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Introduction 

Proof of the famous Weierstrass Approximation 

Theorem was found by (Bernstein, 1912). Polynomials, 

called Bernstein polynomials, are defined with the help 

of probability theory as follows: 

Let f: [0,1] R. The Classical Bernstein polynomial 

f is Bn(f,x) = 
0

‍
n

n

k

k
f k

n

  
  
  

 xk (1-x)(n-k, n = 1,2,… . 

Later, Bernstein polynomials, bringing them into an 

intensive field of research were found to have many 

remarkable features. 

In this article, we have studied polynomials that are 

simply defined, incredibly useful mathematical tools that 

can be calculated quickly in computer systems and 

representing a wide variety of functions. Consider that: 

 

  2

0 1 2

n

np x a a x a x a x      

 
as a linear combination of certain basic polynomial 

represents a polynomial {(1, x, x2, x3,xn)}. Generally, a 

polynomial function with a degree less than or equal to 

n, can be expressed as: 
 
i. A set of polynomials equal to or less than n forms 

a vector space: Polynomials can be added 

together, multiplied by a scalar and all vector 

space properties apply 

ii. (ii) The set of functions {(1, x, x2, x3,xn)} forms a 

basis for this vector space - that is, the polynomial 

of any degree less than or equal to n is uniquely a 

linear combination 

Often called the power basis, this basis is just one of 

the infinitely many bases for the triple sequence space of 

Bernstein polynomials. Bernstein polynomials play an 

important role in other areas of mathematics and 

approximation theory. They also play an important role 

in physics. So now we give the definition of these 

polynomials and their important properties: 

 

1. They are non-negative throughout the interval [a, b] 

2. They are symmetric. 

We can write Brst(f,x) =Br-m,s-n,t-k (a + b-a(f,x))  

3. Each continuous polynomial has only one maximum 

in the interval [a, b] at 
 b a m

x a
r


    b a n

s


   

 b a k

t


, according to the interval value theorem 

4. The set of degrees (r, s, t) of these polynomials form 

part of the unity as  
0 0 0

, 1
r s t

rstm n k
B f x

  
    

5. Always a Bernstein polynomial can be expressed as 

a linear combination of polynomials of higher 

degree as follows: 

 

       

 

1 1 1
, ,

1 1 1
, .

rstr s t

rst

r m s n t k
B f x B f x

r s t

m n k
B f x

r s t

  

     
    
   

     
   
   

 

 

There are (rst)th degree Bernstein polynomials. For 

mathematical convention, we usually set Brst = 0 if m, n, 

k <0  or m > r, n > s, k > t. Moreover, the Bernstein 
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polynomials can be defined in term of forward 

differences as follows: 

 

 

   
     

0 0 0

,

Δ 0 1 .‍

rst

r s t
r s t m r n s k tmnk m n k

m n k

B f x

f m n k x x
     

  

   
    

   
  

 

 

Let K be a subset of the set of positive integers  

   and let us denote the set {(m, n, k)  K: m  u, 

n  v, k  w} by Kuvw. Then the natural density of K is 

given by   , , ,
uvw

u v w

K
K lim

uvw
   where |Kuvw| denotes the 

number of elements in Kuvw. Clearly, a finite subset has 

natural density zero and we have (Kc) = 1-(K) where 

Kc = \ K is the complement of K. If K1  K2,  then 

(K1)  (K2).  

The Bernstein operator of order rst is given by: 

 

 

 
     

0 0 0

,

1 ‍

rst

r s t
r s t m r n s k tm n k

m n k

B f x

mnk
f m n k x x

rst

     

  

    
     

    
  

 

 

where, f is a continuous (real or complex valued) 

function defined on [0, 1] and:  

 

     

! ! !
.

! ! ! ! ! !

r s t r s r
m n k

m r m n s n t t k

   
   

     
 

 

Throughout the paper,  denotes the three-

dimensional real space with the (X, d) metric. 

Consider a triple sequence x = (xmnk) such that 

xmnk , m, n, k  .  

Let f be a continuous function defined on the interval 

[0, 1]. A triple sequence of Bernstein polynomials 

(Brst(f,x)) is said to be statistically convergent to 0 ,  

denoted by st-lim x = 0, provided that the set: 

 

      3: , , : ,mnkK m n k B f x f x      

 

has natural density zero for any  > 0. In this case, 0 is 

called the statistical limit of the triple sequence of 

Bernstein polynomials. i.e., (K) = 0. That is, 

 

    , ,

1
, , : ,l 0.imr s t mnkm r n s k t B f x f x

rst
         

 

In this case, we write -limBmnk(f, x) = (f, x) or Bmnk(f, 

x)sB f(x).  

