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Abstract: In this paper, we proposed a new testing statistic for testing the 

equality of mean vectors from two multivariate normal populations when 

the covariance matrices are unknown and unequal in high–dimensional 

data. A new test is proposed based on the idea of keeping more information 

from the sample covariance matrices as much as possible. A proposed test 

is invariant under scalar transformations and location shifts. We showed 

that the asymptotic distribution of proposed statistic is standard normal 

distribution when number of random variables approach infinity. We also 

compared the performance of the proposed test with other three existing 

tests by the simulation study. The simulation results showed that the 

attained significance level of proposed test close to setting nominal 

significance level satisfactorily. The attained power of proposed test 

outperforms as the other comparative tests under form of covariance 

matrices considered which can be arranged to block diagonal matrix 

structure. The attained power becomes more powerful when the dimension 

increases for a given sample size or vice versa, or relationship level 

between random variables in each sample increases. Finally, the proposed 

test is also illustrated with an analysis of DNA microarray data. 
 
Keywords: Hypothesis Testing, Two–Sample Mean Vectors, Multivariate 

Behrens–Fisher Problem, High–Dimensional Data, Block Diagonal Matrix 

Structure 
 

Introduction 

Currently data collecting technology is rapidly evolving. 

Its evolution makes the statistical methods going to two 

directions. When the sample is being collected more and 

more, the first direction of the statistical methods will 

focus about asymptotic optimality of statistical methods. 

In the other direction, when variables or dimensions of 

data are being considered increasingly, the focus of 

statistical analysis shifted from the univariate to 

multivariate (Zhou, 2016). However, in many practical 

applications of modern multivariate statistical methods 

often found a data sets which are much larger number of 

measurements than the sample size. In this case, it will 

be referred to high–dimensional data, which referring to 

a large number of measurements are taken on comparably 

many or relatively few subjects. High–dimensional data 

appears in various fields, such as online data from 

markets around the world are accumulated on a Giga–octet 

basis every day in financial studies, gene expression data 

that collects from DNA microarray technology in genetic 

experiments (Yao et al., 2015). In such high–dimensional 

data, classical multivariate statistical methods is not often 

applicable because they involved with the inversion of 

sample covariance matrix which does not exist. 

Now suppose 
1 2
, , ,

i
i i in

x x x… represent a random sample 

with size n1 and n2 from p–dimensional multivariate 

normal random vectors from the ith group, i = 1,2, each 

of which has p × 1 mean vector 
i

µ  and p × p unknown 
positive definite covariance matrix 

i
Σ or ( ), .~

ij p i i
x µ ΣN  

The problem of testing for the equality of means vectors 

from two multivariate normal population when the 

covariance matrices are unknown and unequal or when 

1 2
≠Σ Σ  is referred to as the multivariate Behrens–Fisher 

problem. That is, we are considering the testing hypothesis 

as: 
 

0 1 2
:H =µ µ  vs.       

1 1 2
: ,H ≠µ µ   (1) 

 

where, p denotes the dimension or the number of variables 

with p ≤ n1 + n2 – 2. A natural invariant test statistic for 
testing hypothesis in (1) is: 
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 2
T  =  ( ) ( )

1

1 2

1 2 1 2

1 2

,

n n

−

 ′− + − 
 

S S
x x x x  (2) 

 

where the p × 1 sample mean vectors ( )ix  and the p × p 
sample covariance matrix (Si) are defined, respectively by: 
 

 
i

x  =  
1

1 i
n

i j

ji
n

=

∑x  (3) 

 
and: 
 

 
i

S  =  ( )( )
1

1
,

1

i
n

i j i i j i

ji
n

=

′
− −

−
∑ x x x x  1,2.i =  (4) 

 
The exact distribution of 2

T under the null hypothesis 

in (1) was obtained by Nel and van der Merwe (1990). 

However, the exact distribution is very complicated and 

which are extremely difficult to compute in practice, it is 

of no use for practical applications. But the approximation 

of this testing statistic is used when both sample size n1 

and n2 approach infinity, the distribution of 
2
T converges 

to the chi–square distribution with p degrees of freedom. 

Its approximation is very simple and easier to compute, 

but this approximation is suffering from either the 

sample size n1 or n2 is small. So, this approximation is 

more accurate when ( )
1 2

min , ,n n →∞ (Srivastava, 2002; 

Yanagihara and Yuan, 2005; Richard and Dean, 2014). 

Unfortunately, in practice the sample size is not very 

large, so this approximation is not recommended for 

application in practice  

There is a vast literature devoted to the solution of 

this problem, many researchers tried to approximate the 

distribution of 2
T  by a constant times F–distribution 

with numerator degrees of freedom p and the approximate 

denominator degrees of freedom estimate from sample 

size, sample mean vector and sample covariance matrix. 

Among the approximate solutions based on 
2
,T some 

approximate solutions suggested by James (1954), Yao 

(1965), Johansen (1980) and Yanagihara and Yuan 

(2005) are invariant, whereas the solution due to Nel and 

van der Merwe (1986) is not invariant. Afterward, 

Krishnamoorthy and Yu (2004) modified the solution of 

Nel and van der Merwe (1986) by providing an invariant 

test statistic and Kawasaki and Seo (2015) improved the 

solution of Yanagihara and Yuan (2005) by asymptotic 

expansions. 

From literary review, we found that solution due to 

Krishnamoorthy and Yu (2004) has the attained 

significance level close to the nominal significance 

level satisfactorily, Krishnamoorthy and Xia (2006) 

among others showed via intensive simulation studies 

that this test performs best among the approximation 

solutions to the multivariate Behrens–Fisher problem 

(Zhou, 2016). Krishnamoorthy and Yu (2004) has been 

shown to have approximately distribution of 2
T  as F–

distribution is given by: 

 

 2
T  ~  

, 1
,

1
p v p

vp
F

v p
− +

− +

 approximately, (5) 

 

where, 
, 1p v p

F
− +

 denotes a random variable with an F–

distribution with  p and v – p + 1 degrees of freedom and 

the degrees of freedom v are estimated from the sample 

covariance matrices using the relation: 

 

 v  =  

( ) ( )
( )

2

22
1 1

2

2

1

.

tr tr

1

i i

i i i

p p

n n

− −

=

+

   +
   
−

∑
S S S Sɶ ɶ

 (6) 

 

where, the sample covariance matrix Sɶ  defined by: 

 

 Sɶ  =  1 2

1 2
n n

+

S S
 (7) 

 

and min(n1 – 1,n2 – 1) ≤ v ≤  n1 + n2 – 2, this approximation 
reduces to the usual Welch's approximate degrees of 

freedom to the Behrens–Fisher problem in the univariate 

(p = 1) case (Richard and Dean, 2014). 

