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Introduction 

Consider an r × r square contingency table with 

the same row and column classifications. Let pij 

denote the probability that an observation will fall in 

the ith row and jth column of the table 

( 1,..., : 1,..., )i r j r  . Stuart (1955) gave the Marginal 

Homogeneity (MH) model defined by: 
 

1,..., ,i ip p for all i r    
 
where, 

1

r

i itt
p p 
 and 

1

r

i sis
p p 

 . The MH model 

indicates that the row marginal distribution is identical 

to the column marginal distribution. Saigusa et al. 

(2020) proposed the Partial Marginal Homogeneity 

(PMH) model which has weaker restriction than the 

MH model as follows: 
 

 1,..., .i ip p for at least onei i r    
 

The PMH model indicates that the row marginal 

distribution is identical to the column marginal 

distribution for at least one i. In addition, Saigusa et al. 

(2020) also proposed the measure to represent the degree 

of departure from the PMH model. Assuming pi + pi  0 

for all i = 1,…, r, the measure is defined by: 
 

      
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r

i

i
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    

 
where, πi = (pi·+ p·i)/2, p1(i) = pi·/(pi· + p·i) and p2(i) = 

p·i/(pi· + p·i) and: 
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The value at λ = 0 is taken to be the limit as λ → 0. It 

should be noted that Φ(λ) is expressed the weighted 

geometric mean of   i


 . We also remark that the  

iI


is 

the diversity index given by (Patil and Taillie, 1982). 
 0

iI is identical to the Shannon entropy. 

Over the past few years, such partial structure and 

geometric mean type measure have been developed by 

many studies (Saigusa et al., 2016; 2019). 

Let X and Y denote the row and column variables, 

respectively. By considering the difference between 

cumulative probabilities G1(i) and G2(i), the MH model is 

also expressed as: 

 

   1 2
  1,..., 1,

i i
G G for all i r    

 

where the cumulative probabilities are defined as follows: 
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Tomizawa et al. (2003) proposed the measure to 

represent the degree of departure from the MH model. 
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Assuming G1(i) + G2(i)   0 for i = 1,..., r − 1, we put 

 1

c

i
G = G1(i)/(G1(i) + G2(i)),  2

c

i
G = G2(i)/(G1(i) + G2(i)),  

*

1 i
G  = 

G1(i)/∆, 
 

*

2 i
G = G2(i)/∆ and ∆ = 

    1

1 21

r

i ii
G G




 . The 

measure is defined by: 
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where: 
 

   

 
      

1 1

1 2

2
1 ,

2 1

1
1 .

i i

c c

i i i

H

H G G


 



 







 

 


  

 (1) 

 
Note that the value at λ = 0 is taken to be the limit as 

λ → 0, that is: 
 

 
       

0

1 1 2 2
log log .c c c c

i i i i i
H G G G G    

 
 
M


 is the weighted arithmetic mean type measure of 

  i


 . 

Tomizawa (2001) gave the measure to represent the 

degree of departure from the MH model for square 

contingency tables with nominal categories. As 

described above, (Tomizawa et al., 2003) gave the 

measure  
M


  from the MH model for those with ordered 

categories. Saigusa et al. (2020) proposed the measure 

Φ(λ) for the PMH model for square tables with nominal 

categories. In this study, we are interested in the partial 

homogeneity of cumulative marginal probabilities G1(i) 

and G2(i) for square tables with ordered categories. 

This paper is organized as follows. Section 2 

proposes a new model with respect to the partial 

homogeneity of cumulative marginal probabilities G1(i) 

and G2(i) and a measure to represent the degree of 

departure from the new model. Section 3 derives 

approximate confidence interval of the measure. Section 

4 applies the measure to artificial examples and real data. 

Model and Measure 

In this section, we propose a new model which has the 

structure of the cumulative partial marginal homogeneity 

for an r × r contingency table with ordered categories. In 

addition, we also propose the geometric mean type measure 

to represent the degree of departure from the new model. 

