

 © 2020 Xingbo Wang and Junjian Zhong. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Original Research Paper

Fast Approach to Factorize Odd Integers with Special

Divisors

1,2,3Xingbo Wang and 1Junjian Zhong

1Department of Mechatronic Engineering, Foshan University, Foshan City, PRC, 528000, China
2State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
3Guangdong Engineering Center of Information Security for Intelligent Manufacturing System, China

Article history

Received: 04-12-2019

Revised: 13-01-2020

Accepted: 25-01-2020

Corresponding Authors:

Xingbo Wang

Department of Mechatronic

Engineering, Foshan University,

Foshan City, PRC, 528000,

China

Email: 153668@qq.com

Abstract: The paper proves that an odd composite integer N can be

factorized in O((log2N)4) bit operations if N = pq, the divisor q is of

the form 2u +1 or 2u-1 with u being an odd integer and  being a

positive integer and the other divisor p satisfies 1 < p  2 +1 or 2 +1

< p  2+1-1. Theorems and corollaries are proved with detail

mathematical reasoning. Algorithm to factorize the odd composite

integers is designed and tested in Maple. The results in the paper

demonstrate that fast factorization of odd integers is possible with the

help of valuated binary tree.

Keywords: Cryptography, Integer Factorization, Binary Tree, Algorithm

Introduction

A Valuated Binary tree is a full perfect binary tree

that has odd integers bigger than 1 put on it from top to

bottom and left to right, as introduced in Wang’s

(2016a). With the help of the valuated binary tree, many

new properties of the odd integers are discovered. For

example, the properties of symmetric nodes and

symmetric common divisors, the properties of subtree

duplication and subtree transition and the properties of

sum by level, root division and uniform sum were

discovered in (Wang, 2016b; 2017a), the genetic

properties of odd integers was disclosed in (Wang,

2017b) and the periodical divisibility traits along the

leftmost path or the left side-path of the tree were

demonstrated in (Wang and Guo, 2019). All these new

properties enable us to know the integers in a different

point of view, as stated and investigated in Wang’s

(2018). Integer factorization has been a hard problem in

number theory and in cryptography over years, as

overviewed in Yan’s (2013), Sarnaik’s et al. (2016) and

Phulachand‘s (2016). Any new approach related with the

integers shall of course be tried on the issue. Wang

(2017b) proved that there should exist an algorithm of

O(log2N) searching steps to factorize an odd integer N.

But there has not been a convincible demonstration.

Thereby, this paper, continues the studies on integer

factorization and proves that there are odd integers that

can be factorized in O(log2N) searching steps or in

O((log2N)4) bit operations.

Preliminaries

Definitions and Notations

A valuated binary tree T is such a binary tree that

each of its nodes is assigned a value. An odd number N-

rooted tree, denoted by TN is a recursively constructed

valuated binary tree whose root is the odd number N

with 2N-1 and 2N +1 being the root’s left and right sons,

respectively. Each son is connected with its father via a

path, but there is no path between the two sons. T3 tree is

the case N = 3. For convenience, symbol N(k, j) is by

default the node at position j on level k of T3, where k =

1, 2, and j = 0,1,, 2k-1. Symbol
 ,

N

k j
N is to denote the

node at position j on level k of TN, where k = 1,2, and j

= 0,1,,2k-1. Symbol Xl(TN) means node X is in the left

branch of TN while symbol Xr(TN) means X is in the

right branch of TN. Symbol
 ,0

N

i
N is the leftmost node on

level i of TN; use symbol
 , 1

N

i
N


 to denote the odd number

left to
 ,0

N

i
N , namely,

   , 1 ,0
2N N

i i
N N


  . Use symbol 0

NP to

indicate the leftmost path defined by

     0 0,0 1,0 ,0
{ , , , , }N N N N

i
P N N N and symbol N

LP to indicate

the path defined by N

LP = {N(1,-1),, N(i,-1),,…}, which

is also called a left side-path, as depicted in Fig. 1. The

leftmost path and the rightmost path together with their

side-paths respectively are in all called border-path or

simply border.

