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Abstract: The Grid Trading Problem (GTP) of mathematical finance, used 

in portfolio loss minimization, generalized dynamic hedging and algorithmic 

trading, is researched by examining the impact of the drawdown and drawup 

of discrete random walks and of Itô diffusions on the Bi-Directional Grid 

Constrained (BGC) stochastic process for profit Pt and equity Et over time. 

A comprehensive Discrete Difference Equation (DDE) and a continuous 

Stochastic Differential Equation (SDE) are derived and proved for the 

GTP. This allows fund managers and traders the ability to better stress test 

the impact of volatility to reduce risk and generate positive returns. These 

theorems are then simulated to complement the theoretical models with 

charts. Not only does this research extend a rich mathematical problem 

that can be further researched in its own right, but it also extends the 

applications into the above areas of finance. 

 

Keywords: Grid Trading Problem (GTP), Bi-Directional Grid Constrained 

(BGC), Random Walks, Itô Diffusions, Probability of Ruin, Maximal 

Drawdown, Maximal Drawup, Discrete Difference Equation (DDE), 

Stochastic Differential Equation (SDE) 

 

Introduction 

Grid trading involves the simultaneous going long and 

going short at the current price rate Rt (instantly creating a 
hedged position(s)) and also at fixed width g multiples 
above and below Rt. As the price rate propagates through 
these grid levels which effectively traverses a binomial 
lattice model over time, assumed to be a discrete 1-
Dimensional random walk without any loss in generality, 

but also studied here as a continuous Brownian motion, 
then the system will close many profitable trades at the 
next nearest grid level whilst carrying the losing trades 
open. These open losing trades will eventually be either 
closed individually when in profit, closed as a system of 
losing trades when the system is back in profit, or closed 

as a system of losing trades if the losses grow too large. If 
the system is not closed in time, it can suddenly lose all or 
more than the initial equity E0, in which case the system is 
said to be ruined. This is known as the Grid Trading 
Problem (GTP), emerging from finance and researched 
here mathematically as a constrained stochastic process. 

Note that the winning trades accumulate linearly over time 
regardless of the trend or lack of trend, whilst the losing 
trades accumulate via the triangular number series as a 
trend grows linearly over time, as shown in Fig. 1. 

Let Rt = R(t) be an Itô diffusion given by: 

       , , ,dR t X t dt X t dW t    (1.1) 

 
which can be simplified for the discrete parts of this 

paper to: 
 

   ,R t t W t     (1.2) 

 

where, W(t), t  [0, T] is a standard Wiener process, m 

 is the drift (which effects the direction or trend) and 

s ,   0 is the diffusion (which effects the 

volatility) parameter over a standard filtered probability 

space  , , F . This continuous formulation will be 

followed as much as possible and for our discrete 

formulations, set  = 0 and  = 1. 

The drawdown Dt is defined as the difference 

between the maximum rate of R(s) and the current rate 

R(t) at time t as: 
 

 
    

0,

sup ,t
s t

D R s R t


   (1.3) 

 
and has been rigorously researched (Graversen and 
Shiryaev, 2000) and the references therein. This is 
shown diagrammatically within our discrete binomial 
lattice model framework in Fig. 2. 
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 (a) (b) (c) 

 
Fig. 1: GTP and its Profit/Loss Accumulation Process (a). Small Profit (b). Small Loss (c). Larger Loss; R = Rate, t[0, T] = Time, 

W = Winning trades, L = Losing trades, P = Profit, E = Equity, noting that P  0  E = 0. Dotted lines depict trades closed 

out in profit at their Take Profit (TP). Solid lines depict open trades in loss that are held until they reach their TP, closed down 

when the system is back in profit, closed down when loss becomes ‘too large’ or finally if an account is ruined. Note that the 

winning trades accumulate linearly over time regardless of the trend or lack of trend, whilst the losing trades accumulate via 

the triangular number series as a trend grows linearly over time 
 

 
 
Fig. 2: Drawdown Dt of a 1-dimensional discrete random walk as time increases, the previous supremum grows as new maxima are 

formed 

 

A concept that is often ignored, the drawup Ut, is 

defined as the difference between the minimum rate of 

R(s) and the current rate R(t) at time t as: 

 

 
 

  
0,

inf ,t
s t

U R t R s


   (1.4) 

 

and is shown in Fig. 3. 

