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Abstract: Cross-Validation is a model validation method widely used by 

the scientific community. The Generalized Cross-Validation (GCV) is an 

invariant version of the usual Cross-Validation method. This 

generalization was obtained using the non usual theory of circulant 

complex matrices. In this work we intend to give a clear and complete 

exposition concerning the linear algebra assumptions required by the 

theory. The aim was to make this text accessible to a wide audience of 

statisticians and non-statisticians who use the Cross-Validation method in 

their research activities. It is also intended to supply the absence of a basic 

reference on this topic in the literature. 
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Introduction 

A statistical model should, like almost every 

scientific procedure, have one eye on the past and two 

eyes on the future. Once a model has been fitted to a data 

set, certainly it explain well the past. However, it will 

also describe well the future? This statistical fact is 

denoted predictive capability of the model, being probably 

the most important feature of a statistical model. It can be 

describe as: let y' = (y1,...., yn) be a random vector with 

mean vector µ' = (µ1,...,µn). After a data vector y was 

observed, some adjustment technique is adopted and then 

a model is proposed and expressed in the form µ̂ = m (y), 

where m is a function of n n

→ℝ ℝ . The question is how 

can we assess the predictive capacity of m(y). If a new 

vector y
0
 is observed, how close to µ̂ = m(y) will this 

vector be? Such question does not cover the entire 

prediction problem because there is still the problem that 

the data vector used in the adjustment was the realization 

of a random vector. Then, it is necessary that the whole 

procedure to be randomized: 
 
(i) The data y are observed 

(ii) The estimative µ̂ = m(y) is obtained 

(iii) New data vector y
0
 of the same random 

phenomenon is observed 

(iv) The square of deviation ||y
0
-m(y)||

2
 is then 

calculated 
 

If this process is repeated several times, what is the 

mean of the sum of the squares of the deviations? It is 

necessary to formalize this procedure in terms of 

mathematical expectations. 

Since we have two random vectors y and y
0
, it is 

necessary for a proper definition of prediction error to take 

expectation in relation to each of these random vectors, 

that is, the double expectation E[E0[||y
0
-m(y)||

2
]] where 

E[⋅] is the expectation with respect to the vector y and 

E0[·] the expectation with respect to y
0
 (Efron (2004)). 

One of the most used ways to access the predictive 

capability of a model is Cross-Validation. In its 

simplest forms can be described by: A model is fitted 

without using one of the data values. With this model a 

predicted value is obtained. The square of the 

difference between the not used value and the predicted 

one is taken. This procedure is repeated for all data 

values and the mean of deviations is calculated, being 

the estimative of the prediction error. This makes the 

Cross-Validation process essentially a computational 

procedure. For linear regressions David M. Allen 

obtained a closed formula for this estimator, named 

Prediction Sum of Squares (PRESS) (Allen (1971); 

Allen (1974)). Golub et al. (1979) obtained a 

generalization of this formula for the case of GCV. 

To obtain these formulas it is necessary to use very 

complicated matrix identities. As in the original 

articles this isn’t done in details and what is more 

important, no one intuitive ideas are presented, in this 

article we will present in details all the linear algebra 

needed and try to give, using geometrical arguments, 

an intuitive approach. We hope that this could be 

interesting for the statistical and non statistical 
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audience that uses Cross-Validation in the linear 

regression problems. 

In section 2 is presented the theory of Cross-

Validation for linear regression problem. The PRESS 

statistics are deduced in details. It showed that the 

PRESS statistics is an almost unbiased estimator of 

prediction error. In section 3 the theory of circulant 

matrices is presented and applied to construct the 

GCV. This section is also showed that these statistics 

is almost unbiased. In section 4, some computational 

simulation is done to show that the GCV is a better 

estimator than PRESS. 

Cross-Validation in Linear Regression 

Let us consider the simplest situation. A set of data 

(yi, xi) i = 1,...,n, where yi is the response variable and x'i 

= (xi1,..., xip) a vector of explanatory variables is 

observed and a model m(y) is fitted. An estimator of the 

predictive capability of this model is obtained from the 

following construction: The model is fitted without the i-

th observation yi, that is, using the vector y(i) (y(i) is the 

vector y with observation yi omitted). Take the square of 

the difference between the fitted value ˆ
i
y  and the 

observed value yi. 

The mean ( )
2

1

1
ˆ

n

i i

i

y y
n

=

−∑ is an estimator of the 

predictive capability of the model, ( )
2

0

0
ˆE E y y  −

    
. 

Consider a linear regression model yn×1βn×p + εn×1. 

The ordinary least square estimator is given by β̂ = 

(X’X)
−1

X’y. We will make the regression when we 

delete the i-th sample unit, that is, we will not use yi 

and the i-th row x'i = (xi1,..., xip) of the matrix X. 

