), therefore if their 

infimum is r, then: 
 

     1 1, ,
lim , lim ,n n n nS T abc
n n

d v v v v r 
 

   . 

 
Using the properties of ϕ: 

 

      1, ,
liminf ,n nS T abc

n
r v v  


  . 

 
Taking least upper limits on two sides of the 

inequality (2.2) as n gives: 
 

           1, ,
, liminf , .n nS T abc

n
r F r v v r   


     (2.5) 

 
Thus: 

 

        1, ,
, liminf ,n nS T abc

n
F r v v r  


  . 

 

This insures that either (r) = 0 or lim infn 

ϕ(S,T,(abc)(vn, vn-1) = 0. If (r) = 0, then r = 0 and if lim 

infn ϕ(S,T,(abc)(vn, vn-1) = 0 while r > 0, then we have 

the following contradiction: 
 

      1, ,
0 liminf , 0.n nS T abc

n
r v v  


     

 
Hence: 

 

     1 1, ,
lim , lim , 0.n n n nS T abc
n n

d v v v v 
 

    (2.6) 

 

This insures that: 

 

    , ,
inf , : , 0.

S T abc
x y x A y B     

 

Since S,T,(abc) attains its infimum on AB, there is 

x0A and y0B such that: 

 

   0 0, ,
, 0.

S T abc
x y   

 

This gives: 

 

    

      
0 0 0 0

0 0 0 0

, ,

max , , , 0.

ad x y b d x S x

c d y T y d y S x



 
 

Since all are nonnegative real numbers, clearly: 

 

          0 0 0 0 0 0 0 0, , , , 0,d x y d x S x d y T y d y S x     

 

and we have: 

 

   0 0 0 0 .x y S x S y    

 

Notice that the converse is also true, if x0 = y0 = S(x0) 

= T(x0) = S(y0) = T(y0), then S,T,(abc)(x0, y0) = 0 is clear. 

On the other side, this showed that x0 = y0A∩B. If there 

exists another point vA∩B such that S(v) = v = T(v) 

with v  y0, then we get: 

 

        

          

    

0 0

0 0, , , ,

0, ,

, ,

, , ,

, .

S T abc S T abc

S T abc

d v y d S v T y

F v y v y

v y

 

 





  

 

. 

 

Hence; the following is a contradiction: 

 

     

           
         

0 0, ,

0 0 0 0

0 0 0 0

, ,

, , max , , ,

, , , ,

S T abc
d v y v y

a d v y b d S v v c d y T y d y S v

a d v y cd v y a c d v y d v y

 

  

    

 

 

This shows that d(v, y0) = 0, that is v = y0. 

We have: 

Proposition 1 

The sequence defined iteratively by the induction 

(2.1) is convergent to the unique common fixed point of S 

and T: 

 

lim .n
n

v v


  

 

Proof 

Let v be the unique common fixed point of S and T, 

in addition suppose that limn vn = u with v  u. Then 

there is n N such that: 

 

        

         

    

1

1 1, , , ,

1, ,

, ,

, , ,

, .

n n

n nS T abc S T abc

nS T abc

d v v d S v T v

F v v v v

v v

 

 





 





  

 

 

 

Hence: 
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          

    

      
        
     

1 1, ,

1 1 1

1

1 1

1 1

, , ,

, ,

max , , ,

, , max , , ,

, , , .

n n nS T abc

n n n

n

n n n n

n n n n

d v v d S v T v v v

a d v v b d S v v

c d T v v d S v v

a d v v b d v v c d v v d v v

a d v v b d v v c d v v

 

  



 

 

  

 



  

  

 

 
That is: 

 

     1 1

1
, , ,

1
n n n nd v v a d v v b d v v

c
 

  
 

. 

 
Using Equation (2.6) with the limiting approach as n 

  prove that:  

 

   , ,
1

a
d u v d u v

c



 

 

hence;  1 , 0
1

a
d u v

c

 
  

 
, since  1-c, we get d(u,v)=0, 

that is; v = u. 

Corollary 1 

Let (X, d) be metric space and A,B two compact 

subsets of which X A B . If S: XX is continuous 

(A,B) generalized cyclic F--ϕ- weak nonexpansive 

mapping on X, then there is only one point vX such 

that S(v) = vA∩B. Moreover; for any v0X, we have 

limn Sn(v0) = v. 

Proof 

Using Theorem (1) with S = T completes the prove. 

Corollary 2 

Let (X, d) be metric space and A, B two compact 

subsets of which X = A∪B. If S: XX is continuous (A, 

B) generalized cyclic -ϕ- weak nonexpansive 

mapping on X, then there is only one point vX such 

that S(v) = vA∩B. Moreover; for any v0X, we have 

limn Sn(v0) = v. 

Proof 

Using Theorem (1) with S = T and taking F(t, s) = 

(t)-ϕ(s) complete the prove. 

Corollary 3 

Let (X, d) be metric space and A, B two compact 

subsets of which X = A∪B. If S: XX is continuous (A, B) 

generalized cyclic ϕ- weak nonexpansive mapping on X, 

then there is only one point vX such that S(v) = vA∩B. 

Moreover; for any v0X, we have limn Sn(v0) = v. 

Proof 

Using Theorem (1) with S = T, taking F(t, s) = (t)-

ϕ(s) and (t) = tt [0,] complete the prove. 

Conclusion 

This paper shows that if S and T are two joint 

generalized cyclic F--ϕ- weak nonexpansive type 

mappings, then they have only one common fixed point. 

In particular, every generalized cyclic C class -ϕ- 

weak nonexpansive mapping has a unique fixed point. 

Hence continuing restrictions of F,  and ϕ to be taken 

special cases gives extensions of many fixed point in the 

filed of fixed point theory. In particular, it extends the 

results of attached references in this study. 
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