New Model 

A new model is proposed as: 

 

     1 2
      1,..., 1 .

i i
G G for at least one i i r    

Table 1: Artificial cell probability tables 

(a) Table 1a 

 (1) (2) (3) (4) Total 

(1) 0.04 0.07 0.03 0.01 0.15 

(2) 0.05 0.05 0.12 0.13 0.35 

(3) 0.03 0.17 0.06 0.04 0.30 

(4) 0.03 0.06 0.09 0.02 0.20 

Total 0.15 0.35 0.30 0.20 1.00 

 
(b) Table 1b 

 (1)  (2)  (3)  (4)  Total 

(1)  0.04  0.07  0.03  0.01  0.15 

(2)  0.05  0.05  0.02  0.17  0.29 

(3)  0.03  0.10  0.04  0.05  0.22 

(4)  0.03  0.09  0.03  0.19  0.34 

Total  0.15  0.31  0.12  0.42  1.00 

 
Table 2: Cumulative probability tables for Table 1 

(a) Cumulative probabilities for Table 1a 

 i = 1  2  3 

G1(i)  0.11  0.29  0.18 

G2(i)  0.11  0.29  0.18 

 
(b) Cumulative probabilities for Table 1b 

 i = 1  2  3 

G1(i)  0.11  0.23  0.23 

G2(i)  0.11  0.25  0.15 

 

We refer to this model as the Cumulative Partial 

Marginal Homogeneity (CPMH) model herein. It should 

be noted that the CPMH model has a different structure 

from the MH and PMH models. It is easy to see that the 

MH model has the structure of CPMH. Consider the 

artificial probability in Table 1 and the marginal 

cumulative probability for in Table 2. Tables 2a and 2b 

give the cumulative probability calculated from Tables 

1a and 1b, respectively. Table 1a has the structure of MH 

and CPMH models, while Table 1b does not have that of 

the MH model. Therefore the CPMH model is not 

equivalent to the MH model. 

Measure 

Assume that G1(i) + G2(i)  0 for i = 1,···, r − 1. The 

measure to represent the degree of departure from the 

CPMH model is proposed as follows: 
 

    
    

 
* *
1 2
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r G G
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 
  

 



    

 

is defined by (1). Note that λ is a real value chosen by users. 

The measure holds the following properties. For any λ > −1: 

 

(i) The measure  
M


  must lie between 0 and 1 

(ii)  
M


 = 0 if and only if the probability table has the 

structure of CPMH, that is, G1(i) = G2(i) for at least one i 
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(iii)   
M


 = 1 if and only if the probability table has the 

structure of complete marginal inhomogeneity in the 

sense that G1(i) = 0 (then G2(i)  0) or G2(i) = 0 (then 

G1(i)  0) for i = 1,···, r −1. 
 

It should be noted that the measure  
M


 is expressed 

as the weighted geometric mean of the diversity index 

whereas  
M


 is the weighted arithmetic mean. 

Approximate Confidence Interval 

In this section, nij denotes the observed frequency in 

the ith row and jth column of the table (i = 1,···, r; j = 

1,···, r) and n = 
1 1

r r

iji j
n

   . Let the r × r table {nij} be 

distributed as the multinomial distribution with 

probabilities {pij}. It is a common occurrence that the 

probabilities {pij} are unknown. Therefore, we need to 

estimate {pij} and derive the approximate standard error 

and the large-sample confidence interval of  
M


 . The 

sample version of  
M


 , denoted by  ˆ

M


 , is given by 

 
M


 with pij replaced by ˆ

ijp  where ˆ
ijp = nij/n. Using the 

delta method (Agresti, 2003),     ˆ
M Mn
 

   

asymptotically has (as n → ∞) a normal distribution with 

mean zero and variance σ2, where: 
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with,  0

ij = limλ→0 
 
ij


  and: 
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for λ > −1. It should be noted that the asymptotic 

normal distribution of     ˆ
M Mn
 

  is applicable only 

when 0 <  
M


 < 1 because σ2 = 0 when  

M


 = 0 and  

M


 = 

1. Let 2̂ denote σ2 with pij replaced by ˆ
ijp . Then 

ˆ / n is the estimated approximate standard error of 
 ˆ
M


  and the approximate 100(1-α)% confidence interval 

of  
M


  is given by  

/2
ˆ ˆ /M z n


  , where zα is the 1- α 

quantile of the standard normal distribution. 

Numerical Studies 

This section presents the results of applying the 

model and the measure to some examples and real data. 