In high–dimensional data, for one population when 

the data has the number of variable exceed sample size 

(minus 1), p > ni – 1, for example the data that collects 

from DNA microarrays technology where a large number 

of gene expression levels may be in the hundreds or 

thousands, are measured on relatively few subjects (Zhou 

et al., 2017), then the sample covariance matrix Si  lose its 

full rank and will be singular, which makes Si does not 

have an inverse (Chongcharoen, 2011). Furthermore, for 

two populations when the data has the number of 

variable is larger than the sum of the sample sizes (minus 

2), p > n1 + n2 – 2, then the sample covariance matrix Sɶ  

in (7) does not have an inverse. Hence, any statistic 

value involving inversion of Sɶ  does not exist. However, 

test statistic 2
T  in (2) requires the matrix Sɶ  invertible, 

so it cannot be applied for high–dimensional data. 

To overcome the problem of the need for the inverse 

of a sample covariance matrix in high–dimensional data, 

many efforts recently have been devoted to construct 

new test solutions for multivariate Behrens–Fisher 

problem in high–dimensional data. Most test statistics try 

to avoid the use of 1
.

−

Sɶ  This problem has been considered 

by Bai and Saranadasa (1996) who proposed a test 

statistic is develop by using only information from the 

diagonal elements of Si , i = 1,2, as TBS given by: 



Paranut Sukcharoen and Samruam Chongcharoen / Journal of Mathematics and Statistics 2019, 15 (1): 44.54 

DOI: 10.3844/jmssp.2019.44.54 

 

46 

 TBS =  ˆ ,n QQ σ   (8) 

 

where, Qn are defined by: 

 

n
Q  =  ( ) ( )

( ) ( )1 2

1 2 1 2

1 2

tr tr
,p

n n

 ′− − − − 
 

S S
x x x x  (9) 

 

which the variance of this statistics 2

Qσ  is given by: 

 

 2

Qσ  =  
( ) ( ) ( )

2 2

1 2 1 2

2 2

1 2 1 2

tr tr 2tr2

p n n n n

  
+ + 

  

Σ Σ Σ Σ
 (10) 

 
Srivastava (2009) proposed a consistent estimator of 

2

Qσ  in (10) as:  

 

 2
ˆ
Qσ  =  

( )1 221 22

2 2

1 2 1 2

2trˆ ˆ2 a a

p n n n n

  
+ + 

  

S S
 (11) 

 
Where: 
 

 
2
ˆ

i
a  =  

( )

( )
( )

( )
22

2
tr1

tr ,
2 1

ii

i

i i i

n

n n n

  −   − 
− −  

S
S 1,2.i = (12) 

 
Chen and Qin (2010) proposed a test statistic based 

on sidesteps covariance matrix estimation (Gregory et al., 

2015) as TCQ given by: 
 
 TCQ =  ,n QQ σɶ   (13) 

 

where, Qn are defined as (9) and 
2

Qσ
ɶ  is given by: 

 

 2

Qσ
ɶ  =  

( )�

( )

( )�

( )

( )�2 2

1 2 1 2

1 1 2 2 1 2

tr tr 2tr2

1 1p n n n n n n

 
 

+ + 
− −  

Σ Σ Σ Σ
 (14) 

 
which as: 

 

( )�2
tr iΣ =

( )( ) ( )( )

( )

, ,

tr

,
1

i
n

ij ij ik iki j k i j k
j k

i in n

≠

  ′ ′− − 
  

−

∑ x x x x x x

1,2.i =  (15) 

 

( )�
1 2

tr Σ Σ =

( )( ) ( )( )
1 2

1 1 2 21 2

1 1

1 2

tr

n n

j j k kj k
j k

n n

= =

  
′ ′− − 

  
∑∑ x x x x x x

 (16) 

 
where, 

( ),i j k
x  is the ith sample mean vector after excluding 

ij
x  and ,

ik
x  for i = 1,2; j, k = 1,2,,…,ni,  given by: 

 

 
( ),i j k

x  =  ( )
1

2
i i ij ik

i

n

n

− −

−

x x x   (17) 

and 
( )i k

x  is the ith sample mean vector without 
ik

x  for    

i = 1,2; k = 1,2,,…,ni, given by:  

 

 
( )i k

x  =  ( )
1

1
i i ik

i

n
n

−
−

x x   (18) 

 

Srivastava et al. (2013) proposed a test statistic which 

uses the diagonal matrix of the sample covariance matrix 

Sɶ  and the trace of the sample correlation matrix as TSKK 

given by: 

 

 TSKK =  
( ) ( )

� ( )
( )

1

1 2 1 2

2

3 2

,

tr
ˆ 1

diagonal

n

p

pVar q
p

−′− − −

 
 +
 
 

x x S x x

R

ɶ

 (19) 

 

where, diagonalSɶ  is the diagonal matrices of the diagonal 

elements of matrix Sɶ  in (7) and R is defined by: 

 

 R  =  1 2 1 2

diagonal diagonal

− −

S SSɶ ɶ ɶ   (20) 

 

and � ( )ˆ
nVar q  is given by: 

 

 � ( )ˆ
nVar q  =  ( )

( )
( )

2
1

2

2

2

1

tr2
tr

1

diagonal i

i i ip n n

−

=

  
  − 

− 
 

∑
S S

R

ɶ

 (21) 

 

All three test statistics TBS, TCQ and TSKK have 

asymptotic standard normal distribution under null 

hypothesis in (1). Both TBS and TCQ tests are invariant 

under an orthogonal transformation, ,

ij ij
→x Px i = 1,2, j = 

1,2,…,ni, where P is an orthogonal p p×  matrix such that 

.
′ =P P I  In contrast, the TSKK test is invariant under 

location shifts and scalar transformations, ,

ij ij
→ +x Dx c  

i = 1,2, j = 1,2,…,ni, where D is nonsingular p p×  

diagonal matrice and c is a constant vector.  