Denote by X(i) the matrix (n−1)× p, where the i-th row 

was deleted. In statistics this can express, for 

example, that one experimental unit was lost. With 

this we have a new linear regression y(i) = X(i) β + ε, 

where y(i), X(i) and ε have dimensions (n−1) ×1, (n−1) 

× p and (n−1) ×1, respectively. 

For this model, the least square estimator is: 

 

( )
1

( ) ( ) ( ) ( ) ( )
ˆ .
i i i i i

X X X yβ
−

′ ′=  

 

If we apply the matrix X on β̂ (i): 

 

1

( ) ( ) ( )
ˆ ˆ ˆ .
i i i ii

n

x

X xx

x

β β β

′ 
   
   
    ′= =′      
   
 ′ 

⋮⋮

⋮⋮

 

Therefore, 
( )
ˆ

i i
x β′  is the estimated value for the yi 

data value, 
( )
ˆ ˆ

i i i
x yβ′ =  ( )

2

ˆ
i i
y y−  = ( )

2

( )
ˆ

i i i
y x β′−  is the 

square of the difference between the value effectively 

observed yi and the estimated value ˆ
i
y . 

Now, we want to relate ( ) ( )i i
X X′ with X'X. 

Affirmation 1: ( ) ( )i i i i
X X x x X X′ ′ ′− = : 

 

1

2

1 2
, .

n p p n n

n

x

x
X X x x x

x

× ×

′ 
 
′  ′  = =   

 
′  

⋯
⋮

 

 

1

2

1 2
.

p n n p n

n

x

x
X X x x x

x

× ×

′ 
 
′ ′  =    

 
′  

⋯
⋮

 

 

Will be convenient change the notation of the matrix 

entries of X as: 

 

1

2

1 2
.

n p p p n

n

z

z
X z z z and X

z

× ×

′ 
 
′ ′ = =   

 
′  

⋯
⋮

 

 

1

2

1 2

1 1 1 2 1

1 2

.

p n n p p

n

p

p p p p

z

z
X X z z z

z

z z z z z z

z z z z z z

× ×

′ 
 
′ ′  =   

 
′  

′ ′ ′ 
 

=  
 ′ ′ ′ 

⋯
⋮

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

 

Therefore, the element in the row l and column k of 

p n n p
X X
× ×
′ is: 

 

1 1

,

s i

n n

l k sl sk sl sk il ik

s s

z z z z z z z z

≠

= =

 
 ′ = = +
 
 

∑ ∑  (3) 

 

where, 

1 1

2 2
.

l k

l k

l k

nl nk

z z

z z
z and z

z z

   
   
   = =
   
      
   

⋮ ⋮
 

Returning to the old notation for the entries of Xn×p, 

we have xm j = zm j. 
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The matrix 

1

2

1 2

i

i

i i i i in

in

x

x

x x x x x

x

 
 
 ′  =   
 
  

⋯
⋮

has in the 

position l-th row and k-th column: 
 

xil xik = zil zik. 
 

As: 
 

1

1

( )

1

0 ,

i

i

i

p

x

x

x i th row

x

x

−

+

′ 
 
 
′ 

 
= ← − 
 ′
 
 
 ′ 

⋮

⋮

 

 
we have that the value in the row l and column k of 

i i
X X x x′ ′− is: 

 

1 1

.

s i s i

n n

sl sk il ik sl sk

s s

z z z z z z

≠ ≠

= =

 
 + =
 
 
∑ ∑  (4) 

 

Therefore, the row i of X = 
1 2 p
z z z  ⋯  was 

suppressed and therefore we have the identity: 
 

( ) ( ).i i i i
X X x x X X′ ′ ′− =  (5) 

 

There is a well known formula for the inverse of this 

sum (Henderson and Searle (1981), Rencher and 

Schaalje (2008)): 
 

( ) ( )

( )
( ) ( )

( )

1 1

( ) ( )

1 1

1

1
.

1

i i i i

i i

i i

X X X X x x

X X x x X X
X X

x X X x

− −

− −

−

−

′ ′ ′= −

′ ′ ′
′= +

′ ′−

 

 

The number 1( )
i i
x X X x

−

′ ′ admits the following 

interpretation: ( )
1

H X X X X
−

′ ′= , the hat matrix, is an 

orthogonal projection from n

ℝ onto the image of 

application X (Im(X)). The element in the i-th row and i-

th column of this projection is: 
 

( )

( ) ( ) ( )

( )

1

1

1

.

ii i i

i i

i i

i i

h e He

e X X X X e

e X X X X e

x X X x

−

−

−

′=

′ ′ ′=

′ ′ ′=

′ ′=

  (6) 

 
We have: 

( )

( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )

