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Introduction

We first discuss the meaning of the word
‘martingale’. Originally martingale meant a strategy
for betting in which you double your bet every time
you lose. Let us consider a game in which the gambler
wins his stake if a coin comes up heads and loses it if
the coin comes up tails. The strategy is that the
gambler doubles his bet every time he loses and
continues the process, so that the first win would
recover all previous losses plus win a profit equal to
the original stake. This process of betting can be
represented by a sequence of functions which is an
example of dyadic martingale. Now we give the
definition of dyadic martingales. For this let
D, denote the family of dyadic subintervals of the unit
j j+1
2" 2"

interval [0, 1) of the form [ j where n = 0, 1,

2--andj=0,1, - 2"-1.
Definition 1.1 (Dyadic Martingale) (Bafiuelos and
Moore, 1999)

A dyadic martingale is a sequence of integrable
functions, {f, }:’:0 from [0, 1)— R such that:

(i) Foreveryn, fyis g, -measurable where g, is the -
algebra generated by dyadic intervals of the form
B LE o
[2“’ o j,]e{o, 1,2, 2"1}
(i) And the following conditional
condition for all n > 0 holds:

expectation

E(fnJrllSn): fn'
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Abstract: In this article, we establish some inequalities associated to a
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where,  E(f,,13,)(x) =Qi

n

J fra Oy, for

Q, €D, and xeQn.

A most general type of example of dyadic martingale
is given by: Let feL'[0, 1) and Qn be a dyadic interval of
length Zi“ on [0, 1). Define fu(x) = Ql.[Q f(y)dy, xeQn

where |Qn| is length of Qn. Then {f, }::1

martingale on [0, 1). We now prove that the functions so
defined are a dyadic martingale.
For this, we note that 3, = {[0, 1), ¢}, 3 = {[0, 1),

¢, [0, 1/2), [1/2, 1)} and so on. We have fu(x) =
(;jo f(y)dy, xeQn and this is the average of f on Q.

is a dyadic

Consequently, f, is constant on each of these nth
l, j+1j where n =0,
2" 2"

1,2 and j=0,1, - 2"1. Thus for all 1eR, the set
{xe[0, 1): fa(x) > A} belongs to F, . Hence for each n, f,
is §, measurable. This shows that the first condition is

satisfied. Next, we show that the expectation condition is
also satisfied. Here:

generation dyadic intervals Q, = [

81,4180 = o7, (V)oY

where, xeQy and |Qn| = Zl—n Let Qn+11 and Qn12 be the

(n + 1)th generation dyadic intervals such that Q, =
Qn+11 UQn+12. Using that fact that f..1 is constant on
Qn+1,1 and Qpe1,2, We have:
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E(f,.18, )(x ‘Q ‘ jomu%z £,.(y)dy
1
:QTDQ na dy*f fra Y)dY]
- Qi[ o ()|Qu] + F1a(¥)]Quisa]]
1
a7 y)d
Q, [Qnﬂl ‘Q ‘J.Qn“ Y +|Quia ‘Q ‘JlQ " Y}
1
:Q*nIQWQ _f(y)dy
1
=—[ f(y)d
) J, f(y)ay
=1, (x).

. 1 .
Hence the functions f,(x) = me f(y)dy, xeQy is

dyadic martingale.
Burkholder and Gundy (1970) proved {x: Sf(x) <

o} = {x: lim f, exists} where 2 means the sets are
equal upto a set of measure zero. From this result, we
observe that dyadic martingales {f.} behave
asymptotically well on the set {x: Sf(x) < «}. But what
can be said about the asymptotic behavior of dyadic
martingales on the complement of this set? Its behavior
is quite pathological on the set {x: Sf(xX) = o}. In
particular it is unbounded a.e. on this set. In order to
study the asymptotic behavior of the sequence of
dyadic martingales, the martingales inequalities are
helpful. These inequalities provide sub-Gaussian type
estimates for the growth of the dyadic martingales.
We derive these estimates for a regular sequence and
a tail sequence of dyadic martingales. Asymptotic
behavior of the martingales is studied through the law
of the iterated logarithm of martingales (Stout, 1970).
There is law of the iterated logarithm for various other
contexts such as for harmonic functions, independent
random variables, lacunary trigonometric series
(Ghimire and Moore, 2014; Bafiuelos et al., 1988).
We now state our main results:

e Inequality 1. For a dyadic martingale {f,} and 1 >0
we have:

{XG[O,l):smliE) f(x )‘ H Bex D[Z;ZJ

e Inequality 2. For a dyadic martingale {fn}, with 1 >
0 and, n fixed positive integer we have:

234

{XE[Ol sup‘f( -f, x)‘>ﬂ}

<12exp{

x

We first fix some notations, give some definitions
which will be used in the course of the proof.