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

25

Fig. 1: Tp Tree and its side-paths

Symbol A  B means result B is derived from

condition A or A can derive B out. In this whole article,

symbol x denotes the floor function, an integer

function of the real number x such that x-1 < x  x or

equivalently x  x < x +1. Symbol a|b means b can be

divided by a; symbol (a, b) is to express the Greatest

Common Divisor (GCD) of integers a and b. A tracing

step or a searching step is the computation of a father

based on a son or vice versa.

Lemmas

Lemma 1 (Node Calculation, see in (Wang, 2016a))

Node N(k, j) of T3 is calculated by:

 
1

,
2 1 2

0,1,2,...; 0,1,...,2 1

k

k j

k

N j

k j

  

  

Node
 ,

X

k j
N of TX is computed by:

 ,
2 2 2 1

0,1,2,...; 0,1,...,2 1

X k k

k j

k

N X j

k j

   

  

Lemma 2 (Divisors on Borders, see in (Wang and

Guo, 2019))

Let p be an odd integer and Tp be the p-rooted

valuated binary tree and d be a positive integer with 1 

d  p-1; if there exits a positive integer e such that 1  e

 2d-1-1 and 2d-  2 1

odd

e   0(modp), then
 , 1

| p

d e
p N


; if

there exits a positive integer f such that 0  p  f  2d-1-2

and 2d +  2 1

odd

f   0(modp), then
 ,

| p

d p f
p N


.

Particularly, if 2d-1  0(mod p) then
 ,0

p

d
N  0(modp); if

2d +1  0(modp) then
 , 1

p

d p
N




 , 1

p

d
N


  0(mod p).

Lemma 3 (Floor Function, see in (Wang, 2019))

Properties of the floor functions with real numbers x

and y and integers n:

(P1) x + y  x + y  x + y +1

(P2) x - y -1  x + y  x - y < x - y +1

(P13) x  y  x  y

(P32) n x  nx  n(x +1)-1. Taking n = 2 yields

2x  2x  2x +1

Main Results and Proofs

Theorem 1

Let p > 1 be an odd integer and  be a positive

integer; if p < 2 +1 then it holds:

1 1

1 1

1
2 2 2 1

2

1
0 2 2 1

2

p

p

  

 

 

 


   


   

whereas if p < 2-1 it holds:

1 1

1 1

1
2 2 2 1

2

1
0 2 2 1

2

p

p

  

 

 

 


   


   

Proof

See the following deductions:

1

1 1

1 1

1
2 1 2

2

1
2 2 2

2

1
2 2 2 1

2

p
p

p

p

 

  

  



 

 


   


   


    

N

N1,0 N1,1

N2,0

N2,1

N2,2

N2,3

Np-1,0 Np-1,1 Np-1,2 …

Np-1,*

… … … …
… …

…

N1, -1

N2, -1

Np-1, -1

p

LP
p

RP

N1, 2

N2, 4

Np-1, *+1

Np-1,j

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

26

1

1 1

1

1
2 1 2 1

2

1
1 2 2 2

2

1
0 2 2 1

2

p
p

p

p

 

 

 



 




    


     


    

1

1 1

1 1

1
2 1 2 1

2

1
2 2 2 1

2

1
2 2 2 1

2

p
p

p

p

 

  

  



 

 


    


    


    

1

1 1

1 1

1
2 1 2

2

1
0 2 2 2

2

1
0 2 2 1

2

p
p

p

p

 

 

 



 

 


   


    


    

Theorem 2

Let p > 1 be an odd integer and  be a positive

integer; if 2 +1 < p  2+1-1 then it holds:

1 1 1
2 2 2 2 1

2

p     
    

and:

1 11
0 2 2 2 1

2

p   
    

Proof

See the following deductions:

1

1

1

1

1 1

1 1

1 1

2 1 2 1

2 2 1 2

1
2 1 2

2

1
2 2 1

2

1
2 2 2 2 2

2

2 2 2 1

1
2 2 2 2 1

2

added items added items

added items

p

p

p

p

p

p

 

 

 

 

    

  

   









 

 

 

   

    


   


      


     

   


     

1

1

1

1 1 1

1

1 1

2 1 2 1

2 1 2 2

1
2 2 1

2

1
2 2 2 2 2

2

2 2 2 1

1
0 2 2 2 1

2

added items added items

added items

p

p

p

p

p

 

 

 

    

  

  







  



 

   

    


   


     

   


     

Theorem 3

Let N = pq with 1< p  q being odd integers; then

log2N  max(2log2p, log2q).