( )

1

( ) ( ) ( ) ( )

1 1

1

( ) ( )

1 1
1 ( ) ( )

( ) ( )

1 1

( ) ( ) ( )

ˆ

ˆ

'

1

( )

1

1 1

i i

i i i

i i i i i i

i i

i i i i

ii

i i i i i

i i i i

ii

ii i ii i i i ii i i

y y

y x

y x X X X y

XX x x X X
y x XX X y

h

x XX x x XX X y
y x XX X y

h

h y h x XX X y h x XX X y

β

−

− −

−

− −

−

− −

−

′= −

′ ′ ′= −

 ′ ′
′ ′ ′= − + 

−  

′ ′ ′ ′ ′
′ ′ ′= − −

−

′ ′ ′ ′ ′ ′− − − −
=

( ) ( )

( )

1

( ) ( )

1

1
.

1

i

ii

ii i i i i

ii

h

h y x XX X y

h

−

−

′ ′ ′− −
=

−

 (7) 

 
But: 

 

( )
1

1

1

1

1 1

1

0 0 0

0

0

0

0

0 00

0

0 0 0

n

n i

i

n

n n i

n

i

n

X y x x y

x x x

y

y

y

y

x x x x y

y

y

x

y

′  =  

   = +   

    
    
    
    × +
    
    
    

   

   
   
   
      = +      
   
   

  

 
 
 
  +   


 

⋯

⋯ ⋯ ⋯ ⋯

⋮⋮

⋮⋮

⋮⋮

⋯ ⋯ ⋯ ⋯

⋮⋮

⋮

⋯ ⋯

⋮

( ) ( )

0

0 0

0

0 0 .

i i

i i i i

x y

X y y x

 
 
 
  +    

  
   

′= + + +

⋮

⋯ ⋯

⋮

 
 

Then, replacing this result in (7) we hav that: 
 

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( )

1

( ) ( )

1

1 1

1

1

1

1

1

1

(1 )

1

1

1

ˆ
,

1

ii i i i i

ii

ii i i i i

ii

ii i i i i i

ii

i ii i ii i i

ii

i i

ii

i i

ii

h y x X X X y

h

h y x X X X y y x

h

h y y x X X x x X X X y

h

y h y h y x X X X y

h

y x X X X y

h

y x

h

β

−

−

− −

−

−

′ ′ ′− −

−

′ ′ ′− − −

=
−

′ ′ ′ ′ ′− + −
=

−

′ ′ ′− + −
=

−

′ ′ ′−
=

−

′−
=

−

 (8) 
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where, ( )
1ˆ X X X yβ

−

′ ′=  is the ordinary least square 

estimator. 

The PRESS statistics is then defined by: 

 

( )
2

2

1 1

ˆ
ˆ .

1

n n

i i

i i

i i ii

y x
PRESS y y

h

β

= =

 ′−
= − =   − 
∑ ∑  (9) 

 

As ˆ ˆX yβ =  (y fitted, projection of y on Im(X)), the 

sum that defines the PRESS statistics can be written in 

terms of vector norm: 

 

( )( )
2

1

,PRESS B y X X X X y
−

′ ′= −  (10) 

 

where, B is the diagonal matrix, 
11

1

1

.

1

1
nn

h

B

h

 
 −
 

=  
 
 
 − 

⋱  

Therefore, the PRESS statistics is given by the 

quadratic form: 

 

( )

( )

( )

( )( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

2
1

2

2

2

( )

.

PRESS B y X X X X Y

B y Hy

B y H y

B I H y B I H y

y I H B B I H y

y I H BB I H y

y I H B I H y

−

′ ′= −

= −

= −

′
= − −

′′ ′= − −

′= − −

′= − −

 (11) 

 

Theorem 1 (Rencher and Schaalje (2008) 

If y have a normal distribution with mean µ and 

covariance matrix Σ and if A is a symmetric matrix of 

constants, then the mean and variance of a quadratic 

form y’Ay is respectively: 

 

[ ] ( )E y Ay tr A Aµ µ′ ′= Σ +  (12) 

 

and: 

 

[ ] ( )
2

var 2 4 .y Ay tr A A Aµ µ ′ ′Σ + Σ
 

 (13) 

 

The proof of Theorem 1 can be seen in Rencher and 

Shaalje (2008, p. 107-110). 

Thus, the mean of the PRESS statistic is: 

( ) ( )

( ) ( )

[ ]( ) ( ) ( ) [ ]

2

2

2
.

E y I H B I H y

tr I H B I H

E y I H B I H E y

′ − − 

 = − − 

′+ − −

 (14) 

 

As I−H is a orthogonal projection on the subspaces 

Im(X) and E [y] ∈ Im(X) the second term is null. Then: 

 

[ ] ( ) ( )

( )( )

( )

( )

2 2

2 2

22 2

2

2

1

2

1

1

1

1
.

