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Abstract: In the present work, we investigate the sensitivity of the 

dynamic Theil index computed under a Markov reward model with respect 

to structured perturbations affecting the underlying Markov process. The 

model is applied to the sovereign credit spread evolution as a proxy for 

financial risk, which are driven by the sovereign credit rating dynamic. The 

introduction of such perturbations allows to evaluate the sensitivity of the 

inequality of the financial risk in a given group of financial entities with 

respect to the uncertainty in the rating dynamics. To this end we perform a 

simulation based sensitivity analysis. The methodology is applied to real 

data concerning sovereign credit ratings and long-term interest rates on 

government bonds of 24 European countries. Obtained results suggest 

different sensitivity of the inequality measure to the 12 scenarios built 

supposing different ways the perturbations could affect the rating process. 
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Introduction 

Sovereign credit risk has become of main interest 
during the last decades due to the occurrence of events 
such as economic and financial crisis which have affected 
the sovereign default probability. The implication of a 
country’s default and generally, of an increase of the 
sovereign credit risk is of crucial importance concerning 
both its effects on the domestic economy but also on the 
neighborhood economies. We have focused our attention 
on the financial risk in European Union by applying 
dynamic measure of inequality to evaluate how the 
financial risk is distributed among countries and to assess 
its behavior over time (D’Amico et al., 2018a; 2018b; 
2019). The financial risk of a country refers to the ability 
to cope with its financial commitments and it is expressed 
by the amount of credit spread that the country has to pay 
on its debt. The inequality measure gives us information 
about the degree of dispersion of this risk among the 
countries. Thus, it can be interpreted as a measure of risk 
when related to a group of countries or generally, of 
financial entities. More specifically, we assume that the 
evolution of the credit spreads is influenced by the credit 
ratings, which evolve according to a Continuous-Time 
Markov Chain (CTMC). In the present work, we are 
interested in gaining more insight on the influence played 
by rating dynamics on the evolution of the inequality 

process and on the sensitivity of the measure of financial 
risk when estimation errors occur. Thus, starting from our 
previous work, (D’Amico et al., 2018b), a sensitivity 
analysis is carried out by adding a perturbation to the 
generator of the CTMC, in such a way to be able to depict 
the possible evolution of the inequality considering the 
uncertainty in the specification of the generator of the 
Markov process. The introduction of a perturbation for 
Markov process has been studied in several works. The 
sensitivity of steady state solution of Markov chain has 
been investigated, among others, in (Schweitzer, 1968) 
and successively a study of the sensitivity bounds for 
stationary distribution of Markov chain has been presented 
in (Haviv and Van der Heyden, 1984). Ramesh and 
Trivedi (1993) the authors derive measure of sensitivity 
and its bounds for transient solutions under structured and 
unstructured perturbations for CTMC. The study of the 
effect of perturbations for a discrete-time Markov reward 
process on the total expected reward has, instead, been 
performed in (Yu et al., 2009). Do Van et al. (2010) a 
structured perturbation for Markov reliability models has 
been proposed for application of decision-making. 
Although Markov processes have been widely applied in 
financial literature (see among others, (Doubleday and 
Esunge, 2011; Thyagarajan and Saiful, 2005; Trueck and 
Rachev, 2009)), the Markovian property has been 
criticized in several works, especially related to credit 
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rating dynamics. Firstly, Carty and Fons (1994) showed 
that rating life span is described by Weibull distribution. 
Successively, the use of semi-Markov chains as a more 
suitable model to describe rating dynamics has been 
proposed by (D’Amico et al., 2006; 2017). However, in 
our application, we cannot apply semi-Markov processes 
because of the sparsity of the sovereign rating data. We 
instead rely on the continuous time homogeneous Markov 
chain to model the rating dynamics. The advantages of 
working within a continuous-time framework are well 
known and documented in literature (Christensen et al., 
2004; Lando and Skødeberg, 2002; Jarrow et al., 1997) 
and for the financial problem we posed (D’Amico et al., 
2018b). Applications of information theory for economic 
and financial problems have been advanced in   
(D’Amico and Regnault, 2018) where the authors 
proposed a dynamic extension of common poverty 
indices. D’Amico et al. (2012) a dynamic measurement of 
income inequality based on the Theil index has been 
studied. Successively a decomposition of this measure has 
been advanced in (D’Amico et al., 2014). The measure of 
inequality we apply in order to evaluate the financial risk 
is based on the last two contributions. To the best of our 
knowledge, a sensitivity analysis of the dynamic 
inequality with respect to the uncertainty in the rating 
dynamics has never been faced. Following (Ramesh and 
Trivedi, 1993), we introduce a structured perturbation and 
we perform several simulations by varying the 
perturbation parameters and the way they affect the 
generator of the CTMC. This is done to analyze the 
differences on the measure of inequality assessed in the 
nominal and the perturbed model (i.e., that one without 
perturbation and that one with the introduction of a 
perturbation, respectively). The methodology is applied to 
real data concerning sovereign credit rating data from 
Standard & Poor’s (S&P) and interest rates of long-term 
government bonds for 24 European countries. Regarding 
the values of the perturbations, they are generated 
according to Normal distributions and from multivariate 
Normal distributions to include dependence of 
perturbations among rating classes. This is done by 
supposing three cases where the perturbation affects all 
off-diagonal intensities, the downgrade intensities and the 
upgrade intensities of the generator matrix, respectively. 
The simulations highlight the importance of including the 
dependence among rating classes while introducing a 
perturbation parameter as the results are sensitive to 
variations in the covariance values. Furthermore, the 
results suggest also different sensitivity of the inequality 
measure when perturbations affect differently the exit 
rates of the generator, as there are differences in the three 
cases exposed above. The paper is organized as follows: 
Section 1 gives an overview of the data collected while 
section 2 describes the model. In Section 3 we introduce 
the dynamic entropy under the nominal model and the 
measure for the sensitivity with respect to structured 
perturbations. The fourth Section describes the way the 