The performance of these three tests will be compared 

with the proposed tests. Other tests in the literature, such 

as that of Katayama and Kano (2014); Gregory et al., 

(2015), were studied a test on high–dimensional mean 
vector under without any assumption on population 
covariance matrix and not assume normally distributed. 

Zhang and Xu (2009); Yamada and Himeno (2015); Hu 

et al. (2017) proposed a testing the equality of several 

high–dimensional mean vectors with unequal covariance 

matrices, that is: The heteroscedastic one–way multivariate 

analysis of variance (MANOVA). Nishiyama et al. (2013); 

Zhou et al. (2017) proposed a high–dimensional general 

linear hypothesis testing problem on mean vectors of 

several populations under heteroscedasticity.  
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In this paper, we interested to use block diagonal 

structures of Sɶ  in (7) to solve problem that the inverse 

of Sɶ  does not exist. The test is very simple and provide 

more accurate new approximate test statistic for testing 

in the multivariate Behrens–Fisher problem in high–

dimensional data. Based on the idea of keeping the 

information of 
i

S  as much as possible (Jiamwattanapong 

and Chongcharoen, 2015; 2017), the asymptotic null 

distribution of proposed testing statistic is presented in 

section 2. The performance of the proposed testing 

statistic along with three existing tests will be investigated 

through a simulation study in section 3. Applying the 

proposed test by using a real DNA microarray data will 

be demonstrated in section 4. Finally, some conclusions 

are given.  

A Proposed Test Statistic and Its Asymptotic 

Distribution 

In this section, we proposed a test statistics for testing 

hypothesis in (1) in high–dimensional data case, that is, 

when p > n1 + n2 – 2. Consider the population covariance 

matrix Σɶ  as:  

 

 Σɶ  =  
1 2

1 2

,

n n

+

Σ Σ

 (22) 

 

which can be write Σɶ  in blocks diagonal structures as: 

 

 Σɶ  =  

11 12 1

21 22 2

1 2

m

m

m m mm p p×

 
 
 
 
 
  

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

ɶ ɶ ɶ⋯

ɶ ɶ ɶ⋯

⋮ ⋮ ⋱ ⋮

ɶ ɶ ɶ⋯

 =  ( )klΣɶ  

 

where, 
kk

Σɶ  are qk × qk blocks matrices or submatrices on 

the diagonal of Σɶ  with k = 1,2,…,m, m ≤ p, and 
1

m

k

k

q p

=

=∑ ; 

m is the number of block on the diagonal of Σɶ  and         

qk × qk is called the “block size” of kth block. The 

population correlation matrix ℜ is defined as: 

 

 ℜ =  1 2 1 2− −

D ΣDɶ    (23) 

 

where, D is the matrix of the diagonal elements of Σɶ . 

We can write ℜ in blocks diagonal structures as: 

 

 ℜ =  

11 12 1

21 22 2

1 2

m

m

m m mm p p×

 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

ℜ ℜ ℜ

ℜ ℜ ℜ

ℜ ℜ ℜ

 =  ( )ijℜ  

where, ℜkk, k = 1,2,…,m, m ≤ p, are size qk × qk block 

matrices or submatrices on the diagonal of ℜ with 

1

.

m

k

k

q p

=

=∑  In order to obtain the asymptotic null 

distribution, we make an assumption on the population 

correlation matrix as , , 1,2,
i

p n i→∞ < ∞ = and ,

kl
→ 0ℜ   

k ≠ l, k, l = 1,2,…,m.   

From the assumption, the population covariance 

matrix Σɶ  will be partitioned as block matrix structures. 

Thus the proposed test statistic based on constructing the 

sample covariance matrix Sɶ  in (7) will be partitioned the 

same pattern as .Σɶ  To make it invertible, we made it as 

block diagonal matrix as: 

 

 
block

Sɶ  =  

11

22
,

mm p p×

 
 
 
 
 
  

S 0 0

0 S 0

0 0 S

ɶ ⋯

ɶ ⋯

⋮ ⋮ ⋱ ⋮

ɶ⋯

 (24) 

 

where, ,

kk
Sɶ  k = 1,2,…,m, m ≤ p, are size qk × qk block 

matrices or submatrices on the diagonal of Sɶ  with          

qk < n1 + n2 – 2  and 
1

.

m

k

k

q p

=

=∑  Since qk < n1 + n2 – 2, then 

,

kk
Sɶ  k = 1,2,…,m are all invertible. As a result, 

block
Sɶ  is 

also invertible and the inverse of 
block

Sɶ  can be obtained as: 

 

 1

block

−

Sɶ  =  

1

11

1

22

1

.

mm p p

−

−

−

×

 
 
 
 
 
  

S 0 0

0 S 0

0 0 S

ɶ ⋯

ɶ ⋯

⋮ ⋮ ⋱ ⋮

ɶ⋯

 (25) 

 

We substituted 1

block

−

Sɶ  in place of 1−
Sɶ  in 2

T  in (2) 

because 1−
Sɶ  does not exist for high–dimensional data. 

Let a statistic Tn as: 

 

 Tn =  ( ) ( )1

1 2 1 2
,

block

−′− −x x S x xɶ  (26) 

 

where, ,

i
x  i = 1,2 defined in (3) and 1

block

−

Sɶ  in (25). The 

following theorem gives the expectation and variance of 

the statistic Tn.  