 

The maximal (maximum) drawdown 
tD is commonly 

used in mathematical finance as an indicator and measure 

of risk for a stock that follows a particular random process 

is defined (Magdon-Ismail et al., 2004) as: 
 

 
 

   
    

0, 0, 0,

sup sup sup .t t
t T t T s t

D D R s R t
  

 
   

 
 (1.5) 

 
Note that the corresponding maximal (maximum) 

drawup Ūt can be expressed as: 
 

 
 

 
 

 
  

0,0, 0,

sup sup inf .t t
s tt T t T

U U R t R s
 

    
 

 (1.6) 

R 

T = 2, W = 2, L = 1, P = 1, E = 1 

R R 

T T T 
1 2 3 1 2 3 1 2 3 

T = 2, W = 2, L = 3, P = -1, E = 0 T = 3, W = 3, L = 6, P = -3, E = 0 

R 

T 

Dt 

Rt 

 
  

0,

sup
s t

R s

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Fig. 3: Drawdown Dt and Drawup Ut of a 1-dimensional discrete random walk 
 

 
(a) 

 

 
(b) 

 

Fig. 4: Maximal Drawdown 
tD and Maximal Drawup Ūt  of two 1-Dimensional Discrete Random Walks (a). Scenario 1: 

tD < Ūt; 

(b). Scenario 2: 
tD > Ūt 

R 

T 

Dt 

Rt 

 
  

0,

sup
s t

R s


 

Ut 

 
  

0,
inf

s t
R s



 

R 

T 

Rt 

Ūt 

tD  

R 

T 

Rt Ūt 

tD  
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The relationship between the maximal drawup Ūt and 

the maximal drawdown 
tD is shown in Fig. 4. 

Informally, the maximal drawdown is the largest drop 

from a peak to a trough and the maximal drawup is the 

largest rise from a trough to a peak. It is identified that 

there is a research gap in the Maximal Drawdown 

literature as it has only been applied to the trading and 

investing of ‘naked’ instruments such as shares, stocks, 

commodities, which ultimately do not involve derivative 

instruments. This is where one can only profit from 

going long, such as watching the shares of IBM go up 

and down and making a profit when the price Rt rises 

above the initial purchase price R0. In contrast to this, the 

use of more sophisticated trading and investment 

strategies, in particular the trading of derivative 

instruments such as Foreign exchange (FX), Contracts 

For Difference (CFDs), futures, options and many more 

exotic combinations of these derivatives, means that one 

can profit from both going long and going short. Bi-

Directional grid trading involves this second class of 

instruments and the maximal drawdown and maximal 

drawup interrelationship is shown in Fig. 4. 

From Fig. 4, it is noted that 
tD  does not usually 

equal Ūt but they can be equal in some scenarios or 

sample paths. This paper leverages the properties of 

drawdown, drawup (and the maximum of these to a 

lesser extent) to develop a Discrete Difference Equation 

(DDE) theorem and a Stochastic Differential Equation 

(SDE) theorem of how the GTP evolves over time, along 

with their corresponding proofs. 

Literature Review 

To the best of the authors’ knowledge, there is no 

formal academic definition, other than our own 

(Taranto and Khan, 2020a; 2020b), of the GTP 

available within all the references on the subject matter; 

(Mitchell, 2018; DuPloy, 2008; 2010; Harris, 1998; 

King, 2010; 2015; AdmiralMarkets, 2017; Work, 

2018). Note that these are not rigorous peer reviewed 

journal papers but instead informal blog posts or 

software user manuals. Even if there were any 

academic worthy results found on grid trading, there is 

a general reluctance for traders to publish any trading 

innovation that will help other traders and potentially 

erode their own trading edge. 