simulations are carried out and the results of these 
simulations by building 12 scenarios where the 
perturbations differently affect the rating dynamics. 
Finally in the last Section, concluding remarks are given. 

Data 

Our objective is to provide a model able to measure 

the financial inequality in a set of countries and the role 

that some perturbations could play in the variation of this 

measure. To this end, we focused on European countries 

and we collected data on two main variables: The 

sovereign credit ratings and the credit spreads. Sovereign 

credit rating is an ordinal measure of the country’s credit 

risk. It expresses the ability of a country to face its 

financial commitments. Sovereign credit spreads are the 

difference between interest rates of various countries and 

they represent a proxy for the financial risk related to a 

specific country. The sovereign credit ratings assigned to 

the European countries by Standard and Poor’s have 

been collected from November 23, 1998 to June 26, 

2018 on a daily scale, from the Tradingeconomics 

website. In this way, the resulting dataset describes the 

evolution of the creditworthiness (expressed by the 

rating) of the European countries over the last two 

decades. The rating agencies have established letters 

system to describe the creditworthiness of the issuers, 

which is composed by a large number of rankings. As 

usually done in the literature, we group all these rankings 

into eight rating classes: AAA, AA, A, BBB, BB, B, C, 

D where C = {CCC,CC,C}, that we will denotes as 

1,2,…,8 for seek of simplicity. Rating class AAA = 1 

denotes that the issuer has the capability to easily face 

with its financial commitments, whereas lower credit 

ratings (i.e., from 2 to 7) denote that the issuer is 

gradually less able to cope with its commitments. The 

last class indicates both Selected Default and Default. 

Commonly the first four rating class (AAA, AA, A, 

BBB) are known as Investment-grade rating classes 

while the others (BB-B-C-D) as speculative-grade rating 

classes. The former are assigned to issuers with 

relatively low to moderate default risk. The latter are 

instead assigned to obligors with an higher default risk 

until the event of default. During the observed period 

only 5 countries experienced a downgrade to a 

speculative rating class (Bulgaria, Croatia, Greece, 

Portugal and Romania). Most of them were assigned 

starting from 2012. Figure 1 shows the observed rating 

trajectories for Greece, Italy, Hungary and Portugal over 

the period ranging between November 1998 and June 

2018 (the time-line is shown in the horizontal axis, while 

the vertical axis represents the rating class). While Italian 

rank gradually deteriorates (from AA to BBB) with two 

downgrades, Hungary and Portugal experienced a 

different assignment with 4 transitions. The first one 

initially ameliorates its creditworthiness (from BBB to 
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A), during the financial crisis it came back to rating 

BBB until it deteriorated to a speculative rating class 

(BB) up to the 2016 when there was an upgrade to rank 

BBB. On the contrary, the Portugal assignment has 

been stable (AA) until the financial crisis. After that 

period, Portugal experienced a quite rapid deterioration 

up to rating BB. Finally, Greece has had 11 transitions, 

most of them concentrated around the 2012 when 

Selected Default has been assigned to Greece two 

times. The second variable collected is the credit 

spread, which is given by the difference between the 

interest rate and a benchmark. In our case, the 

benchmark is the minimum value among the interest 

rates paid by all European countries. The reason is that 

there are some countries experiencing lower interest 

rates than Germany. Therefore, the long-term interest 

rate of sovereign government bonds with 10 year 

maturity are collected from the investing.com web-site, 

on a daily scale. The data are available for all countries 

starting from April, 26, 2010.  
 