Let f be a continuous function defined on the interval 

[0, 1]. A triple sequence of Bernstein polynomials 

(Brst(f,x)) is said to be statistically analytic if there is a 

positive number M such that: 

 

       1/3, , : , 0
m n k

mnkm n k B f x f x M
 

     

 

That is: 

 

        1/

, ,

1
, , , , :li , 0.m

m n k

r s t mnkm n k r s t B f x f x M
rst



 

      

 

A triple sequence (real or complex) can be defined 

as a function  :x    , where ,  and  

represent the set of natural numbers, real numbers and 

complex numbers respectively. Different types of the 

triple sequence concept were introduced and first 

explored by (Sahiner et al., 2007; Sahiner and 

Tripathy, 2008; Esi, 2014; Esi and Catalbas, 2014;   

Esi and Savas, 2015; Esi and Sapszoglu, 2012; Esi 

and Subramanian, 2018b; Esi et al., 2017a; 2017b; 

Dutta et al., 2013; Subramanian and Esi, 2015; 2017a; 

2017b; Esi and Subramanian, 2018a; Subramanian 

and Esi, 2018; Velmurugan and Subramanian, 2018; 

Hazarika et al., 2018; Subramanian et al., 2019; 2018; 

Debnath et al., 2015; Aiyub et al., 2017; Sharma and 

Esi, 2013), many others. 

A Basis of the Bernstein Polynomials of Triple 

Sequence Spaces 

Why is the basically triple sequence of Bernstein 

polynomials, Bernstein polynomials of order n a basis 

for the triple sequence of polynomials of order n! equal 

to or lower? 

 

(i) It covers the triple sequence space of polynomials - 

any polynomial of order less than or equal to n can 

be written as a linear combination of Bernstein 

polynomials 

This easily covers triple sequence space of 

polynomials and the power basis of any member of 

the Bernstein polynomials in terms of power can be 

written as a linear combination of notice 

 

(ii) They are linearly independent-that is, there exist 

constants c0, c1, c2cn so that the identity: 

 

     0 000, 1 111, ,0 rst rst n mnk rstC B x C B x C B x     

 

holds for all t, then all mnk, 
ic s  must be zero.  

 

If this is true, we could write: 
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     

 

 
     

0 000, 1 111, ,

0 0 0 0

1 1 1

1 1 1

0 .

0

1 1 1 1

1 0 0

rst rst n mnk rst

r m s n t k
r s t m n k

m n k

r m s n t k
r s t m n k

n k

r s t

t

C B x C B x C B x

C m n k x

C m n k x

   

  

      

 

   

      
       

      

      
        

      

  



 
     

1

1 1 1
1

0 1 0 0

1 1 1

0

1 .

1 1 1 1 1 1=

m

r m s n t k
m r n s k t m n k

n m r n s k

r s

r s

t

r s t

m n k

r r s s

n

t
C m r n s k t x

C C x

C r r s s



      

  

  

      
       

      

       
         

       

   
   
   

 

  

  

0 0 0
.

t t
r s

n

r t

m

s

k

t
t t x  

  

    
    
    

  

 

 

Since the power basis is a linearly independent set, 

we must have that: 

 

0 0C   (1.1) 

 

1 1 1
1 1 1

1 0 0 0
1 1 1 1 1 1 0
r s t

m n k
C

  

      
      

      
    (1.2) 

 

0 0 0
0

r r s s t t

n m

r s t

n k
C r r s s t t

  

      
      

      
    (1.3) 

 

which implies that C0 = C1 = C2 =  = Cn = 0. (C0 is 

clearly zero, substituting this in the second equation 

gives C1 = 0, substituting these two into the third 

equation gives ...). 

 

 

The Bernstein polynomials of degree (rst) can be 

defined by blending two Bernstein polynomials of 

degree n = 1. So, the (mnk)th (rst)th degree Bernstein 

polynomials can be written as: 

 

     

     

, 1, 1, 1

1, 1, 1 , 1, 1, 1

1

.

rst mnk r s t

m n k r s t

B x x B x

xB x

  

     

 


 

 

for 0  m  r, 0  n  s, 0  k  t and the derivative of 

the (rst)th degree Bernstein polynomials are also 

polynomials of degree (r-1, s-1, t-1) and they are 

defined as follows: 

 

 

         

,

1, 1, 1 , 1, 1, 1 , 1, 1, 1

mnk rst

m n k r s k mnk r s k

d
B x

dx

rst B x B x
        

  
 

 

 

Bernstein Polynomials for Triple Sequence 

Spaces 

The Bernstein polynomials of degree rst are defined by: 

 

 

 
     

,

0

0 0 0

,

1

mnk rst

r s t
r t r m s n t km n k

m n k

B f x

mnk
f m n k x x

rst

     

  

    
     

    
  

 

 

for m, n, k = 0,1,2,, r, s, t.  