Despite this, grid trading can be expressed 

academically as a form of Dynamic Mean-Variance 

Hedging (Duffie and Richardson, 1991; Černý and 

Kallsen, 2007). There are many reasons why a firm would 

undertake a hedge, ranging from minimizing the market 

risk exposure to one of its client’s trades by trading in the 

opposite direction (Haigh and Holt, 2000), through to 

minimizing the loss on a wrong trade by correcting the 

new trade’s direction whilst keeping the old trade still 

open until a more opportune time (Stulz, 2013). In the 

case of grid trading, it can be considered as a generalized 

form of hedging of multiple positions simultaneously 

over time, for the generation of trading profits. 

Another academic framework for grid trading is the 

consideration of the series of open losing trades in a grid 

system as a portfolio of stocks in the context of Mean-

Variance Potfolio Optimization problem (Schweizer, 

2010; Biagini et al., 2000; Thomson, 2005). This is 

because a grid trading session involves a basket of 

winning and losing trades that can be likened to a portfolio 

of winning and losing shares or stocks. The Merton 

problem, a question about optimal portfolio selection and 

consumption in continuous time, is indeed ubiquitous 

throughout the mathematical finance literature. Since 

Merton’s seminal paper (Merton, 1971), many variants of 

the original problem have been put forward and have been 

extensively studied to address various issues arising from 

economics and finance. For example, (Fleming and 

Hern´andez–Hern´andez, 2003) considered the case of 

optimal investment in the presence of stochastic volatility. 

Davis and Norman (1990; Dumas and Luciano, 1991) and 

more recently (Czichowsky et al., 2012; Guasoni and 

Muhle-Karbe, 2013; Muhle-Karbe and Liu, 2012) 

addressed optimal portfolio selection under transaction 

costs. Rogers and Stapleton (2002) considered optimal 

investment under time-lagged trading. Vila and 

Zariphopoulou (1997) studied optimal consumption and 

portfolio choice with borrowing constraints. 

Turning now to the maximal drawdown of random 

walks, the research dates back to (Feller, 1951). One of 

the most comprehensive and mathematically rigorous 

reviews and advances in the field is due to         

(Magdon-Ismail et al., 2004) and the references within, 

where they denote the distribution function for D  by 

D
G (h) = D h   . It was found that 

D
G (h) is given by: 

 

 
 

 

2 2 2

2 2 24 2 2

4 2 2 2 21

sin
2 1 ,

n Th T
n n

h
D n

n

G h e e e L
h h

  

 
 


    

  



 
   
  
 

  

 

where, n are the positive solutions of the eigenvalue 

condition, tan(n) = 
2

n
h





 and L is given by: 

 

 

 

2

2

2 222

2 2

2

2

2

4 2

2 2

4 2 2 2 2

0,

3
1 , ,

2 sinh
1 ,

T

h

TT

h

h

L c
c h

e
e e

hh h






 









   


    





 



 



 
   
 

  

  
   
   

 
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where,  is the unique positive solution of tanh() = 
2

h





 and L has three expressions, depending on whether 

 < 
2

h


,  = 

2

h


or  > 

2

h


. This was then extended to 

random walks on supercritical Galton-Watson trees    

(Hu et al., 2015). The formulas above are relisted into 

the following, as this paper is mainly interested in when 

there is no drift, yielding: 

 
2

22
3

2 , 1 .

T

D
G x L c

c




 

   
 
 

 

 

Neal (2013) proved the formulas for the averages of 

the maximum height and the minimum height of a 

random walk attained before n downward movements 

occur. Finally, (Hu et al., 2015) also computed the exact 

value of a negative moment of the maximal drawdown of 

the standard Brownian motion. 

Methodology 

Having introduced the GTP, its profit or loss 

accumulation process, drawdown, drawup and the 

maximal of these, together with their associated 

literature, it is noted that in BGC trading, one needs to 

know the values of Dt, Ut at every point in time tT, as 

shown in Fig. 5. 

Having analysed this is detail, one can now 

formulate the total losses Lt at any time1 knowing just 

Dt and Ut: 

 

   

 2 2

1 1

2 2

1
.

2

t t

t t t t

t D U

t t t t

D D U U
L L L

D D U U

 
   

   

  (3.2) 

 

(3.2) has been plotted in Fig. 6 for the first 10 g 
 and 

first 10 g 
 grid levels, about the discrete Rt level. 