Proof

Without loss of generality, assume 1< p  N  q.

Then By Lemma 3 (P13) and (P32):

2 2 2 2log log log logN q N q        

and:

2 2 2 2 2log 2log log 2log 2 logN p N p p             

Hence it holds:

 2 2 2log max 2 log , logN p q          

Corollary 1

Suppose p and q are odd integers with 1 < p < q; then

N = pq can be factorized in log2N +1 searching steps if

one of p and q is in the form 2 +1 or 2-1 with  being a

positive integer.

Proof

According to the given conditions, there are 4 cases,

q = 2 +1, q = 2-1, p = 2 +1 and p = 2-1, to be

considered.

Consider the first case q = 2 +1; then N = 2 p + p.

Rewrite this by:

1 1
2 2 2 2 2 2 2 1

2

p
N p p p        
         

 

Referring to Lemma 1 and Theorem 1, it yields:

1 1
,2

2

p

p
N N

   
 

 



Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

27

This implies that N is a node in the right branch of Tp.

Consequently, there are at most  steps by tracing

upwards and finding out the GCD between N and its

ancestors in Tp. Since q = 2 +1, it yields:

 2 2 2log 1 log log 1q q q            (1)

For the case q = 2-1, it holds N = 2 p-p = 2 p-2

+ 1 1
2 2

2

p   
 

 
+1. Again referring to Theorem 1, it

leads to
1 1

,2
2

p

p
N N

   
 

 

 . This case says N is a node in the

left branch of Tp.

For the case p = 2 +1 or p = 2-1, by Lemma 2, it

knows
 , 1

pN
 

  0(modp) or
 ,0

pN


 0(modp)

respectively. Since   log2 p +1, by genetic property

it knows p can be found in at most 2 log2 p +1 steps by

tracing downwards and finding the GCD between N and

nodes along the leftmost path or left side-path of TN.

Example 1

Let N = 527; then N’s ancestors are 263,131, 65,33

and 17, as depiected with Fig. 2. It can see that 17 is the

divisor of 527 = 1731 and 31 = 25-1.

Example 2

Let N = 561, then N’s ancestors are 281,141,71,35

and 17, as depiected with Fig. 3. It can see that 17 is the

divisor of 561 = 1733 and 33 = 25+1.

Proposition 1

Suppose p and q are odd integers with 1 < p < q; then

N = pq can be factorized in log2N +1 searching steps if

q is in either form of 2-1 and 2 +1 with  being a

positive integer.

Fig. 2: The ancestors of N = 527 in T17

Fig. 3: The ancestors of N = 561 in T17

17

35 33

65 67 69 71

129 131 133 135 137 139 141 143

257 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287

513 515 517 519 521 523 525 527 529 531 533 535 537 539 541 543 545 547 549 551 553 555 557 559 561 563 565 567 569 571 573 575

17

35 33

65 67 69 71

129 131 133 135 137 139 141 143

257 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287

513 515 517 519 521 523 525 527 529 531 533 535 537 539 541 543 545 547 549 551 553 555 557 559 561 563 565 567 569 571 573 575

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

28

Fig. 4: Symmetric divisors with q = 31 and q = 33

Example 3

Figure 4, symmetric divisors distributed in a tree are

again exhibited with q in the form 2-1 or 2 +1.

Example 4

Let N = 731; then the left side-path of T731 is 1459,

2919, 5839 and 11679, as depicted in Fig. 5. It can see

GCD(11679,731) = 17. Likewise, the right side path is

1465, 2929, 5857 and 11713, among which it fits

GCD(11713,731) = 17.

Corollary 2

Let p and q be odd integers with 1 < p < q and

suppose q = 2u +1 with u  1 being an old integer, 

being a positive integer and 1 < p < 2 +1; then N = pq

can be factorized in log2p +1 searching steps.