1

n

ii

i
ii

n

i ii

E PRESS tr I H B I H

tr B I H I H

tr B I H

h

h

h

σ

σ

σ

σ

σ

=

=

 = − − 

 = − − 

 = −
 

−
=

−

=
−

∑

∑

 (15) 

 

The variance of PRESS statistics is: 

 

[ ] ( ) ( )( )
( ) ( ) ( )

( ) ( )

22 2

2 2 2

2 2 2 2

var 2

2

2 .

PRESS tr I H B I H

tr I H B I H B I H

tr B I H B I HB

σ

σ

σ

 = − −
 

 = − − − 

 = − − 

 (16) 

 

The matrix B
2 
is given by B

2
 = diag 

( )
2

1

1
ii
h

 
 
 − 

, i = 

1,...,n. Thus, B
2
 (I−H) = 

( )
2

1

1

ij

ii

h

h

 − 
 − 

, for i, j = 1,...,n and: 

 

( ) ( )
( ) ( )

2 2

2 2

1

11
.

1 1

n
sjis

s
ii ss

hh
B I H B I H

h h=

   −−   − − =
    − −   

∑  

 

Therefore, the variance of the PRESS statistic is: 

 

[ ] ( ) ( )

( )

( )

( )

( )

( )

( ) ( )

2 2 2

2

2 2

1 1

2

2

2 2

1 1

var 2

1 1
2

1 1

1
2 .

1 1

n n
is si

i s
ii ss

n n
is

i s
ii ss

PRESS tr B I H B I H

h h

h h

h

h h

σ

σ

σ

= =

= =

 = − − 

− −
=

− −

−
=

− −

∑∑

∑∑

 (17) 

 

Proposition 1 

The PRESS statistic is an almost unbiased estimator 

of the prediction error. 
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Proof: 

The prediction error of a multiple linear regression y 

= Xβ + ε is: 
 

( )

( )

( )

( )

( )

[ ]

( )

2
0

0

1

2
0

0

1

2
2

1

12 2

1

12 2

1

2 2

1

2 2

2

ˆ

ˆ

ˆ ˆvar

,

n

i i

i

n

i i

i

n

i i i

i

n

i i

i

n

i i

i

n

ii

i

E E y y

E E x y

x E x x

n x X X x

n e X X X Xe

n h

n tr H

n p

β

σ β β β

σ σ

σ σ

σ σ

σ σ

σ

=

=

=

−

=

−

=

=

  −
    

  ′= −    

    ′ ′ ′= + + −     

′ ′= +

′ ′ ′= +

= +

= +

= +

∑

∑

∑

∑

∑

∑

 (18) 

 
Allen (1971, p. 470). 

Using the Taylor approximation of first order, we 

have that 
1

1 .
1

ii

ii

h
h

≈ +

−

 Then: 

 

[ ]

( )

( )

[ ]

( )

2

1

2 2 3

2

1

2 2

2

1

1

1 ...

1

.

n

i ii

ii ii ii

n

ii

i

E PRESS
h

h h h

h

n tr H

n p

σ

σ

σ

σ σ

σ

=

=

=

−

= + + + +

≈ +

= +

= +

∑

∑  (19) 

 
Observe that PRESS overestimate the prediction error. 

Generalized Cross-Validation 

GCV is a rotation-invariant form of ordinary cross-

validation. Golub et al. (1979) generalize the construction 

of the PRESS statistics in such way that they obtained a 

statistic invariant by rotations. The idea is to take the 

deviations between linear combinations of estimated 

responses and the correspondent linear combinations of 

the observed values. For this generalization is necessary to 

use a especial type of matrix over complex numbers 

denoted circulants matrices. These matrices are not so 

much used and therefore we will develop its theory in 

details (Golub et al., 1979). 

Circulant Matrices 

This subsection is based in Kra and Simanca (2012). 

Let v’ = (v0, v0,..., vn−1) be a row vector with coordinates 

given by complex numbers. A circulant matrix defined 

by v is constructed such that its rows are obtained by 

clockwise rotations of the components of v: 

 

0 1 1

1 0 2

1 2 0

( ) .

n

n n

v v v

v v v
V circ v

v v v

−

− −

 
 
 = =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (20) 

 

Of particular importance are the circulant matrices 

obtained from the vector defined by the complex roots of 

unity. ε∈D is a n-th primitive complex root of the unity 

if ε
k
 ≠ 1, k = 1,2,...,n-1 and ε

n
 = 1, for example 

2
i

n
e

π

ε = . 