From Fig. 6, the Rt random walk is hence 

constrained by grid trading to result in the 

corresponding profit Pt and equity Et random walks, 

where the total loss Lt is greatest when the linear 

combination of Dt and Ut are the greatest. Having 

found the dynamics of Lt, one can now derive the 

Discrete Difference Equation (DDE) of GTP. 

                                                           
1Note that the losses 

t t t tD U D U
L L L


   as: 

 

 1
.

2t t t t

t t t t

t tD U D U

D U D U
L L L D U



        
     (3.1) 

Derivation of BGC DDE of GTP 

Theorem 3.1 

For a Bi-Directional Grid Constrained random walk 

Rt with a value v per grid width, then the change in 

equity E over time t is given by the following Discrete 

Difference Equation (DDE): 

 

    

       

2

0 0, 0

2

0, 0 0 0

max

2 max ,

t

t it T i

t t t

i i it T i i i

E E vt v

v v

 

   

  

 



  

R

R R R

 (3.3) 

 

where,  1,1i  R . 

Proof 

In this discrete time framework t    of our 

binomial lattice model, one can see that the equity Et at 

any time t is comprised of the initial equity E0, plus the 

sum of all the winning trades Wt, minus the sum of all 

the losing trades Lt, hence Et = E0 + Pt where the total 

profit Pt = Wt-Lt. One can now derive the general 

formula for Et, giving: 

 

 
   

 

0 0

1 0 0

0 0

0 0

2 2

0

0, ,

1, ,

1 1
,

2 2

.
2

tt

t t
t t t t

t i

i i

LW

t t t t

n E E

n E E v v E

D D U U
n t E E vi v v E v P

v
E vt D D U U

 

 

    

 
      

     

 

 (3.4) 

 

For simplicity, one wishes to substitute Dt and Ut 

with a formulation that captures the underlying 

randomness of Rt in terms of the generalized 1-

Dimensional discrete random walk, where: 

 

0

,
t

t i

i

R


R   (3.5) 

 

and: 

 

    

    
0, 0 0

0,0 0

max ,

min ,

t t

t i it T i i

t t

t i it Ti i

D v

U v

  

 

 

 

 

 

R R

R R

  (3.6) 

 

where,  1,1i  R  noting that the more general case of 

 ,i   R  results in R , but is not considered further 

in this study. Substituting (3.6) into (3.4) gives: 
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   

    

    

    

    

0

2

0 0, 0 0

0, 0 0

2

0,0 0

0,0 0

1 1
2 2

max
2

max

min

min .

t t t t t

t t

i it T i i

t t

i it T i i

t t

i it Ti i

t t

i it Ti i

v v
E E vt D D U U

v
E t

R R

  

  

 

 

     


   



 

 

 


 

 

 

 

R R

R R

R R

 (3.7) 

At this stage, two key Lemmas are noted, the proof 

of which is left to the interested reader to derive: 

 

   
0 0

0.
t t

i i

i i

X X
 

     (3.8) 

 

   
 

0, 0,
0 0

min max .
t t

i i
t T t T

i i

X X
 

 

   
     

   
   (3.9) 

 

 
(a) 

 

 
(b) 

 
Fig. 5: Drawdown and Drawup of an Example 1-Dimensional Discrete Random Walk; For simplicity, the winning trades have not 

been depicted here, which grow linearly over time. It is also noted again that the losses grow via the Triangular number 

sequence Tn = 
 1

2

n n 
. Dt =

 0,

sup
s t

((R(s))-R(t), Ut = R(t)-
 0,

inf
s t

((R(s)). (a). At T = t = 18, Dt = 5, Ut = 3. E0 = 0, Wt = 18, Lt = 

1

2
(5[5+1]) +

1

2
(3[3+1]) = 21, Pt = -3, Et = 0; (b). At T = t +1 = 19, Dt+1 = 4, Ut+1 = 4. E0 = 0, Wt+1 = 19, Lt+1 = 

1

2
(4[4+1])+ 

1

2
(4[4+1]) = 20, Pt+1 = -1, Et+1 = 0 

R 

T 

Dt 

Rt 

 
  

0,

sup
s t

R s


 