Definition 2.1

Preliminaries

, we define:

For a dyadic martingale, {f,}"

(i)  The increments: di = fi- fia, SO fa(X) = > d, (x) +
fo(x)
(i) The quadratic characteristics or square function:
X):ZE=1dk2(x)
(iii) the limit function: S?f(x) = !msjf (x)=

PICHLY

(iv) the tail square function:

21 (x)=(s; f (%)) = 3 d2(x

k=n+1

The martingale square function is a local version of
variance and can also be understood as a discrete
counterpart of the area function in Harmonic Analysis.
From the definition, we note that for any x, yeQn, we
have S?f(x)=S?f(y). But the martingale tail square
function, S;*f(x) may not be equal to S’f(y). For

more about martingales (Neveu and Speed, 1975).
Definition 2.2 (Hardy-Littlewood Maximal Function)

Let feL’(R"), 1<p <. Then Hardy-Littlewood

Maximal function associated to f, denoted by Mf, is
defined as:

1
M (x) :SFEEWJ‘BW) F(y)dy,

where, B(x, r) is the ball with center at x and radius r.

Proof of the Main Results

We first prove a Lemma. This Lemma is also known
as Rubin's Lemma (Pipher, 1993). The proof of this
Lemma can also be found in (Chang et al., 1985). Here
we give a proof of the Lemma using a different
approach. Our proof is more analytic than the original
probabilistic approach. We will use this Lemma in the
proof of our inequalities.
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Lemma 3

For a dyadic martingale {f,}" , with fo=0:

J.:exp[ f, (x)—%sff (x))dx <1

Proof of Lemma 3
We claim that:

- j:exp(kzn;dk (x) —%zn:d

kz(x)jdx

k=0

is a decreasing function of n, Let Qy; be an arbitrary nth
generation dyadic interval. We have > d, (x) = fu(x)
and f, is constant on Q. Using this we have:

30,3302 oo 8,00 3.0

1

:i{exp(idk(X);idf(x)]L ,[ exp[ na (X )*Edfﬂ(x)jdx.

k=0
n

be the dyadic subintervals of
. Then by

the expectation condition, dn.1 takes the value -« on
Q. - This gives:

Let Q.. and Q
Qnj. Suppose dn+1 takes the value « on Q

n+1) j

n+1) j

J‘Qn exp(dm-l( ) dr?+1( )jdx
_ L a Ly
=, exp[a Za jdx+J.0{mmexp( a 2a de

= exp(a —£a2]+ exp(—a —Eaz) 1
2 2 2n+1

aje+e 1

=2exp| ——
p[ 2 2 o

XZ

Now using the elementary fact that cosh x <e?,
we have:

Let Qi1 and Q12 be the dyadic subintervals of Qo.
Assume that d; takes value @ on Qi so that it takes
value -8 on Qu.:

1 1
1)=J'0exp[d1 (x)—Edf(x)jdx
1
_[2 1. L 1.,
_LZexp[e—Ee jdx+_|‘%exp[—9—§0 jdx
:exp(@—lezlerexp(—@—lele
2 2 2 2
1 e’ +e”
oo 30 )5
exp( % J coshé
wool 30 ol
2

Since g(n) is decreasing and g(1) <1 we conclude:

I/\

j:exp(gdk (X)—;gdf(x)de <1

Hence:
rex f (x)—flszf(x) dx<1
0P Tn 2" o

This completes the proof.
Remark 4

Note that if we rescale the sequence {f,} by A, then
Lemma 3 gives:

1 1
L exp(ﬂfn (x) —E}tzsnzf (x))dx <1

This shows that this lemma is an inhomogeneous type
inequality. We won't need this fact in the sequel.

235



Santosh Ghimire / Journal of Mathematics and Statistics 2020, VVolume 16: 233.238
DOI: 10.3844/jmssp.2020.233.238

Proof of Inequality 1

Fixn. Let A >0, y> 0. Then for every m < n:
1 1
fm(X)=mIQm o (V)dy, x<Qu [Quf =5

Fix x: Then sup [fm(X)] < M [fa|(X) where Mf, is the
1<ms<n

Hardy-Littlewood maximal function of f,. Then using
Jensen's inequality we have:

Lo
f, (y)‘)dy

exp(yfm(x))zexp[y

1
< m‘[% exp(;/

<M (ey‘fm(x)‘)(x).