Artificial Examples 

Consider the 4×4 artificial cell and cumulative 

probability tables given in Tables 3 and 4. Table 3a has a 

structure of CPMH with G1(1) = G2(1) = 0.030. For each 

Tables 4b-4e, the values of G1(i) and G2(i) for i = 2 and 3 

equal the corresponding values of G1(i) and G2(i). The 

ratio G1(1)/G2(1) varies for Tables 4a to 4e: 1.0 for Table 

4a, 2.0 for Table 4b, 3.0 for Table 4c, 4.0 for Table 4d 

and 5.0 for Table 4e. Thus it is natural to consider that 

the degree of departure from the CPMH model increases 

in the order of Tables 4a to 4e. Table 4f shows complete 

asymmetry in the sense that cell probabilities in the 

upper right triangle are all zeros. 

Table 5 gives the values of measure  
M


 applied to 

each of Tables 4a to 4f. We see that (i) the value of 
 
M


 for Table 4a equals zero, (ii) for any fixed λ, the 

value of  
M


 increases as the ratio G1(1)/G2(1) increases 

and (iii) the value of  
M


 for Table 4f equals 1. Therefore 

the measure  
M


 would be appropriate to represent the 

degree of departure from the CPMH model. 

Real Data 

Consider the data in Tables 6a and 6b taken from 

(Tominaga, 1979). These data describe the cross-

classifications of father’s and his son’s occupational 

status categories in Japan, which were examined in 1955 

and in 1965, respectively. We regard as the smaller 

category number means the higher status herein. We are 

interested in whether there is the structure of CPMH in 

each table. Table 7 gives the estimated values of the 

measure  
M


 applied to Tables 6a and 6b. 

 
Table 3: Artificial cell probabilities 

(a) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.160  0.017  0.008  0.005  0.190 

(2)  0.002  0.160  0.012  0.005  0.179 

(3)  0.022  0.220  0.159  0.020  0.421 

(4)  0.006  0.023  0.021  0.160  0.210 

Total  0.190  0.420  0.200  0.190  1.000 
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(b) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.152  0.047  0.008  0.005  0.212 

(2)  0.002  0.152  0.012  0.005  0.171 

(3)  0.022  0.220  0.152  0.020  0.414 

(4)  0.006  0.023  0.021  0.153  0.203 

Total  0.182  0.442  0.193  0.183  1.000 

 
(c) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.145  0.077  0.008  0.005  0.235 

(2)  0.002  0.145  0.012  0.005  0.164 

(3)  0.022  0.220  0.145  0.020  0.407 

(4)  0.006  0.023  0.021  0.144  0.194 

Total  0.175  0.465  0.186  0.174  1.000 

 
(d) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.137  0.107  0.008  0.005  0.257 

(2)  0.002  0.137  0.012  0.005  0.156 

(3)  0.022  0.220  0.137  0.020  0.399 

(4)  0.006  0.023  0.021  0.138  0.188 

Total  0.167  0.487  0.178  0.168  1.000 

 
(e) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.130  0.137  0.008  0.005  0.280 

(2)  0.002  0.130  0.012  0.005  0.149 

(3)  0.022  0.220  0.130  0.020  0.392 

(4)  0.006  0.023  0.021  0.129  0.179 

Total  0.160  0.510  0.171  0.159  1.000 

 
(f) 

 (1)  (2)  (3)  (4)  Total 

(1)  0.177  0  0  0  0.177 

(2)  0.002  0.177  0  0  0.179 

(3) 0.022  0.220  0.176  0  0.418 

(4)  0.006  0.023  0.021  0.176  0.226 

Total  0.207  0.420  0.197  0.176  1.000 

Table 4: Cumulative probabilities calculated from Tables 3a-f 

(a) For Table 3a 

 i = 1  2  3 

G1(i)  0.030  0.030  0.030 

G2(i)  0.030  0.271  0.050 
 
(b) For Table 3b 

 i = 1  2  3 

G1(i)  0.060  0.030  0.030 

G2(i)  0.030  0.271  0.050 

 
(c) For Table 3c 

 i = 1  2  3 

G1(i)  0.090  0.030  0.030 

G2(i)  0.030  0.271  0.050 

 
(d) For Table 3d 

 i = 1  2  3 

G1(i)  0.120 0.030  0.030 

G2(i)  0.030  0.271  0.050 

 
(e) For Table 3e 

 i = 1  2  3 

G1(i)  0.150  0.030  0.030 

G2(i)  0.030  0.271  0.050 

 
(f) For Table 3f 

 i = 1  2  3 

G1(i)  0  0  0 

G2(i)  0.030  0.271  0.050 

 