Ut 

 
  

0,
inf

s t
R s



 

R 

T 

Ut+1 

Rt+1 

Dt+1 

 
  

0, 1
inf

s t
R s

 

 

 
  

0, 1

sup
s t

R s
 
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Fig. 6: Drawdown and drawup extremes in BGC stochastic processes the greatest total loss Lt occurs when one has the greatest 

possible Dt and Ut. For the values shown in this surface, this occurs at Dt = 10 and Ut = 10 

 

Substituting (3.8) and (3.9) into (3.7) gives: 
 

    

    

     

     

    

    

 

2

0 0, 0 0

0, 0 0

2

0,0 0

0,0 0

2

0 0, 0 0

2

0,0 0

0 0,

max
2

max

max

max

max
2

max

max

t t

t i it T i i

t t

i it T i i

t t

i it Ti i

t t

i it Ti i

t t

i it T i i

t t

i it Ti i

it T i

v
E E vt

R

v
E vt

E vt v

  

  

 

 

  

 

 


   



 

  

  



   




  



  

 

 

 

 

 

 

R R

R R

R R

R

R R

R R

R  
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2
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t
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v v

   


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
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 (3.10) 

 

which completes the proof. 

This is further illustrated in the following footnote2, 

which agrees with the values in Fig. 5. As will also be 

seen in the Results section, this formula captures all the 

                                                           
2Remark 3.2. From Figure 5a, at t = 18 one sees that Rt = -2, 

maxt[0,T]  0

t

ii
R

 = 3 and mint[0,T]  0

t

ii
R

 = -5. From (3.7), one 

sees that Et = -30. From Figure 5b, at t =19 one sees that Rt = -1, 

maxt[0,T]  0

t

ii
R

 = 3 and mint[0,T]  0

t

ii
R

 = -5. From (3.7), one 

sees that Et = -10. Notice that E0 = 0 has been set for theoretical 

purposes, so as to not make the example specific to any particular 

initial equity and that Et  0  E = 0. 

key discrete characteristics of GTP. Before progressing 

this, recall Doob’s Martingale Inequality as it will help 

simplify our subsequent continuous time version of (3.3). 

Lemma 3.3. (Doob’s Martingale Inequality) 

Let X be a submartingale taking real values, either in 

discrete or continuous time. That is, for all times s and t 

with s < t: 

 

| .s t sX X   F  

 

For a continuous-time submartingale, assume further 

that the process is cádlág. Then, for any constant C  : 

 

 
0

max ,0
sup .

T

t
t T

X
X C

C 

 
    
  

 

 

Let B denote a canonical 1-Dimensional Brownian 

motion. Then: 

 
2

0

sup exp .
2

t
t T

C
B C

T 

  
       

 

 

Now, to contrast this discrete model by deriving a 

continuous time Stochastic Differential Equation 

(SDE) of GTP. 

Derivation of BGC SDE of GTP 

Theorem 3.4. For a Bi-Directional Grid Constrained 

Itô diffusion with a given grid width g  , value v per 

Ut 
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grid width, drift t and diffusion t and Wiener process Wt 

for the rate Rt, then the change in equity Et over time t is: 
 

    

       

2

0, 0

2

0, 0 0 0

2

sup

2 sup

2 2
.

t
t

it T i
t

t t t

i i it T i i i

t t t
t

dE v
vt dt R dt

E g

R dt R dt R dt

v v v
vt dt dW

g g g

  

 

   


  




  



   
      
   



    (3.11) 

 

Proof 

In the corresponding continuous time framework 

t   of Fig. 4, one can see that the equity Et at any 

time t is comprised of the initial equity E0, plus the sum 

of all the winning trades Wt, minus the sum of all the 

losing trades Lt. From (3.1), one can now derive the 

general formula for Et, giving: 
 

   

0 0

1 0 0

2 0 0

0 0
0

0, ,

1, ,

2, 2 3 ,

1 1
, ,

2 2
t

t

tt t t t

t i
i

W

L

n E E

n E E v v E

n E E v v E v

D D U U
n t E E vt v v E v P dt



 

    

     

 
       