Proof

The condition q = 2u +1 leads to:

 

1

2 1 2 2 2

1
2 2 2 2 1

2

N u p up p

p
up

   

   

     

 
     

 

Since 1 < p < 2 +1, it knows by 1, 2-1 < 2-1+
1

2

p 

 2-1. Thereby:

1 1
,2

2

up

p
N N

   
 

 



This says that N is a node in the right branch of

Tup. Thus there are at most  searching steps to trace

upwards and find out the GCD between N and its

ancestors in Tup.

Fig. 5: Side-paths and border-path of T731

Fig. 6: Tracing ancestors of 6707

731

1461

2921

5841

11681

1459

2919

5839

11679

1463

2927

5855

11711

1465

2929

5857

11713

In
term

ed
iate n

o
d
es

209

419 417

839 839

1679 1677

3355 3353

6707 6705

=1911

=19353

17

35 33

65 67 69 71

129 131 133 135 137 139 141 143

257 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287

513 515 517 519 521 523 525 527 529 531 533 535 537 539 541 543 545 547 549 551 553 555 557 559 561 563 565 567 569 571 573 575

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

29

Example 5

Let N = 6707; then N’s ancestors are 3353, 1677,
839, 419, 209, among which GCD(6707,209) = 19,
which results in 6707 = 19353 = 19(2511+1). Figure
6 shows the tracing path from 6707 to 209. Seen from
the figure, N = 6707 is sure in the right branch of T209.

Corollary 3

Let p and q be odd integers with 1 < p < q and suppose q
= 2u-1 with u  1 being an old integer,  being a positive
integer and 1 < p < 2 +1; then N = pq can be factorized in
log2 p +1 searching steps.

Proof

By Theorem 1, the condition 1< p <2+1 leads to 0 

2-1 -
1

2

p 
  2-1 -1. Considering:

 

1

2 1 2 2 2

1
2 2 2 2 1

2

N u p up p

p
up

   

   

     

 
     

 

it knows:

1 1
,2

2

up

p
N N

   
 

 



This says that N is a node in the left branch of Tup.

Thus there are at most  searching steps to trace upwards
and find out the GCD between N and its ancestors in Tup.

Example 6

Let N = 45601; then N’s ancestors are 22801,
11401, 5701, 2851, 1425, 713, among which
GCD(45601,713) = 31, which results in 45601 =
311471 = 31(2623-1). Figure 7 shows the tracing
path from 45601 to 713. Seen from the figure, N =
45601 is sure in the left branch of T713.

Corollary 4

Let p and q be odd integers with 1 < p < q and
suppose q = 2u +1 with u  1 being an old integer, 
being a positive integer and 1 < p < 2-1; then N = pq
can be factorized in log2p +1 searching steps.

Proof

By Theorem 1, the condition 1< p <2 -1 leads to 2-1

< 2-1 +
1

2

p 
< 2-1. Since:

 

1

1

1
,2

2

2 1 2 2 2

1
2 2 2 2 1

2

up

p

N u p up p

p
up

N


   

  

 



 
 

 

     

 
     

 



it knows that N is a node in the right branch of Tup. Thus

there are at most  searching steps to trace upwards and

find out the GCD between N and its ancestors in Tup.

Example 7

Let N = 42711; then N’s ancestors are 21355, 10677,

5339, 2669, 1335, 667, among which GCD(42711,667)

= 23, which results in 42711 = 231857 =

23(2629+1). Figure 8 shows the tracing path from

42711 to 667. Seen from the figure, N = 42711 is sure in

the right branch of T667.

Fig. 7: Tracing ancestors of 45601

Fig. 8: Tracing ancestors of 42711

713

1425 1427

2851 2879

5703 5701

11403 11401

22803 22801

=2331

=311471

45601 45603

667

1335 1333

2671 2669

5339 5337

10679 10677

21355 21353

=2329

=231857
42711 42709

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

30

Corollary 5

Let p and q be odd integers with 1 < p < q and

suppose q = 2u-1 with u  1 being an old integer, 

being an positive integer and 1 < p < 2 -1; then N = pq

can be factorized in log2p +1 searching steps.