The great advantage of the circulant matrices is the fact 

that its eigenvalues and eingvectors are explicit given by: 

for a n-th primitive complex root of unity ε, if λl = v0 

+ε
l
v1 +ε

2l
 v2 +...+ε 

(n−1)l
 vn−1 then: 

 

0 1 1

1 0 2

( 1) ( 1)

1 2 0

1 1

.

n

l l

n n

l

n l n l

v v v

v v v

v v v

ε ε
λ

ε ε

−

− −

− −

     
     
     =
     
     
      

⋯

⋯

⋮ ⋮⋮ ⋮ ⋱ ⋮

⋯

 

 
The proof follows by inspection. For example for the 

second row we have: 
 

( )

0 2 ( 1)

1 0 1 2

2 ( 1)

0 1 2 1

2 3

0 1 2 1

...

...

... .

l l n l

n n

l

l

l l n l l

n

l l l

n

v v v v

v v v v

v v v v

ε ε ε ε

λ ε

ε ε ε ε

ε ε ε

−

− −

−

−

−

+ + + +

=

= + + + +

= + + + +

 

 

Observe that ε
nl
 = (ε

n
)
l 
= 1. If circ (n) is the set of all 

circulant matrices, circ (n) ={ }( ); n

circ v v∈ℂ then the 

algebraic properties of this set are given in the theorem 1. 

Theorem 1 
 
a) circ (n) is a commutative subalgebra of the n×n 

matrix algebra relative to the usual sum and matrix 

product 

b) Transpose and inverses of circulant matrices are also 

circulants 

c) All matrices in circ (n) are simultaneous 

diagonalized by the same matrix 
 

2

2

2 1

2 ( 2) ( 2)( 1)

1 ( 2)( 1) ( 2)

1 1 1 1

1

1
.

1

1

n n

n n n n

n n n n

C

n

ε ε ε

ε ε ε

ε ε ε

− −

− − − −

− − − −

 
 
 
 =
 
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯
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(the k-th column is obtained from the anterior column by 

multiplication following the rule: the i-th row element in 

the previous column is multiplied by ε
i−1
). The elements 

of the matrix C are given generically by 

( ), , 0,1,... , 1
ij

C c ij for i j nε= = = − . 

We will not present a demonstration of these 
properties. For this, see Kra and Simanca (2012). We 
point out only the observations: 
 
1. The matrix C is unitary, that is, CC* = C*C = I, 

where C* is the conjugate transpose of C. Indeed: 
 

( )* .
ij

U CC u= =  (21) 

 

( )

1 1

1 1
.

n n
is js i j s

ij

s s

u

n n

ε ε ε
− −

= =

= =∑ ∑  (22) 

 
If i ≠ j, ε

i−j
 is n-th complex root of unity then the 

sum ( )

1

n
i j s

s

ε
−

=

=∑ 0 and if i = j then uii = 1. 

2. If V = circ (v) then as C diagonalize all matrix in 
circ (n), we have: 

 
* ,

v
C VC D=  (23) 

 
where Dv is a diagonal matrix with elements 
λ0,λ1,...,λn−1. 

 
In the article Golub et al. (1979), the complex root of 

unity chosen was 
2

i

n
e

π

ε =  and the unitary matrix denoted 

2

1
j
k i

n
W e

n

π 
 
 

 
 =
 
 

, for j, k = 1,...,n. 

GCV Formula for Linear Regression 

Consider again the linear regression y = Xβ + ε. Let 
Xn×p = Un×nDn×pV'p×p the singular value decomposition 
of matrix X (we are supposing X with complete rank, 
n > p) (Golub and Reinsch (1970)). 

The singular value decomposition of the matrix 

Xn×p = Un×nDn×pV'p×p allows us to make a 

transformation in the data that simplify our linear 

regression (Fig. 1): 
 

1 1 1

1 1 1

1 1 1

n n p p n

n n n n n p p p n

n n n n n n n n n p p p n n n

y X

y U D V

U y U U D V U

β ε

β ε

β ε

× × × ×

× × × × × ×

× × × × × × × × ×

= +

′⇒ = +

′ ′ ′ ′⇒ = +

 

 

As the matrix U is orthogonal, 
n n n n n n

U U I
× × ×
′ = , we can 

consider the transformed data 
1 1n n n n

y U y
× × ×

′=ɶ . Then we 

can suppose that the new model on this new data is 

defined by the matrix 
n p n p p p

X D V
× × ×

′=ɶ : 

 

1 1 1
.

n n p p n
y X β ε
× × × ×
= +

ɶɶ  (24) 

 
The least square estimator for β of this new model 

is the same as in the original model. We also have a 

relation between the related projections. For this, 

consider H = X(X'X)
−1

X' and ( )
1

H X X X X
−

′ ′=ɶ ɶ ɶ ɶ ɶ : 

 

( )

( )

( )

( ) ( )

( )

1

1

1

1

1

.