Table 5: Values of 
 
M


 for Tables 3a-f values of 

 
M


  

 Values of   

 ----------------------------------------------- 

Applied tables -0.5  0  1.0 

Table 3a 0 0  0 

Table 3b  0.159  0.245  0.309 

Table 3c  0.182  0.280  0.353 

Table 3d  0.199  0.306  0.384 

Table 3e  0.215  0.328  0.409 

Table 3f  1  1  1 

 

Table 6: Cross-classifications of Japanese father’s and his son’s occupational status (a) in 1955 and (b) in 1965 (Tominaga (1979)) 

(a) in 1955 

 Son’s status 

Father’s ---------------------------------------------------------------------------------------------------------------------------------------------- 

status (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  Total 

(1)  36  4  14  7  8  2  3  8  82 

(2)  20  20  27  24  11  11  2  11  126 

(3)  9  6  23  12  9  5  3  16  83 

(4)  15  14  39  81  17  16  11  15  208 

(5)  6  7  22  13  72  20  6  13  159 

(6)  3  2  5  12  18  19  9  7  75 

(7)  5  3  10  11  21  15  38  25  128 

(8)  39  30  76  80  69  52  45  614  1005 

Total  133  86  216  240  225  140  117  709  1866 



Tomoyuki Nakagawa at el. / Journal of Mathematics and Statistics 2020, Volume 16: 170.175 

DOI: 10.3844/jmssp.2020.170.175 

 

174 

(b) in 1965 

 Son’s status 

Father’s ---------------------------------------------------------------------------------------------------------------------------------------------- 

status (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  Total 

(1)  27  10  16  3  6  6  1  2  71 

(2)  15  38  30  20  8  4  3  7  125 

(3)  13  17  32  17  7  16  6  5  113 

(4)  12  36  40  132  22  30  13  6  291 

(5)  8  22  38  41  91  42  22  9  273 

(6)  2  2  7  12  13  16  3  2  57 

(7)  3  2  11  11  13  26  30  6  102 

(8)  38  44  95  101  132  114  60  309  893 

Total  118  171  269  337  292  254  138  346  1925 

Note: Status (1) is Professional; (2) Managers; (3) Clerical; (4) Sales; (5) Skilled manual; (6) Semiskilled manual; (7) Unskilled 

manual; and (8) Farmers 

 

Table 7: Estimates of 
 
M


 , estimated approximate Standard 

Errors (SE) of 
 
M


 and approximate 95% Confidence 

Intervals (CI) of 
 
M


 , applied to Tables 6a and 6b  

(a) For Table 6a 

   
 
M


  SE  CI 

-0.5  0.063  0.024  (0.016, 0.110) 
0  0.102  0.039  (0.027, 0.178) 
1  0.136  0.051  (0.036, 0.236) 

 
(b) For Table 6b 

λ  
 
M


  SE  CI 

-0.5  0.162  0.018  (0.127, 0.198) 
0  0.253  0.027  (0.201, 0.306) 
1  0.323  0.032  (0.260, 0.386) 

 
We shall compare the values of measure which 

represents the degree of departure from the CPMH 

model for Tables 6a and 6b. From Table 7, the values 

in the confidence interval of  
M


 are greater for Table 

6b than for Table 6a. Therefore, it is inferred that the 

degree of departure from the CPMH model for father-

son pairs is larger in 1965 than in 1955. 

Concluding Remarks 

For an r × r square contingency table with ordered 

categories, we have proposed the CPMH model which 

has weaker restriction than that of the MH model. We 

also have proposed the measure to represent the 

degree of departure from the CPMH model. The 

proposed measure  
M


  indicates how far the marginal 

distributions are distant from those with the structure 

of CPMH. The measure would be useful for 

comparing the degrees of departure from the CPMH 

model among the several tables (as seen in Section 4). 

The measure  
M


 is appropriate for the square table 

with ordered categories because the value of  
M


 is not 

invariant under arbitrary same permutation of the row 

and column categories. 
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