Proof

By Theorem 1, the condition 1 < p < 2 -1 leads to 0

< 2-1-
1

2

p 
  2-1 -1. Since:

 

1

1

1
,2

2

2 1 2 2 2

1
2 2 2 2 1

2

up

p

N u p up p

p
up

N


   

  

 



 
 

 

     

 
     

 



it knows that N is a node in the left branch of Tup. Thus

there are at most  searching steps to trace upwards and

find out the GCD between N and its ancestors in Tup.

Example 8

Let N = 383031; then N’s ancestors are 191515,

95757, 47879, 23939, 11969, 5985 and 2993, among

which GCD(383031, 2993) = 73, which results in

Figure 9 shows the tracing path from 383031 to 2993.

Seen from the figure, N = 383031 is sure in the left

branch of T2993.

Fig. 9: Tracing ancestors of 383031

Theorem 4

Let N = pq be an odd integer with p and q being odd

integers and 1 < p < q; suppose q = 2u 1 with u  1 being

an old integer, and 1< p  2 1; then N can be factorized in

log2N +1 steps or in O((log2N)4) bit operations.

Proof

Let J1 = 2-1 -
1

2

p 
 and J2 = 2-1 +

1

2

p 
;

summarizing Corollaries 1 to 5 yields Table 1.

Seen from the table and referring to the Corollaries 1

to 5, it knows the theorem holds considering it needs

O((log2N)4) bit operations in computation of the GCD at

each step.

Corollary 6

Let N = pq be an odd integer with p and q being odd

integers and 1 < p < q; suppose q = 2u-1 with u  1

being an old integer and  being an positive integer; if 2

+1 < p  2 +1 -1 then N can be factorized in log2N +1

searching steps.

Proof

Direction calculation yields:

 

 

  

1

1

2 1 2

1
2 2 2 2 2 2 1

2

1
2 2 1 2 2 2 1

2

N u p up p

p
up

p
up

 

   

  





   

 
       

 

 
       

 

Let n = up-2; by Theorem 2, 2-1  2 + 2-1 -
1

2

p 
 <

2 -1; consequently:

1 1
,2 2

2

n

p
N N

    
  

 



That is to say, tracing upwards from N by  steps will

reach n, the node left to up; then:

 2,p GCD n N 

The relations described in Corollary 6 among n, N

and up are illustrated in Figure 10.

Corollary 7

Let N = pq be an odd integer with p and q being odd

integers and 1 < p < q; suppose q = 2u +1 with u  1

being an old integer and  being an positive integer; if 2

+1 < p  2 +1 -1 then N can be factorized in log2N +1

searching steps.

2993

5987

11971 11969

23939 23937

47879 47877

95759 95757

= 4173

= 735247

191513 191515

383031 383029

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

31

Table 1: Summarized cases from Corollaries 1 to 5

q p J N

q = 2u-1 1 < p  2 -1 0 < 2-1-
1

2

p 
  2-1 -1

1 1
,2

2

up

p
N N

   
 

 

 Nl(Tup)

 1 < p  2 +1 0  2-1-
1

2

p 
  2-1 -1

q = 2u +1 1 < p  2 -1 2-1 < 2-1 +
1

2

p 
< 2-1 -1

1 1
,2

2

up

p
N N

   
 

 

 Nr(Tup)

 1 < p  2 +1 2-1 < 2-1 +
1

2

p 
 2-1 -1

Proof

Direction calculation yields:

 

  

1 1

1 1

1

2 1 2

2 2 2 2 2

1
2 2 2 2 2 2 1

2

1
2 2 1 2 2 2 1

2

N u p up p

up p

p
up

p
up

 

    

    

  

 

 



   

     

 
       

 

 
       

 

Let n = up +2; by Theorem 2, 0 < 2-1 -2 +
1

2

p 
 

2-1 -1; consequently:

1 1
,2 2

2

n

p
N N

    
  

 



That is to say, tracing upwards from N by  steps will

reach n, the node left to up; then:

 2,p GCD n N 

The relations described in Corollary 7 among n, N

and up are illustrated in Fig. 11.

Theorem 5

Let N = pq be an odd integer with p and q being odd

integers and 1 < p < q; suppose q = 2u 1 with u being

an old integer and  being an positive integer; if 2 +1 <

p  2 +1 -1 then N can be factorized in 3log2N +1

searching steps or in O((log2N)4) bit operations.