H X X X X

UDV VDU UDV VDU

UDV VDDV VDU

UDV DV DV DV U

UX X X X U

UHU

−

−

−

−

−

′ ′=

′ ′ ′ ′=

′ ′ ′=

 ′ ′′ ′ ′ ′ ′=  
 

′ ′ ′=

′=

ɶ ɶ ɶ ɶ

ɶ

 (25) 

 
As the two projections are defined by conjugates 

matrices they have the same eigenvalues an eingenvectors 

are related. Indeed, if Hv = αv and w = U'v: 
 

.UHw UHU v Hv vα′= = =ɶ ɶ  (26) 
 

This imply that: 
 

.U UHw U v Hw U v Hw wα α α′ ′ ′= ⇒ = ⇒ =ɶ ɶ ɶ  (27) 
 

 
 

Fig. 1: The singular value decomposition of the matrix Xn×p 

Xn×p 

Dn×p Un×n y = Xβ β 

p
ℝ

 

p
ℝ

 

n
ℝ  

n
ℝ  

p p
V
×

′  
y X β=

ɶɶ  

n n
U
×

′  

n p
X
×

ɶ  
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Also follows that: 
 

( ) ( ) ( ) ( ).tr H tr UHU tr U UH tr H′ ′= = =ɶ ɶ ɶ  (28) 

 
Then we can suppose that the model is always in the 

simplest form: 
 

1 1 1n n p p p p n
y D V β ε
× × × × ×

′= +ɶ  (29) 

 

where, 
1 1n n n n

y U y
× × ×

′=ɶ  are the modified data. To simplify the 

notation we will use just y in place of yɶ  and X = DV'. 
The idea is to make this model a complex model by 

new change of the data by W: 
 

1 1 1
.

n n n n n n p p p p n
W y W D V β ε
× × × × × × ×

′= +  (30) 

 
What this means? Let us see a case with n = 3: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

1 1 1
1

1 cos 120 120 cos 240 240 .
3

1 cos 240 240 cos 120 120

y

isen isen y

isen isen y

  
  

+ +   
  + +   

 

 

The vector 

1

2

3

y

y y

y

 
 

=  
 
 

 is transformed on the vector with 

linear combinations: 
 

1 2 3

1 2 3 2 3

1 2 3 2 3

1 1 1 3 3
.

2 2 2 23

1 1 3 3

2 2 2 2

y y y

y y y i y y

y y y i y y

 
 

+ + 
 

  − − + −   
  

  
− − + − −   

   

 

 
In this way the observed values are transformed in 

many different linear combinations. The same occurs for 

the elements in matrix X = DV'. 
Finally we have the complex model: 

 

,y Xβ ε= +
ɶ  (31) 

 

where 
n p

X
×

ɶ is complex and 
n p

X
×

ɶ  = Wn×nDn×pV'p×p = 

Wn×nXn×p. From now to simplify notation we will drop 

the indexes for matrix dimensions. 

The great advantage of this complexification follows 

from: 
 

Theorem 2: *
XXɶ ɶ is a circulant matrix. 

Proof: 

Given any n× p matrix Xɶ , we may write Xɶ  = WDV' = 
WX. The matrix D is an n × p diagonal matrix whose entries 

are the square roots of the eigenvalues of X'X. The number 
of non-zero entries in D is equal to the rank of X. Then: 
 

( )
** * *

XX WDV WDV WDV VDW WDDW′ ′ ′ ′ ′= = =ɶ ɶ  (32) 

 
where: 

 

( )

( ) ( ) ( )

1

1

2

1

2

1

0

0 0 0
0

0 0
0 0 0

0 0

0

0

.
0

0 0

p

p

p n p

n p p n p n p

DD

λ

λ
λ

λ

λ

λ

× −

− × − × −

 
 
   
   

′ =    
   

  
 
  

 
 
 

=  
 
 
 

⋯

⋮ ⋱ ⋮
⋯ ⋯

⋯
⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯
⋯ ⋯

⋮ ⋮ ⋮

⋯

…

⋮ ⋱ ⋮

…

 

 

If DD' = ( )2 2 2 2

1 1
,..., , 0, , 0

p p n
diag λ λ λ λ

+
= =⋯ then WDD' 

= 
( )2

2
1

jk
i

n
k
e

n

π

λ
 
 
 
 

, with k = 1,...,n. 