 

Theorem 1 

Suppose xij, be a random vectors from ( ), ,

p i i
µ ΣN  i = 

1,2, j = 1,2,…,ni. Under assumption that the population 

correlation matrix as , , 1,2,
i

p n i→∞ < ∞ = and ,

kl
→ 0ℜ  

k ≠ l, k, l = 1,2,…,m. The expectation and variance of Tn 

in (26) are respectively:  
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 ( )
n

E T  =  
1

,
1

m

k k

k k k

v q

v q
=

− −

∑  1,
k k
q v< −  (27) 

 ( )nVar T  =  
( )

( ) ( )

2

2

1

2 1
,

1 3

m

k k k

k
k k k k

q v v

v q v q=

−

− − − −

∑ 3.
k k
q v< −  (28) 

 
Proof 

Partition the sample mean vectors 
i
x  and the sample 

covariance matrix Si, i = 1,2 in (3) and (4), corresponding to 

the block size as ,

block
Sɶ  i.e.: 

 

   

1

2

1

,

i

i

i

im p×

 
 
 =
 
 
 

x

x

x

x

⋮
     and:     

11 12 1

21 22 2

1 2

.

i i i m

i i i m

i

im im imm p p×

 
 
 =
 
 
 

S S S

S S S
S

S S S

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

 

where, 
ik
x  and Sikk, is of dimension qk × 1, qk × qk, 

respectively. qk ≤ n1 + n2 – 2, ∀k, k = 1,2,…,m, m ≤ p 

and 
1

m

k

k

q p

=

=∑ . So, we express Tn in (26) as: 

 

 Tn =  ( ) ( )1

1 2 1 2
,

block

−′− −x x S x xɶ  

  =  

1

11 21 11 2111

1

12 22 12 2222

1

1 2 1 2

1 1

,

m m m mmm

p pp p

−

−

−

× ××

′  − −   
    − −    
    
    

− −     

x x x xS 0 0

x x x x0 S 0

x x x x0 0 S

ɶ ⋯

ɶ ⋯

⋮ ⋮⋮ ⋮ ⋱ ⋮

ɶ⋯

 

  =  
1

,

m

k

k

Y

=

∑    where, ( ) ( )1

1 2 1 2
.

k k k kk k k
Y

−′= − −x x S x xɶ  

 

As the statistic Yk corresponding to 
2
T  in (2). By 

Krishnamoorthy and Yu (2004), it can also be converted 

to a statistic of the F–distribution with numerator 

degrees of freedom qk and the denominator degrees of 

freedom vk – qk +1 as: 

 

 
k

Y  ~  
, 1

,
1 k k k

k k
q v q

k k

v q
F

v q
− +

− +

 approximately, (29) 

 

where, vk is approximate degrees of freedom in (6) of kth 

block which can be obtained by: 

 

 vk =  

( ) ( )
( )

2

22
1 1

2

2

1

.

tr tr

1

k k

ikk kk ikk kk

i i i

q q

n n

− −

=

+

   +
   
−

∑
S S S Sɶ ɶ

 (30) 

 

We computed the expectation and variance of the 

statistics Yk by applying the first moment and the second 

central moment of  F–distribution with qk and vk – qk +1  

degrees of freedom, respectively. Thus, we obtained: 

 

 ( )kE Y  =  
, 1

,
1 k k k

k k
q v q k

k k

v q
E F v

v q
− +

 
 

− +  
 

  =  ,
1

k k

k k

v q

v q− −

 1,
k k
q v< −    

 ( )kVar Y  =  
, 1

,
1 k k k

k k
q v q k

k k

v q
Var F v

v q
− +

 
 

− +  
 

  =  
( )

( ) ( )

2

2

2 1
,

1 3

k k k

k k k k

q v v

v q v q

−

− − − −

 3.
k k
q v< −  

 

Thus, the expectation and variance of the statistics Tn, 

respectively, can be obtained as: 

 

 ( )nE T  =  
1

,
1

m

k k

k k k

v q

v q
=

− −

∑  1,
k k
q v< −   

 ( )nVar T  =  ( ) ( )
1

, ,

m m

k k l

k k l

Var Y Cov Y Y

= ≠

+∑ ∑  

 

Under uncorrelated assumption, Yk  and Yl are uncorrelated 

when k ≠ l, k,l = 1,2,…,m. Therefore, the covariance 

between Yk and Yl are zero or Cov(Yk, Yl) = 0. Thus: 

 

 ( )nVar T  =   
( )

( ) ( )

2

2

1

2 1
,

1 3

m

k k k

k
k k k k

q v v

v q v q=

−

− − − −

∑  3.
k k
q v< −  

 

The proof is completed. 

    

We proposed a test statistic for testing the hypothesis 

in (1) based on the statistic Tn as: 

 

 T  =  
( )

( ) ( )

1

2

2

1

1

2 1

1 3

m

k k

n

k k k

m

k k k

k k k k k

v q
T

v q

q v v

v q v q

=

=

−

− −

−

− − − −

∑

∑

 (31)  

 

Applying Lyapunov’s Central Limit Theorem, we 

obtained: 

 

 T  =  
( )

( )
( )0,1 .

n n d

n

T E T
N

Var T

−

→  

 

This statistic make us reject H0 in (1) at significance 

level α if the observed T ≥ z1–α where z1–α denote the 
upper 100(1–α)% point of the standard normal distribution. 

It is noted that the proposed test statistic T is invariant 

under scalar transformations and location shifts, 

,

ij ij
→ +x Dx c i =1,2, j = 1,2,…,ni, where D is nonsingular 

p × p diagonal matrice and c is a constant vector. 
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It is obvious that the vk is approximate degrees of 

freedom its corresponding to kth block with size qk × qk 
in the block diagonal matrix .

block
Sɶ  Furthermore, by 

nature of vk, we found that vk → min(n1 – 1,n2 – 1) when 

the difference between the sample covariance matrices 

S1kk and S2kk is large, on the other hand when the 

difference between the sample covariance matrices is 

slightly different, vk → n1 + n2 –2. However, it is clear 

that the approximate degrees of freedom vk in (30) lies 

in [min(n1 – 1,n2 – 1), n1 + n2 – 2] the same as the degrees 

of freedom v in (6). But if this condition qk ≤ vk – 6, ∀k, 
k = 1,2,…,m, is true, the proposed test statistics T will be 

convergence in distribution to standard normal distribution, 

because the third central moment of Yk is finite, For 

convenience and easy to use in practice, this condition 

may be changed to qk ≤ min(n1 – 1,n2 – 1) – 6. Since qk ≥ 
1, so the proposed test statistics T can be usable when 

the both sample size n1 and n2 must be greater than or 

equal to 8.  