Proof

Summarizing Corollaries 6 and 7 yields to Table 2.

Table 2 shows that, N is a node of Tup+2 or Tup-2.

Hence it easy to trace upwards from N to up +2 or up-2

and then find out the divisor p. The time complexity is

demonstrated in section 4.1.

Fig. 10: Relations among n, N and up

Fig. 11: Relations among n, N and up

T3

n up

N

T3

up n

N

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

32

Table 2: Summarized cases from Corollaries 6 and 7

p q J N

2 +1 < p  2+1 -1 q = 2u -1 2-1  2-1 +2 -
1

2

p 
< 2 -1

1

2

1
,2 2

2

up

p
N N

  



 
  

 

 Nr(Tup-2)

 q = 2u -1 0 < 2-1 -2 +
1

2

p 
 2-1 -1

1

2

1
, 2

2

up

p
N N

 



 
 

 

 Nl(Tup+2)

Table 3: Ten factorized samples

Odd Integers Factorizaion

34639739 81914229

1159847279 1310718849

10581684521 52428720183

60782931320919664123 596495891274972171019

10263855667940024299 12561321341255698171

115271397873601774304441 230584300921369395149991

174538042279885450969073 266384887715214131365521

944515611538471874461691 3603109844542291969262139

2732669846011417649053579 16798855634176047513716267

5057672949897463733694209 18446744073709551617274177

Algorithm and Numerical Experiments

Algorithm

Theorems 4 and 5 provide an approach to factorize

rapidly a composite odd integer N = pq if q is in the form

q = 2u 1 and p satisfies 1 < p  2 1 or 2 +1 < p  2

+1 -1. This section presents a factoring algorithm. The

whole procedure includes two subroutines and a main

routine as follows.

Algorithm 1 Father (Calculate the father of a node)

1: Input Parameters: Son;

2: Begin

3: if Son  1(mod4) then

4: return (Son-1)/2;

5: else

6: return (Son +1)/2;

7: end if

8: End

The main routine shows, it requires at most 3log2N

+1 searching steps to factorize N. Since at each searching

step, it needs O((log2N)3) bit operations to compute the

GCD, it knows that the total computation can be

completed in O((log2N)4) bit operations.

Numerical Experiments with Maple 15

With the algorithm, programs in Maple are

designed as list in the appendix. With the programs,

ten odd integers are factorized in milliseconds in

Maple. The ten numbers are list in Table 3. The

biggest one is a 25 decimal-digit number

5057672949897463733694209.

Algorithm 2 gcdOnBorder

1: Comment: Calculate GCD along left border

2: Input Parameters: N, k;

3: Begin

4: for i = 1 to k do

5: Calculate X = 2i(N-1)+1;

6: Calculate gX = gcd(N, X);

7: if (gX > 1) then

8: return gX;

9: end if

10: Calculate Y = 2i(N-1)-1;

11: Calculate gY = gcd(N, Y);

12: if (gY > 1) then

13: return gY;

14: end if

15: end for

16: End

Conclusion and Future Work

Looking through the theorems and corollaries proved

in previous sections, one can easily know that, for an odd

composite integer N = pq with q being in the form of 2u

1 and p satisfying 1 < p  2 1 or 2 +1 < p  2 +1 -1, it

is easy to factorize N with the help of the valuated binary

tree TN. Actually, the factorization can be completed by

just tracing and finding in TN the GCD between N and N’s

ancestors or between N and the leftmost path
0

NP as well

as the left side-path N

LP . Since there are a lot of odd

positive integers that fit the conditions, this paper surely

solves part of the problem on factoring big odd integers.

Meanwhile, readers can see from the list of

bibliographies and their related references that, the tree

method is in deed a valid method to study integers. This

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

33

leads to the future work. Hope more gougers join the

study and solve the hard problem of integer factorization.

Acknowledgement

The research is supported by the Open Project

Program of the State Key Lab of CAD&CG（Grant No.

A2002）and by Foshan University and Foshan Bureau

of Science and Technology under project that constructs

Guangdong Engineering Center of Information Security

for Intelligent Manufacturing System.