In this way: 
 

( )
( ) ( )

( )

*

2 2

2

1

2

2

1

1

1
.

jk

js ksn i i
n n

s

s

s j kn
i

n
s

s

WDD W a

e e
n

e
n

π π

π

λ

λ

−

=

−

=

′ =

 
=   
 

 
=   
 

∑

∑

 (33) 

 
Thus: 

 

( )
( )( )

( )

2 1 1

2

1, 1

1

2

2

1

1

1

,

s j kn i
n

j k s

s

s j kn i
n

s

s

jk

a e

n

e

n

a

π

π

λ

λ

+ − +

+ +

=

−

=

=

=

=

∑

∑  (34) 

 

and, therefore, XX*
 is a circulant matrix. 

Theorem 3: ( )
1

* *
X X X X

−

ɶ ɶ ɶ ɶ is a circulant matrix. 

Proof: 
 

( ) ( )

( )

( )( )

1 1
* * * *

1
2 *

1
2 *

2 *

*
,

X X X X WDV VDW WDV VDW

WDV VD V VDW

WD V VD V V DW

WDD DW

WIW

− −

−

−

−

′ ′=

′ ′=

′ ′=

=

=

ɶ ɶ ɶ ɶ

ɶ

 (35) 
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where: 
 

( )

( ) ( ) ( )

0

.
0 0

p p p n p

n p p n p n p

I

I

× × −

− × − × −

 
 =
 
 

ɶ  

 
From the proof in previous theorem the result 

follows. As ( )
1

* *
X X X X

−

ɶ ɶ ɶ ɶ  is circulant its elements in the 

diagonal are constants, aii = a11. We now can apply the 

PRESS formula for the regression y Xβ ε= +
ɶɶ . We will 

denote this statistics as the GCV formula: 
 

( )( )
2

1
* *

,V B I X X X X y
−

= −
ɶ ɶ ɶ ɶ ɶ  (36) 

 
where: 
 

11 11

11

1 1
0 0

1 1

.

1 1
0 0

1 1
nn

a a

B

a a

   
   − −
   

= =   
   
   
   − −   

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 

 
Therefore: 

 

( )( )

( )( )
( )( )

2
2

1
* *

11

2
1

* *

2
1

* *

1

1

1
.

1

V I X X X X y
a

I X X X X y

tr I X X X X
n

−

−

−

 
= − 

− 

= −
 

−  

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

(37) 

 

Denoting ( )
1

* *
H X X X X

−

=
ɶ ɶ ɶ ɶ ɶ . In Golub et al. (1979) 

this matrix is denoted Ã. Then: 
 

( )

( )

2

2
.

1

I H y
V

tr I H
n

−
=
 

−  

ɶ ɶ

ɶ

 (38) 

 
Proposition 1: The GCV formula V is a weighted 

version of PRESS statistics. 

Proof: 
 

( )

( )

( )

( ) ( )

( )

1
* *

1
* *

1 *

1

*

1 *

*
.

H X X X X

WDV VDW WDV VDW

WDV VDDV VDW

WDV DV DV DV W

WX X X X W

WHW

−

−

−

−

−

=

′ ′=

′ ′=

 ′ ′′ ′ ′ ′=
  

′ ′=

=

ɶ ɶ ɶ ɶ ɶ

 

Thus, follows: 
 

( ) ( )

( )

( )

( )

( )

2 2
*

2
* *

2
*

2

2

.

I H y I WHW Wy

WW WHW Wy

W WH W Wy

W I H y

I H y

− = −

= −

= −

= −

= −

ɶ ɶ

 

 
Note also that: 

 

( )

*

* *

*

*
,

I H I WHW

WW WHW

WIW WHW

W I H W

− = −

= −

= −

= −

ɶ

 

 
and: 
 

( ) ( )( )

( )( )
( )

*

*

.

tr I H tr W I H W

tr I H W W

tr I H

− = −

= −

= −

ɶ

 

 
Thus: 

 

( )

( )( )

( )

( )( )

( )

( )( )

( )

( )( )

( )( )

( )

2

2

2

2

2

2

2

2

2

2

1

2

2

2

1

2

2

1

1

1

1

1

1

1

11

1
1

1
.

1
1

n

i

i

n

ii

i

i ii

n

ii

i ii i

I H y
V

tr I H
n

I H y

tr I H
n

I H y

n tr H
n

I H y

p

n

I H y
p

n

h
I H y

hp

n

I H y h

ph

n

=

=

=

−
=
 

−  

−
=
 

−  

−
=
 

−  

−
=

 
− 

 

= −
 

− 
 

 −
= − 

−   − 
 

 
 −  −

=   
−   −

 

∑

∑

∑

ɶ ɶ

ɶ

 (39) 

 
Proposition 2: The GCV statistic is an almost unbiased 
estimator of the prediction error. 
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Proof: 
 

[ ]
( )

( )

( )
( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

2

2

*

2

2
2

2

2

2

2

2

2 2

2 2

2 2

2 2

1

1

1

1

1

1

1

1

1

1

1

I H y
E GCV E

tr I H
n

E y I H I H y

tr I H
n

tr I H

tr I H
n

tr I H

tr I H
n

tr I H

tr I H
n

n
tr I H

n
n tr H

n
n p

n
p

n
n

σ

σ

σ

σ

σ

σ

σ

 
 −
 =
  

−    

 ′= − −
   

−  

 = −
  

−  

=  −  
 

−  

=  −  
 

−  

=
−

=
−

=
−

=


−

ɶ ɶ

ɶ

ɶ ɶɶ ɶ

ɶ

.