 (3.12) 

 
where, Dt and Ut are the drawdown and drawup of the price 

Rt at time t. However, the markets do not trend indefinitely 

and so Lt in (3.12) needs to be replaced with a stochastic 

process, in this setting, a 1-Dimensional continuous 

Brownian motion 
0

t

i
i

dt
 R  for  , ,     R  giving: 

 

   

   
0, 0

0, 0

sup ,

inf ,

t

t i tt T i

t

t i it T i

D dt

U dt

 

 

 

 





R R

R R

 (3.13) 

 

In this continuous time stochastic framework, (3.12) 

scaled down by the count of grid widths g traversed 

becomes: 

 

   1 1 ,
2 2

t
t t t t

t

dE v v
vt dt D D U U

E g g
      (3.14) 

 

where, Et = E0 at t = 0 as an initial condition. 

Note that (3.14) is essentially a non-standard 

Geometric Brownian Motion (GBM). The reason why 

this was not expressed as an Arithmetic Brownian 

Motion (ABM) is that the equity random walk Et is 

required to be modelled as products of random factors 

and not as sums of random terms. GBM involves 

independently and identically distributed ratios 

between successive factors. Furthermore, one requires 

0,t

t

dE
t

E
    as trading systems seek to 

exponentially compound E over time and an Et = 0 

equates to ruin or bankruptcy3. In fact, since our t and 

t terms are non-constant over time, then our non-

standard GBM is actually a form of the more 

generalized Itô Processes. Finally, note that (3.14) does 

not appear at first glance to be a standard GBM as it 

does not exhibit an explicit dWt term, even though it is 

implied due to the subsequent use of (3.16). 

Substituting (3.13) into (3.14) gives: 
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

  










 





 



R R

R

 (3.15) 

 
One can now formalize this continuous Brownian 

motion by adopting the simplest of 1-Dimensional Itô 

Diffusion processes, where (3.5) expands to: 

                                                           
3The fact that there are rare cases, where one can loose more than 0, 

i.e., Et < 0, due to the Broker and/or Trader not closing down enough 
losing trades during a margin call, means that such scenarios will be 

treated mathematically as if there is an Absorption Barrier (Kac, 1945) 

at Et = 0 without any loss of generality. 
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0
: .

t

t i t t t
i

R dt dt dW 


   R  (3.16) 

 

One now applies Doob’s Martingale Inequality 

together with the Itô Isometry: 

 

 
2

2

0 0
,

T T

t t tX dW X dt
        
   

 

and (3.16) to simplify (3.15) into: 
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 
 
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                    
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
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    

  





R

R
 (3.17) 

 

It is well known (Øksendal, 1995; Shreve, 2004) that 

in the limit dt  0, the terms (dt)2 and dtdWt tend to zero 

faster than (dWt)2, which is O(dt). Setting the (dt)2 and 

dtdWt terms to zero, substituting dt for (dWt)2 (due to the 

quadratic variance of a Wiener process) and collecting 

the dt and dWt terms, one obtains from (3.17): 
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  
   
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 (3.18) 

 

However, most SDEs, especially nonlinear SDEs, do 

not have analytical solutions and so one has to resort to 

numerical approximation schemes in order to simulate 

sample paths of solutions to the given equation. Also 

note that the term 
v

g
  , is constant over dt and dWt 

and is eclipsed (become less significant) by the variable 

terms over time. This together with the observation that: 
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2

lim exp 1,
2t t





    
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simplifies (3.18) to: 

2

1 2

2 2

,

t

t t t
t

t

t

dE v v v
vt dt dW

E g g g

dt dW
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 (3.19) 

 

where, 1 = 
22 t tv v

vt
g g

 
   and 2 = 

2 tv

g


, completing 

the proof. 

It is worthwhile noting at this stage, setting aside the 

constants v and g, that since 1 (t, t, t) and 2(t), 

then (3.19) is not a standard simple linear SDE and that 

there is some convolution of 2

t  within the 

deterministic component dt with the t within the 

random component dWt. This means that one would 

expect to see some relatively complex interactions from 

the underlying distribution samples. For example, 

negative t values becoming positive due to 2

t , 

skewing the results towards Et  0 due to the negative 

sign before 2

t , which supports to a certain extent why 

Et has a tendency to almost surely approach 0 over time 

(subject to certain drift and diffusion conditions set out 

in the Results section). 