Author’s Contributions

Prof. Xingbo WANG contributes 95% of the work in

this paper, including discovering and proving the

corollaries and theorems as well as designing the

algorithm. Mr. Junjian ZHONG contributes 5% of the

work, mainly programs and does numerical experiments.

Ethics

The authors declare that there is no conflict of

interests regarding the publication of this article.

References

Calik, P., Yilgora P., Ayhanb P. and Demir A.S., 2004.

Oxygen transfer effects on recombinant

benzaldehydelyase production. Chem. Eng. Sci., 59:

5075-5083. DOI: 10.1016/j.ces.2004.07.070

Phulachand, K.S., 2016. An overview of cryptography.

Innovat. IT, 3: 8-11.

Sarnaik, S., Gadekar D. and Gaikwad U., 2016. An

overview to integer factorization and RSA in

cryptography. Int. J. Adv. Res. Eng. Thechnol., 2:

21-26.

Wang, X., 2016a. Valuated binary tree: A new approach

in study of integers. Int. J. Scientific Innovat. Math.

Res., 4: 63-67. DOI: 10.20431/2347-3142.0403008

Wang X., 2016b. Amusing properties of odd numbers

derived from valuated binary tree. IOSR J. Math.,

12: 53-57.

Wang, X., 2017a. Two more symmetric properties of

odd numbers. IOSR J. Math., 13: 37-40.

 DOI: 10.9790/5728-1303023740

Wang, X., 2017b. Genetic traits of odd numbers with

applications in factorization of integers. Global J.

Pure Applied Math., 13: 493-517.

Wang, X., 2018. T3 tree and its traits in understanding

integers. Adv. Pure Math., 8: 494-507.

 DOI: 10.4236/apm.2018.85028

Wang, X., 2019. Brief summary of frequently- used

properties of the floor function: updated 2018. IOSR

J. Math., 15: 30-33.

Wang, X. and Guo H., 2019. Some divisibility traits on

valuated binary trees. Int. J. Applied Phys. Math., 9:

1-15. DOI: 10.17706/ijapm.2019.9.4.173-181

Yan, S.Y., 2013. Computer Number Theory and Modern

Cryptography. 1st Edn., John Wiley and Sons,
Singapore, ISBN-10: 1118188586, pp: 432.

Appendix: Maple Programs and Running

Results

 #Subroutine Father: find the father of a node

 Father := proc (S)

 local X, r;

 r := modp(S, 4);

 if r = 1 then X := (1/2)*S+1/2

 else X := (1/2)*S-1/2 end if;

 end proc

 #Subroutine gcdOnBorder

 gcdOnBorder := proc (N, k)

 local X, g, i;

 for i to k do

 X = 2i  (N-1)+1;

 g := gcd(N, X);

 if 1 < g then break end if;

 X = 2i  (N-1)-1;

 g := gcd(N, X);

 if 1 < g then break end if;

 end do;

 end proc

 # Main routine

 doit:=proc(N)

 local k,F,i,g;

 k := floor((log(N)) / (log(2)))+1;

 g:=gcdOnBorder(N,k):

 if g > 1 then return(g): fi;

 F:= N;

 for i from 1 to k do

 F := Father(F);

 g := gcd(N,F);

 if g > 1 then return(g): fi;

 g:= gcd(N,F-2);

 if g > 1 then return(g): fi;

 g:=gcd(N,F+2);

 if g > 1 then return(g): fi;

 od;

 end proc

 #tested numbers

 ob := Array(1 .. 10, [34639739, 1159847279,

 10581684521, 10263855667940024299,

 60782931320919664123,

 115271397873601774304441,

 174538042279885450969073,

 944515611538471874461691,

 2732669846011417649053579,

 5057672949897463733694209]);

http://dx.doi.org/10.20431/2347-3142
https://doi.org/

Xingbo Wang and Junjian Zhong / Journal of Mathematics and Statistics 2020, Volume 16: 24.34

DOI: 10.3844/jmssp.2020.24.34

34

 # test commands

 for i to 10 do

 d1 := doit(ob[i]);

 d2 := ob[i]/d1;

 lprint(ob[i], d1, d2)

 end do;

Test results