One point of interest here is how large the block 

sizes in the block diagonal matrix .

block
Sɶ  Since 

theoretically the proposed test statistics T based on the 

solution to approximation distribution of 2
T  by 

Krishnamoorthy and Yu (2004), so it only requires 

block sizes as qk ≤ vk – 6, ∀k, k = 1,2,…,m, whereas 

they gives recommendations about their solution that 

this solution has the attained significance level are very 

close to the nominal level provided p ≤ min(n1 – 1,n2 – 1)/5 
in unequal sample size cases and this condition is 

somewhat relaxed to p ≤ n/4, in equal sample size cases 
(n1 = n2 = n). So, based on their suggestions and the 

idea of keeping more information from the sample 

covariance matrix Sɶ  as much as possible, we can give 

some guidance when there is no prior information to 

arrange variables from the sample covariance matrix Sɶ  

as the block diagonal matrix ,
block

Sɶ that the appropriate 

block sizes ones should keep maximum block size of  

qk = min(n1 – 1,n2 – 1)/5, ∀k, k = 1,2,…,m, when 

unequal sample size cases and qk = min(n1,n2)/4, ∀k, 
k = 1,2,…,m, when equal sample size cases, where 

“a” denotes the floor function of constant a. 

Simulation Study 

In this section, the performance of the proposed test 
statistic T was evaluated through a simulation study and 
also was compared with those of the three tests 
mentioned in section 1 as: TBS, TCQ and TSKK. We 
performed a Monte Carlo simulation by R program 
version 3.5.1. The two–sample dataset are generated 
from the p–dimensional multivariate normal distribution 
with the mean vector µi and the positive definite 
covariance matrix 

i
Σ  with size ni  for i = 1,2 by “MASS” 

package version 7.3–51.1.  

We set initial value of random–number seed as 31
2 1−  

and then repeatedly computed testing statistics of the 

proposed test along with three comparative tests and 

counted the number of rejection under the null hypothesis 

and the number of rejection under the alternative 

hypothesis 10,000 times in each of five–pair forms of 

population covariance matrices structures. In each of 

five–pair forms of population covariance matrices 

structures, the attained significance level ( )α̂  and the 

attained power �( )1 β−  respectively, are computed by: 

 

 α̂  =  0

10,000

thenumber of rejection under H
 (32) 

 

 �1 β−  =  1

10,000

thenumber of rejection under H
 (33) 

 

Parameter Set up 

For the null hypothesis, we set the mean vectors as 

1
µ  =  

2
µ  =  0   and we choose 

1
µ  =  0  and 

2
µ  =  

1 2 p
u u u

′  ⋯  where 
2 1

0,
k

u
−

=  ( )
2
~ 0.5,0.5 ,
iid

k
u U −  

1,2, , 2,k p= …  for the alternative, when U(a,b) denotes 

uniform distribution with the support (a,b). The five–pair 

forms of the population covariance matrices ( )1 2
, ,

j j
Σ Σ  

j = 1,2,…,5, were considered in three characteristics as: 

 

1. The diagonal matrix: 
11 21

,= =Σ K Σ Ψ   

2. The population covariance matrix with a common 
block size q × q as: 

2.1 1 2 1 2

12 0.2
=Σ K Kℜ  and 1 2 1 2

22 0.4
=Σ Ψ Ψℜ  when 

       correlation around 0.2±  and 0.4±  

2.2 1 2 1 2

13 0.6
=Σ K Kℜ  and  1 2 1 2

23 0.8
=Σ Ψ Ψℜ   when 

       correlation around 0.6±  and 0.8±   

2.3 1 2 1 2

14 0.9
=Σ K Kℜ  and 1 2 1 2

24 0.95
=Σ Ψ Ψℜ  when 

       correlation around 0.9±  and 0.95±  

3. The population covariance matrix with mixed block 

sizes, that is, 1 2 1 2

15 1
=Σ K Kℑ  and  1 2 1 2

25 2
=Σ Ψ Ψℑ  

 

where, K = diag(κ1,κ2,…,κp) is a p × p diagonal matrix 
with κi = 2 + (p – i + 1)/p; Ψ = diag(ψ1,ψ2,…,ψp) is also 

a  p × p diagonal matrix with ψi = 4 + (p – i + 1)/p, i = 

1,2,…,p and ℜt = diag(ℜt1,ℜt2,…,ℜtm) is a p × p block 

diagonal matrix where t = 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 and 

ℜtk = (rij), rii = 1, rij = (–1)
i+j
( )

0.1
i j

t
−

,i, j = 1,2,…,qk, i ≠ j 

when k = 1,2,…,m – 1 are of dimension q and the last 

blocks is qm, where p = q(m – 1) + qm. Lastly, ℑ1 and ℑ2 

are p × p block diagonal matrix where ℑ1 construct from 
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mixed of ℜ0.2k, ℜ0.6k, ℜ0.9k and ℑ2 construct from mixed 

of ℜ0.4k, ℜ0.8k and ℜ0.95k. Both of the block diagonal 

matrix ℑ1 and ℑ2 have different block sizes, various 

number of block size and these blocks are randomly 

located on the diagonal. The third characteristics of 

population covariance matrix was set up to be consistent 

with the natural of the data or observations. 

The simulations study was conducted on both equal 

and unequal sample size, totally 20 situations in each 

table. The proposed test statistic T along with 

comparative tests were computed for the common block 

size q = 1 when the forms of population covariance 

matrix are diagonal matrix (Table 1) and for the common 

block size q = min(n1,n2)/4 and q = min(n1 – 1,n2 – 1)/5 
when the forms of population covariance matrix are 

block diagonal matrix with equal and unequal sample 

size respectively (Table 2 to 4). Finally, the set of block 

sizes (q1,q2,…,qm) was set up for the block diagonal 

matrix ℑ1 and ℑ2 when the forms of population 

covariance matrix are block diagonal matrix with mixed 

block sizes with randomly located (Table 5). All of these 

works, we set up the nominal significance level as 0.05. 

 

Simulation Results  

From Table 1 to 5, we showed the attained significance 

level and the attained power of these four tests TBS, TCQ,

TSKK and T in totally 20 different situations set up as 

above. The attained significance level values which is 

closest to the nominal significance level 0.05 in each row 

in each table are shown in bold and also the last row of 

each table provides the Average Absolute Discrepancy 

(AAD) between the nominal significance level and the 

estimated attained significance over that 10 conditions 

computed by ˆ 0.05 10AAD α= −∑ (Yanagihara and Yuan, 

2005), a smaller AAD value indicates better overall 

performance of the other competing tests in 10 situations 

of maintaining the nominal significance level. 