 
 

Fig. 1: The triple sequence of Bernstein Polynomials of degrees 1, 2 and 3
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There are (r +1) (s +1) (t +1), (rst)th  degree Bernstein 

polynomials for mathematical compatibility we usually 

set Bmnk,rst = 0 for m, n, k < 0 or m > r, n > s, k > t. It is 

quite easy to write the coefficients of these polynomials 
r s t

m n k
   
   
   

 from Pascal's triangle, the exponents in the x 

term increase as m, n, k increases and the exponents on 

the (1-x) term decrease by one as m, n, k increases. In 

simple cases, we get (Fig. 1):  

 

 The triple sequences of Bernstein polynomials of 

degree 1 are: 

 

     
3 3

000,111 111,1111 , .B x x B x x    

 

 The triple sequences of Bernstein polynomials of 

degree 2 are: 

 

         
6 33 6

000,222 111,222 222,2221 , 6 1 , .B x x B x x x B x x      

 

 The triple sequence of Bernstein polynomials of 

degree 3 are: 

 

       

     

9 63

000,333 111,333

36 9

222,333 333,333

1 , 9 1 ,

9 1 , .

B x x B x x x

B x x x B x x

   

  
 

 

Converting the Bernstein Basis to the Power 

Basis for Triple Sequence Spaces 

Since the power basis {1, x, x2, x3,xn} forms a basis 

for the triple sequence of Bernstein polynomials of 

degree less than or equal to n, any Bernstein polynomial 

of degree n can be written in term of the power basis. 

This direct Bernstein polynomial can be calculated using 

the following definition of the binomial theorem: 

 

 

 
     

 

 

, 0 0 0

0 0 0

0 0 0

,

1

1

1

r s t

mnk rst m n k

r s t
r m s n t km n k

r s t r u s v t wm n kr u s v t wu v w m n k

m n k

r u s v t w m n k

m n k

r

B f x

m n k x x

u v w x m n k x

u

  

     

        

  

    

  



   
   

   

       
        
       

 





  

  

  

     

 
     

 
     

0 0 0

0 0 0

1

1

s t r u s v t w
m u n v k w

r s t m u n v k w

m n k

r s t r u s v t w
m n k

r s t m u n v k w

m n k

r s

v w m n k x

u v w m u n v k w x

m n

  
    

    

  

  
 

    

  

     
     
     

 

      
        

      
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We have used the binomial theorem to expand (1-x)(r-

u)+(s-v)+(t-w). 

To prove that each power basis element can be 

expressed as a linear combination of Bernstein 

polynomials, we use the degree elevation formulas and 

induction to calculate the following:  
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where the induction hypothesis was used. 

A Matrix Representation of Bernstein 

Polynomials for Triple Sequence Spaces 

For example, until the 1990s as a systematic 

review of Bernstein polynomials theory (Lorentz, 

1986; Videnskii and Polynomials, 1990) are also 

presented. New articles are constantly coming out  

(Esi and Catalbas, 2014) and new applications and 

generalizations are discovered (Li et al., 1997; 

Petrone, 1999). A generalization of Bernstein 

polynomials containing q-integers was proposed by 

(Lupas, 1987). However, the q-analogue of the 

Bernstein operator as handled by Lupa-s gives rational 

functions rather than polynomials. 

In many applications, it is helpful to Bernstein 

polynomials of a matrix formulation. When looking at 

only a linear combination in terms of point products, 

they are simple to develop. 

Given a polynomial that can be expressed as a linear 

combination of Bernstein's elementary functions: 

 

       0 000, 1 111, , .rst rst n mnk rstB t C B x C B x C B x     

 

It's easy to express this as the dot product of two 

vectors: 
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       
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C

 
 
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We can convert this to: 
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  
  

 

 

 

where the bijk are the coefficients of the power base used 

to determine the respective Bernstein polynomials. 

Notice that in such a case the matrix is the lower 

triangular matrix. 

In the quintic case (n = 5), the matrix representation is: 
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0
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2
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and in the sextic case (n = 6), the matrix representation is: 
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