Solution of SDE of GTP 

Theorem 3.5 

For a Bi-Directional Grid Constrained Brownian 

motion with a given grid width g, value v per grid 

width, drift t, diffusion t and Wiener process Wt for 

the rate Rt, then the equity Et over time t has the 

solution: 
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Proof 

Recall that (3.18) is a GBM whose well known 

(Øksendal, 1995; Shreve, 2004) general solution is of 

the form: 
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 (3.21) 
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One is now in a position to solve the Bi-Directional 

Grid Constrained SDE (3.19) by substituting 1 and 2. 

However, due to the t term in 1, one needs to do the 

substitution into (3.20) rather than in (3.21) and also 

make use of a change of variable s: 
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 (3.22) 

 
By integrating, one obtains: 
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which completes the proof. 

Mean and Variance of SDE of GTP 

It is worthwhile noting that the interrelationship 

between drift and diffusion will determine Et, as 

shown in Fig. 7. 

 

 
(a) 

 

 
(b) 

 
Fig. 7: Expected Value and Variance for Rate Random Walk Rt and Bi-Directional Grid Trading Equity Et for a  (a).  is reached 

in the quickest time and corresponding Profit is the lowest. (b).  is reached over a longer time and the corresponding Profit 

is not as low 

R 

 

 = 2, T = 2, W = 2, L = 3, P = -1, E = 0 
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T 
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 

 = 2, T = 10, W = 14, L = 11, P = 3, E = 3 
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One can now elaborate this further by deriving the 

expected value 
tE    and variance 

tE   : 
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Now let X N (0,1) and a  in the following 

generalized Gaussian expectation: 
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 is the density of a 

 ,1aN  distribution. Hence: 
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Now (3.23) can be expanded: 
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By using the exact same approach, one also finds that 

the variance of Et, i.e.,  tE  is derived as follows, 

noting our definitions of 1 and 2: 
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Note that this preserves the known property that 

the variance of GBM starts at 0 and then grows 

exponentially. This means that the swings up and 

down become larger and larger over time and further 

supports why grid trading systems can suddenly lead 

to ruin or bankruptcy. 

Results and Discussion 

Having derived both a DDE model and a SDE model 

for the GTP, one can now revert to the numerical 

methods of Monte Carlo Simulation and Brute Force 

Combinatorial Enumeration to complement the derived 

theoretical framework. 

Simulation of BGC DDE of GTP 

The simulation of the discrete model is shown in 

Fig. 8. 

From Fig. 8, one sees that Rt trending for too long in 

one direction leads to large losses in Et, whereas Rt range 

bound (non-trending) leads to large gains in Et. This 

further highlights the sensitivity of Et to small changes in 

Rt. The key benefit of the discrete model is that fund 

managers and investors alike can anticipate the growth 

and decline in Et in relation to the underlying Rt by 

monitoring Dt and Ut and take then various money 

management measures and strategies to maximize Et. 

To further help visualize the DDE theorem of the 

GTP, one can now simulate the discrete distribution for 

Rt for t  [0, 20] using brute force combinatorial 

enumeration. Since  1,1i  R , there are 220 = 

1,048,576 possible paths to simulate. To expand this 

over a greater time period would not reveal any possible 

additional ‘hidden’ distribution properties and so the 

comprehensive distribution is shown in Fig. 9. 

Figure 9 shows the typical distribution of a standard 

diffusion process for a discrete random walk, albeit over 

a binomial lattice model, hence the ‘holes’ on the 

surface. It is understood that as the lattice mesh width 

becomes infinitesimally smaller, then this distribution 

approaches the Gaussian distribution and that these 

‘holes’ disappear. 

By implementing (3.7), one is able to Fig. 10, the 

constraining impact of the Bi-Directional Grid 

Constraining on Et from the underlying Rt distribution. 

Figure 10 shows that as time increases, there are 

many more profitable trades that occur, resulting in a 

greater accumulation of positive profit 
tP  . What is 

not so apparent is that there are numerous smaller 

occurrences of very negative profits tP   that can, at 

times, outweigh the positive profits and lead to ruin. 