For overall situations considered both equal and 

unequal sample size, it was shown that the proposed 

test T gave the attained significance level values close 

to the nominal level setting α = 0.05 consistently 

more than any other three tests considered with 

smallest average absolute discrepancy in all situations 

studied. It also gave the best the attained powers when 

the dimension is larger than or equal to 200 (p ≥ 200) 
in all cases considered.  

For three comparative tests TBS, TCQ and TSKK, they 

did not give consistently in the attained significance 

level values and most of those values are not close to the 

nominal level setting under conditions and situation 

considered. Thus, we will not consider these three 

comparative tests further.   

 

Table 1: Attained significance levels and attained powers when 
1 11
=Σ Σ  and 

2 21
=Σ Σ  at nominal significance level α = 0.05 

  Attained significance levels   Attained powers 

  ----------------------------------------------------------- ------------------------------------------------------------ 

p n1,n2 TBS TCQ TSKK T TBS TCQ TSKK T 

q = 1 

60 20,20 0.0584 0.0584 0.0878 0.0544 0.1829 0.1830 0.2298 0.1700 

100 20,20 0.0591 0.0591 0.0955 0.0562 0.2365 0.2365 0.3210 0.2274 

 40,40 0.0604 0.0603 0.0717 0.0591 0.5174 0.5173 0.5491 0.5109 

200 20,20 0.0538 0.0541 0.1087 0.0499 0.3243 0.3236 0.4525 0.3016 

 40,40 0.0548 0.0547 0.0748 0.0542 0.7173 0.7166 0.7549 0.7055 

 60,60 0.0549 0.0548 0.0665 0.0544 0.9348 0.9348 0.9430 0.9330 

400 20,20 0.0532 0.0533 0.1379 0.0500 0.4683 0.4686 0.6523 0.4392 

 40,40 0.0506 0.0507 0.0781 0.0490 0.9057 0.9055 0.9325 0.9002 

 60,60 0.0520 0.0522 0.0681 0.0523 0.9948 0.9948 0.9962 0.9941 

 80,80 0.0576 0.0575 0.0688 0.0586 0.9998 0.9998 1.0000 1.0000 

AAD  0.0055 0.0055 0.0358 0.0040 – – – – 

q = 1 

60 26,31 0.0563 0.0563 0.0686 0.0539 0.2625 0.2620 0.2857 0.2510 

100 26,31 0.0563 0.0558 0.0776 0.0555 0.3622 0.3616 0.4109 0.3515 

 36,46 0.0562 0.0564 0.0650 0.0550 0.5533 0.5537 0.5771 0.5448 

200 26,31 0.0579 0.0576 0.0875 0.0550 0.5077 0.5067 0.5776 0.4901 

 46,51 0.0548 0.0547 0.0682 0.0541 0.8383 0.8385 0.8557 0.8333 

 66,76 0.0548 0.0551 0.0619 0.0561 0.9778 0.9777 0.9801 0.9779 

400 26,31 0.0552 0.0556 0.1028 0.0549 0.7155 0.7153 0.8023 0.7000 

 46,51 0.0532 0.0530 0.0735 0.0515 0.9691 0.9691 0.9778 0.9677 

 66,76 0.0569 0.0570 0.0714 0.0568 0.9994 0.9994 0.9995 0.9994 

 86,106 0.0558 0.0556 0.0634 0.0575 1.0000 1.0000 1.0000 1.0000 

AAD  0.0057 0.0057 0.0240 0.0050 – – – – 
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Table 2: Attained significance levels and attained powers when 
1 12
=Σ Σ  and 

2 22
=Σ Σ  at nominal significance level α = 0.05 

  Attained significance levels  Attained powers 

  ---------------------------------------------------------- ------------------------------------------------------------- 

p n1,n2 TBS TCQ TSKK T TBS TCQ TSKK T 

q = min(n1,n2)/4 
60 20,20 0.0652 0.0646 0.0840 0.0586 0.1569 0.1565 0.1861 0.2052 

100 20,20 0.0621 0.0620 0.0875 0.0528 0.1895 0.1891 0.2499 0.2731 

 40,40 0.0640 0.0639 0.0653 0.0557 0.3626 0.3626 0.3648 0.6379 

200 20,20 0.0592 0.0590 0.0965 0.0485 0.2695 0.2698 0.3599 0.3545 

 40,40 0.0635 0.0635 0.0664 0.0541 0.5227 0.5226 0.5435 0.8216 

 60,60 0.0648 0.0649 0.0640 0.0551 0.7485 0.7483 0.7400 0.9778 

400 20,20 0.0559 0.0565 0.1158 0.0478 0.3778 0.3771 0.5236 0.5065 

 40,40 0.0580 0.0580 0.0703 0.0545 0.7450 0.7441 0.7771 0.9626 

 60,60 0.0608 0.0608 0.0640 0.0528 0.9331 0.9330 0.9363 0.9996 

 80,80 0.0589 0.0589 0.0586 0.0567 0.9898 0.9898 0.9889 1.0000 

AAD  0.0112 0.0112 0.0272 0.0044 – – – – 

q = min(n1 – 1,n2 – 1)/5 
60 26,31 0.0629 0.0629 0.0665 0.0557 0.2155 0.2163 0.2198 0.3160 

100 26,31 0.0640 0.0639 0.0735 0.0540 0.2920 0.2920 0.3195 0.4446 

 36,46 0.0581 0.0584 0.0610 0.0539 0.4243 0.4246 0.4305 0.6470 

200 26,31 0.0589 0.0589 0.0769 0.0553 0.4123 0.4116 0.4660 0.5770 

 46,51 0.0617 0.0617 0.0662 0.0557 0.6824 0.6826 0.6882 0.9294 

 66,76 0.0609 0.0610 0.0582 0.0559 0.8891 0.8893 0.8816 0.9956 

400 26,31 0.0588 0.0590 0.0906 0.0523 0.6123 0.6113 0.6909 0.8026 

 46,51 0.0624 0.0623 0.0706 0.0557 0.8885 0.8883 0.9013 0.9931 

 66,76 0.0598 0.0598 0.0624 0.0542 0.9877 0.9877 0.9881 1.0000 

 86,106 0.0609 0.0608 0.0587 0.0566 0.9996 0.9996 0.9996 1.0000 

AAD  0.0108 0.0109 0.0185 0.0049 – – – – 

 