Using the Hardy-Littlewood maximal estimate, we

have:
> l}‘

>e"}

{x e[0.0): sup | f, (%)

{x €[0,1): sup e/l

1<m<n

: sup

1<m<n

<

{X €[0,1):M (e"fm\)(x) S eyz}
f, (v)])dy

ool

Using Lemma 3 we have:

jol exp[y

2 ol

2
f (y)\—%sjf

s, f

(y)j dy.

3 }/2
e p[ 2

o (v) -

So:

s, f

{x €[0,1): sup

1<m<n

fm(x)‘ >/1}

')

6 ?

236

Choose y:/lz. With this y, the above inequality
W f
becomes:
—]?
{XE[O,].)Z sup fm(x)‘ >ﬂ} <6exp = |-
1<ms<n 2 Snf ‘

Note that for the dyadic martingale {fn}:

n

$2F (x) = Yd7(x) - Sf (x) = 3d2(x)
k=1 k=1
Consequently:
-1 -1

— < —.
2ls,f[ alstl

Recall the continuity property of Lebesgue
measure: If {En} is a sequence of sets with En < Ens
for all nand E = OEn , then |E| = lim|Eq|. Using this

n=1 n—oo

we get:

{x €[0,1):sup

m>1

_ﬂz
o (X >/1}‘56ex — |
) P 2pst

This completes the proof of the first inequality.
Proof of Inequality 2

Fix n. Define a sequence {gm} as follows:

if m<n; .
(x)-f, (x), if m>n. @

We first show that {gm} is a dyadic martingale.
Clearly for every m, gm is measurable with respect to the
sigma algebra 3, : Let m > n. Then using the fact that fy,

is constant on the cube Qm we have:

(90 150) (0= o [, [faa (9= 1, ()]
o

=Ql_|.an fm+1(x)dX—(21me f, (x)dx

= o7k, a0 1, (4

= fm(X)— fn (X)
= g (%)-
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Thus we have E(g,,,|§,) = gn. This shows that {gn} Y
is a martingale. Then applying the inequality 1 for this ‘{X:‘ F(x)-1, (X)‘ >’1}‘ <6exp : ©)

_ 2[s; f[]
martingale, we get: 5
12 By the triangle inequality we have:
{XE[O,l):sup‘gm(x)‘>A} <6exp 2ol |
m=1 g B
Slip f(X)— fm (X)‘ SSLip(‘ f (X)_ fn (X)‘ + fn (X)_ fm (X)‘)
But, gm(x) = 0 for m < n. Hence: =[f(x)-f, (X)‘ +sup|f, ()1, (X)‘.
{XE[Ov1)35Up 90 (%) >l} <6exp _/122 : This gives:
2lsal;
Again: {x:sup f(x)- fm(x)‘>/1}
- - . A . A
79() = 307(0 = 3 0. -8, ()] = el =1 0 ZJutspln (-6}
k=0 k=0
= 2
=;[9M(X)—gk(x)] Therefore:
kd 2
= fa(X)=F, (X)=f (X)+ f, (X
;[ a(X) (x)=f (%) ( )J {x:supf(x)—fm(X)‘>/1}‘
o0 2 m=n
= e (X)—f (X
kzm[ ca(¥) = T ( )] < {x:‘f(x)f fm(x)‘>%} + {x:sup f, (x)- fm(x)>/21}.
= Y di(x) ’
k=n+1
=521 (x). Then using (2) and (3) in the above inequality we get:
This gives: {x:sup f(x)-f, (X)‘ > /1}‘
Y (A ? (A ?
{Xe[O,l)ZSlip‘gm(X)‘>/1} <6exp W . < 6exp 2 2
"ol - 2[s; [ 2[s; |

{x €[0,1):sup

£, (X)= f, (x) >4}

2
=12exp LZ :
2 8s; f|
<6exp| ——— (2 ”
2

s 11,
Thus:
Clearly:
{
x:sup|f(x)—f,(x >ﬂ}£12exp — |
{x:‘f(x)—fI1 (x)‘>/1}c{x:sup‘fm(x)—fn (x)‘>/1} mzn (x) ( )‘ 8|S, in
So we have: This completes the proof of inequality 2.
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