 
 

 (40) 

 
Using the Taylor approximation of first order, we have: 

 

[ ]

( )

2 2

2

2

2

2

2

1

1

1 ...

1

.

E GCV n
p

n
n

p p
n

n n

p
n

n

n p

σ

σ

σ

σ

=
 

− 
 

 
= + + + 

 

 
≈ + 

 

= +

 (41) 

 
Note that GCV also overestimate the prediction error. 

The variance of the GCV statistic is: 
 

[ ]

( )

( )

( )

( )

( )

2

4

4 2

3

4 2

3

4 2

3

3

2

3

2
var

1

1
2

1
2

1
2

1

1
2 .

1

GCV tr I H

tr I H
n

n
tr I H

n
n tr H

n
tr H

n
n

n
p

n

σ

σ

σ

σ

σ

= −
 

− 
 

=
 −  

=
 −  

=
 

− 
 

=
 

−  

 (42) 

Some Computational Results 

Both PRESS and GCV are estimators of the 

prediction error. How to choose between them? The one 

with less variance must be chosen. We wasn’t able to 

proof analytically that the variance of GCV is less than 

variance of PRESS. Then a computational simulation 

was done to evaluate of expectations and variances of the 

PRESS and GCV. 

This simulation study was based on the example 

conceived by Zou et al. (2006). The authors considered two 

variables, which they named “hidden factors”. They are: 
 

( ) ( )1 2
0,290 , 0,300 ,V N V N∼ ∼  

 

where ( )0,1Nε ∼ , with V1,V2 and ε independents. 

Thus, 6 variables were constructed from V1 and V2 as 
follows: 
 

( )

( )

1

2

, 0,1 , 1,2,3

, 0,1 , 4,5,6

i i i

i i i

X V N i

X V N i

ε ε

ε ε

= + ∼ =

= + ∼ =

 

 
where {εi} are independents, i = 1,...,6. 

With these variables we generated N = 1000 matrices of 
dimensions n ×6, with n equal to 10, 30, 50, 100 and 200. 
We considered the linear models y = Xβ +ε, ε ∼ N (0,1). 

Then, we calculated the bias for each statistics, given 
by: 
 

( ) ( )2 2

1

1
.

1

n

i ii

bias PRESS n p
h

σ σ

=

= − +

−
∑  (43) 

 

( ) ( )2 21
.

1

bias GCV n n p
p

n

σ σ= − +

−

 (44) 

 
The variances of PRESS and GCV are respectively: 

 

[ ] ( ) ( )2 2 2
var 2 .PRESS tr B I H B I H σ = − −   (45) 

 

( ) 2

3

1
var 2 .

1

GCV n
p

n

σ=
 

− 
 

 (46) 

 
In the Table 1 presents the means of bias and 

statistical variance in the N = 1000 simulations, 
considering all values of n. 

It can be seen in Table 1 that the bias of the GCV 
statistic was always lower than the bias of the PRESS 
statistic for all sample sizes adopted. However, as the 
sample size was increased, it was found that both 
statistics tend to have less bias. This result corroborates 
the theoretical results presented in the present work, that 
these statistics are almost unbiased. It can also be 
observed that for each model, the variance of GCV was 
smaller than the variance of PRESS. 
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Table 1: Prediction Error (PE), bias and variances from Prediction Sum of Squares (PRESS) and Generalized Cross-Validation 
(GCV) statistics considering N = 1000 simulations for 10, 30, 50 100 and 200 observations. 

                                                      PRESS                                                                        GCV 
  -------------------------------------------- ------------------------------------------- 

n PE Bias Variance Bias Variance 

10 16 27,21 11212,84 9,00 312,50 

30 36 2,18 128,80 1,50 117,19 

50 56 1,14 151,50 0,82 146,74 

100 106 0,52 242,62 0,38 240,79 

200 206 0,25 439,08 0,19 438,27 

 

Conclusion 

The linear algebra theory developed in this article, 

necessary for the development of the GCV formula for 

linear models, although not very simple, is accessible to 

an audience of non-specialists who use cross-validation 

techniques. This article intends to fill a gap as an 

accessible reference to the subject. That PRESS and 

GCV statistics are almost unbiased statistics of 

prediction error maybe are new results. 
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