Table 3: Attained significance levels and attained powers when 
1 13
=Σ Σ  and 

2 23
=Σ Σ  at nominal significance level  α = 0.05 

  Attained significance levels   Attained powers 

  ------------------------------------------------------------ ------------------------------------------------------------ 

p n1,n2 TBS TCQ TSKK T TBS TCQ TSKK T 

q = min(n1,n2)/4 
60 20,20 0.0710 0.0708 0.0687 0.0550 0.1205 0.1209 0.1129 0.5116 

100 20,20 0.0648 0.0646 0.0693 0.0497 0.1367 0.1365 0.1384 0.7118 

 40,40 0.0686 0.0689 0.0441 0.0600 0.1920 0.1927 0.1357 0.9914 

200 20,20 0.0635 0.0625 0.0736 0.0492 0.1748 0.1742 0.1936 0.8488 

 40,40 0.0674 0.0674 0.0516 0.0505 0.2529 0.2533 0.2040 0.9996 

 60,60 0.0695 0.0693 0.0424 0.0554 0.3282 0.3285 0.2358 1.0000 

400 20,20 0.0585 0.0582 0.0784 0.0469 0.2323 0.2319 0.2772 0.9739 

 40,40 0.0616 0.0615 0.0502 0.0516 0.3656 0.3652 0.3215 1.0000 

 60,60 0.0627 0.0628 0.0445 0.0562 0.4972 0.4967 0.4064 1.0000 

 80,80 0.0618 0.0617 0.0367 0.0519 0.6132 0.6132 0.4803 1.0000 

AAD  0.0149 0.0148 0.0124 0.0035 – – – – 

q = min(n1 – 1,n2 – 1)/5 
60 26,31 0.0672 0.0672 0.0564 0.0535 0.1436 0.1437 0.1204 0.7447 

100 26,31 0.0654 0.0654 0.0615 0.0565 0.1821 0.1816 0.1663 0.9202 

 36,46 0.0668 0.0670 0.0505 0.0580 0.2340 0.2332 0.1881 0.9903 

200 26,31 0.0625 0.0623 0.0613 0.0547 0.2499 0.2495 0.2471 0.9795 

 46,51 0.0672 0.0672 0.0516 0.0555 0.3460 0.3466 0.2933 1.0000 

 66,76 0.0642 0.0641 0.0433 0.0546 0.4625 0.4625 0.3574 1.0000 

400 26,31 0.0607 0.0607 0.0692 0.0506 0.3655 0.3654 0.3853 0.9997 

 46,51 0.0622 0.0621 0.0505 0.0529 0.5251 0.5244 0.4789 1.0000 

 66,76 0.0629 0.0629 0.0455 0.0551 0.6888 0.6887 0.6106 1.0000 

 86,106 0.0646 0.0645 0.0403 0.0560 0.8477 0.8479 0.7618 1.0000 

AAD  0.0144 0.0143 0.0072 0.0047 – – – – 
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Table 4: Attained significance levels and attained powers when 
1 14
=Σ Σ  and 

2 24
=Σ Σ  at nominal significance level α = 0.05 

  Attained significance levels  Attained powers 

  -------------------------------------------------------------- ------------------------------------------------------------- 

p n1,n2 TBS TCQ TSKK T TBS TCQ TSKK T 

q = min(n1,n2)/4 
60 20,20 0.0716 0.0714 0.0568 0.0563 0.1082 0.1076 0.0858 0.9998 

100 20,20 0.0646 0.0644 0.0593 0.0538 0.1197 0.1202 0.1046 1.0000 

 40,40 0.0682 0.0683 0.0325 0.0531 0.1558 0.1556 0.0812 1.0000 

200 20,20 0.0630 0.0630 0.0604 0.0497 0.1493 0.1494 0.1423 1.0000 

 40,40 0.0665 0.0663 0.0393 0.0520 0.1960 0.1960 0.1298 1.0000 

 60,60 0.0697 0.0697 0.0310 0.0547 0.2424 0.2425 0.1273 1.0000 

400 20,20 0.0589 0.0593 0.0671 0.0458 0.1882 0.1877 0.1961 1.0000 

 40,40 0.0619 0.0618 0.0416 0.0470 0.2709 0.2710 0.2003 1.0000 

 60,60 0.0626 0.0629 0.0326 0.0536 0.3525 0.3523 0.2287 1.0000 

 80,80 0.0603 0.0603 0.0248 0.0548 0.4245 0.4247 0.2431 1.0000 

AAD  0.0147 0.0147 0.0142 0.0036 – – – – 

q = min(n1 – 1,n2 – 1)/5 
60 26,31 0.0672 0.0672 0.0477 0.0539 0.1243 0.1241 0.0879 1.0000 

100 26,31 0.0671 0.0667 0.0511 0.0556 0.1488 0.1488 0.1180 1.0000 

 36,46 0.0672 0.0669 0.0398 0.0580 0.1849 0.1850 0.1258 1.0000 

200 26,31 0.0600 0.0599 0.0540 0.0546 0.2033 0.2027 0.1750 1.0000 

 46,51 0.0676 0.0674 0.0410 0.0558 0.2604 0.2600 0.1792 1.0000 

 66,76 0.0638 0.0637 0.0314 0.0571 0.3276 0.3276 0.1941 1.0000 

400 26,31 0.0605 0.0609 0.0584 0.0534 0.2888 0.2892 0.2724 1.0000 

 46,51 0.0615 0.0615 0.0421 0.0578 0.3877 0.3877 0.3012 1.0000 

 66,76 0.0649 0.0648 0.0350 0.0507 0.5010 0.5007 0.3669 1.0000 

 86,106 0.0640 0.0638 0.0276 0.0558 0.6306 0.6303 0.4466 1.0000 

AAD  0.0144 0.0143 0.0099 0.0053 – – – – 

 