Also note that these ruin events accumulate in smaller 

parallel distributions alongside the main positive 

distribution density. 
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Fig. 8: Simulations of Discrete Difference Equation (DDE) of GTP; (a). shows Rt and -Rt, which drives (b). containing the underlying 

components that constrain Et in (c). Scenario 2: (d). shows a different Rt and -Rt, which drives (e). containing the underlying 

components that constrain Et in (f). Notice that the model for Et is sensitive to the underlying Rt volatility changes captured by 
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Fig. 9: Distribution of Rate Rt over time T Since Rt is discrete, so too is F(Rt). Notice that the distribution has ‘holes’ since the 

discrete binomial lattice model does not permit certain paths reaching certain points (such as at t = 1, Rt  0 as  1,1i  R ) 

 

 
 
Fig. 10: Distribution of Profit Pt over time T Since Pt is discrete, so too is F(Pt). The distribution of Pt shows that grid trading 

provides many opportunities to achieve positive profits but fewer opportunities that result in much more severe negative 

profits (i.e., losses) that can lead to ruin. The distribution is also partitioned into sub-distributions or accumulation zones 

with certain profit paths and corresponding densities do not exist (either not at all or existing but statistically insignificant) 
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Fig. 11: Distribution of Equity Et over time T Since Et is discrete, so too is F(Et) 

 

 
 
Fig. 12: Simulations of Continuous SDE of GTP The simulations for Scenario 1, 2 and 3 (in (a)., (c)., (e). respectively) all look quite 

similar to the ‘naked eye’ and indeed have very similar values of t (namely 30, 35 and 40) whilst all other parameters (v, g, 

t) were kept constant. However, the sensitivity of Et to initial conditions is amplified due to the constraining nature of how 

Et (Rt) is a function of Rt. The variance t was the most sensitive parameter resulting from the sensitivity analysis and shows 

how increasing it from 30 to 40 can transition Et from (b). 100% highly profitable paths, (d). 50% profitable and 50% losing 

paths, (f). 100% highly losing paths 
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Finally, note that the equity Et acts as an absorption 

barrier at Pt = 0 since Pt  0  Et = 0, as shown in Fig. 11. 

From Fig. 11, the absorption barrier at Pt = 0 

effectively maps the distribution of Rt: t  (-, 0)   Et 

= 0, increasing the accumulation at Et = 0. Figure 11 

should thus be compared with Fig. 10 and further 

supports the fact that the GTP provides many 

opportunities to generate positive profits, but also 

provides fewer opportunities to wipe out any possible 

gain and indeed one’s initial capital E0. 

Simulation of BGC SDE of GTP 

To complement these discrete results, one can 

simulate numerous sample paths for various parameters 

of the continuous model in Fig. 12. 

From Fig. 12, notice that the three Rt scenarios all 

look similar, however, the resulting Bi-Directional Grid 

Constrained SDE of Et shows that it is sensitive to initial 

conditions (t moreso than t). Sensitivity analysis of v 

and g showed only a minor impact in comparison. 

Conclusion 

This paper has extended the previous research on 

Maximal Drawdown for Long-only trading and 

investment strategies such as shares and extended the 

research by incorporating the Drawdown and Drawup for 

Long and Short (Bi-Directional) Grid Constrained 

(BGC) trading and investment strategies such as Foreign 

Exchange (FX) and other types of derivative 

instruments. Both the discrete properties of random 

walks and the continuous properties of Itô diffusion 

(collectively stochastic processes) were examined as 

they traverse a BGC binomial lattice model. Novel 

theorems for a Discrete Difference Equation (DDE) and 

a continuous Stochastic Differential Equation (SDE) 

model of Et were derived and proved for the Grid 

Trading Problem (GTP). 

This constrained environment forms a rich 

framework to further study such stochastic processes in 

their own right, but can also lead to further applications 

in quantitative finance, funds management, investment 

analysis and banking risk management. In particular, this 

can lead to optimized risk management of hedging and 

optimized profit growth strategies. 
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