Table 5: Attained significance levels and attained powers when 
1 15
=Σ Σ  and 

2 25
=Σ Σ  (different block sizes), at nominal 

significance level α = 0.05 

  Attained significance levels  Attained powers 

  ----------------------------------------------------------- ------------------------------------------------------------- 

p n1,n2 TBS TCQ TSKK T TBS TCQ TSKK T 

60 20,20 0.0697 0.0690 0.0653 0.0472 0.1246 0.1245 0.1181 0.8475 

100 20,20 0.0651 0.0654 0.0711 0.0505 0.1433 0.1433 0.1495 0.9967 

 40,40 0.0735 0.0738 0.0548 0.0509 0.2035 0.2027 0.1535 1.0000 

200 20,20 0.0617 0.0611 0.0743 0.0456 0.1801 0.1798 0.1992 0.9944 

 40,40 0.0684 0.0682 0.0515 0.0491 0.2696 0.2696 0.2202 1.0000 

 60,60 0.0714 0.0714 0.0453 0.0478 0.3568 0.3573 0.2641 1.0000 

400 20,20 0.0604 0.0609 0.0789 0.0469 0.2379 0.2372 0.2845 1.0000 

 40,40 0.0623 0.0623 0.0530 0.0467 0.3808 0.3811 0.3345 1.0000 

 60,60 0.0637 0.0636 0.0456 0.0507 0.5002 0.5003 0.4219 1.0000 

 80,80 0.0635 0.0633 0.0396 0.0500 0.6448 0.6448 0.5203 1.0000 

AAD  0.0160 0.0159 0.0118 0.0019 – – – – 

60 26,31 0.0667 0.0669 0.0580 0.0506 0.1546 0.1544 0.1334 0.9396 

100 26,31 0.0650 0.0645 0.0619 0.0533 0.1968 0.1962 0.1855 0.9957 

 36,46 0.0666 0.0663 0.0545 0.0539 0.2392 0.2392 0.2032 1.0000 

200 26,31 0.0597 0.0596 0.0628 0.0498 0.2612 0.2617 0.2677 1.0000 

 46,51 0.0655 0.0656 0.0519 0.0510 0.3803 0.3807 0.3344 1.0000 

 66,76 0.0647 0.0648 0.0445 0.0545 0.4832 0.4832 0.3828 1.0000 

400 26,31 0.0605 0.0601 0.0673 0.0486 0.3894 0.3888 0.4041 1.0000 

 46,51 0.0643 0.0643 0.0541 0.0525 0.5288 0.5289 0.4873 1.0000 

 66,76 0.0646 0.0645 0.0453 0.0498 0.7004 0.7006 0.6091 1.0000 

 86,106 0.0640 0.0639 0.0433 0.0552 0.8706 0.8706 0.7937 1.0000 

AAD  0.0142 0.0141 0.0077 0.0023 – – – –
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We recommended to use the proposed test T when 

the population covariance matrix are diagonal matrix 

with 200p ≥  and both 
1 2
, 40n n ≥  (shown in Table 1). 

When the population covariance matrices have block 

diagonal matrix structure, we recommended to use the 

proposed test T for 200p ≥  and both 
1 2
, 40n n ≥  as 

well (shown in Table 2–5). 

In addition, it is obvious that the attained powers the 

proposed test T when the dimension ( )p  increased for 

a given sample size or vice versa. It is still true when 

correlations among the variables in each sample are 

higher. 

A Real Data Example 

In this section, we applied the proposed test statistic 

using the prostate cancer data that collects data from 

DNA microarray technology. The data were retrieved 

on November 5, 2018 from “spls” package version 

2.2–2  in R program. This data contain 6,033 genes for 

102 subjects, 50 of which are non–tumor prostate and 

52 of which are prostate tumors (Dettling and 

Bühlmann, 2002). A selection of 1,000 genes (p) was 

used to test the mean vectors of two independent 

sample, non–tumor prostate and prostate tumors, so 

1
50n =  and 

2
52.n =  

Before computing the test statistics for mean 

vectors, the data were tested for the equality of 

covariance matrices, using the method presented by 

Chaipitak and Chongcharoen (2013), we obtain T
*
 = 

4.338 with corresponding p–value < 0.01 which leads 

to the rejection of the null hypothesis of the equality 

covariance matrices.  

To compute the proposed test statistic T, we determine 
common block size of the sample covariance matrix Sɶ  is 

( )min 50 1,52 1 5 9.q = − − =    Therefore, the first 111 

blocks have dimension 9 and the last block has 

dimension 1. The test results are shown in Table 6 which 

test statistic has p–values less than 0.001 leading to the 

rejection of the null hypothesis of no difference between 

the two mean vectors, i.e., the gene expression levels of 

non–tumor prostate are significantly different from those 

of prostate tumors at the 0.05 level of significance. The 

computing results appeared below. 

 
Table 6: Testing the equality of the gene expression level 

between non–tumor prostate and prostate tumors 

Test statistic T 

Test Statistic value 60.161 

p–value <0.001 

Computational Time 0.17 seconds 

Conclusion 

In this study, we developed and proposed a new 

approximate test statistic for testing the equality of mean 

vectors from two multivariate normal distributions when 

the covariance matrices are unknown and unequal in 

high–dimensional data. The main motivation of our 

proposed test is to avoid 1−
Sɶ , which is not exist, from 

2
T  test, we replaced the sample covariance matrix Sɶ  
with the block diagonal sample covariance matrix 

.

block
Sɶ  Under the null hypothesis, the asymptotic 

distribution of a proposed test statistic converges to a 

standard normal distribution when the dimension of data 

approach infinity, or p→∞ and the sample covariance 

matrices Sɶ  can be arranged to block diagonal matrix 

structure. Our proposed test are available when both 

sample sizes n1 and n2 are greater than or equal to 8, or 
min(n1,n2) ≥ 8. One interesting result of our proposed 

test that is invariant under scalar transformations and 

location shifts. Simulation results indicate that our 

proposed test performs the best and becomes more 

powerful when the dimension increases for a given 

sample size or vice versa or correlation among the 

variables in each sample are trend to higher.  
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