 
 

Fig. 1: Rating assignments for Greece, Italy; Hungary and Portugal 

 

 
 

Fig. 2: Credit spreads (%) paid by Greece, Italy; Hungary and Portugal 
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Thus, the observation period ranges between this date 

and June 26, 2018. Figure 2 illustrates the credit spread 

paid by Greece, Italy, Hungary and Portugal over the 

observed period. The credit spread is in percentage value 

(in the vertical axis). The countries’ payments shows 

almost a similar trend with two peaks between 2012 and 

2013 which are more pronounced for the first two 

countries (except for Portugal for whom there is only 

one peak). However, the spread values are different: 

Greece has paid the highest credit spread reaching 38%, 

followed by Portugal, Hungary and Italy. In particular, 

Greece has paid the highest spread of all sample and the 

other countries’ payments have shown similar trend to 

those of Hungary and Italy. After the 2013 the spreads 

shown a decreasing trend except for Greece which has 

registered an other increase around the 2016. 

As not all data were available for all European 

countries the sample is composed by 24 members: 

Belgium, Bulgaria, Czech Republic, Germany, 

Denmark, Ireland, Greece, Spain, France, Croatia, 

Italy, Lithuania, Hungary, Malta, Netherlands, 

Austria, Poland, Portugal, Romania, Slovenia, 

Slovakia, Finland, Sweden, United Kingdom. 

The Model 

The model we are going to present in this section is 

in line with that considered in (D’Amico and Regnault, 

2018) related to a different problem. 

Let C be a group of N countries joining the Euro area. 

Each country c∈C is ranked by the rating agencies about 

its capability to face with financial commitments. The 

rating assignment of country c at time t is denoted by 

x
c
(t). The evaluation process carried out by the rating 

agencies depends on the financial, political and 

economic conditions experienced by the countries. Due 

to the uncertainty of these conditions, the rating 

variable can be considered as a realization of a 

stochastic process ( ) ( ){ },

c c

X t X t t
+

= ∈ℝ . X
c
(t) takes 

values in the finite state space E = {1,…,k}, with k 

being the number of rating classes. At the same time, 

each country has to pay a given amount of credit spread 

on its financial obligations. The credit spread r
c
(t) is 

defined as the difference between the interest rate due 

by country c at time t and the minimum value of 

interest rates paid in C at time t, i.e.: 

 

( ) ( ) ( ){ }: min .
c c d

d C

r t i t i t
∈

= −  

 

In particular, the evolution of the credit spreads 

depends on the rating dynamics. Therefore, the spread is 

a realization of the stochastic process 

( ) ( ){ },

c c

R t R t t
+

= ∈ℝ . To build the model, the following 

assumptions are advanced: 

Assumption 1 

The Stochastic Processes X
c
(t) are Independent and 

Identically Distributed (i.i.d.). We will Denote by X(t) 

the Process Drawn from their Common Distributions. 

Assumption 1 is justified by the need to build a 

simple and flexible model for estimation purposes. 

Moreover, due to the sparsity of data, the estimation 

of a correlation structure between countries may be a 

difficult task. 

Assumption 2 

The Stochastic Process X(t) is a Continuous-Time 

Homogeneous Markov Chain. 

It follows that s t
+

∀ < ∈ℝ : 

 

( ) ( )( ) ( )( )
( ) ( )( ) ( )

| ,

| .
ij

X t j X h h s X s i

X t j X s i p t s

σ= ≤ =

= = = = −

P

P

 

 

Let us denote by A = {aij}i,j∈E the infinitesimal 

generator matrix whose elements aij ≥ 0, for i ≠ j 

represent the transition intensities from state i to state j 

and 
1,

k

ii ijj i j
a a

= ≠

= −∑ . The transition probability function 

P(t) = {pij(t)} satisfies the Kolmogorov’s Backward 

Equations: 

 

( ) ( ).
d
P t AP t

dt
=  

 

For the backward equations, we have the boundary 

initial condition P(0) = I. The solution of this initial 

value problem is given by: 

 

( )
( )

0

: .
!

n

tA

n

tA
P t e

n

∞

=

= =∑  

 

A complete treatment of Markov processes can be 

found in (Bremaud, 1981). Assumption 2 means that 

the future evolution of the process describing 

sovereign credit ratings is conditionally independent 

from the past, given the current state visited by the 

process (Markovian property) and that the transition 

intensities are constant over time. This assumption is 

supported by existent literature on credit risk models 

suggesting the use of Markov processes to describe 

rating dynamics (Trueck and Rachev, 2009). 

Furthermore, the continuous-time framework has a lot 

of advantages including the ability of capturing all 

transitions, including rare events; the capability to fit 

better with models that estimate yield curves 

(Christensen et al., 2004; Lando and Skødeberg, 2002; 

Jarrow et al., 1997). 
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Assumption 3 

The Process R
c
(t) Depends Exclusively on the Rating 

Dynamics. It does not Depend on the Previous Payment, 

nor on the time t, i.e. ∀c, ∀x∈E, t
+

∀ ∈R : 

 

( ) ( ) ( ) ( )( )

( ) ( )( )

| , ,

| ,

c c

t

c c

R t a X R X t x

R t a X t x

σ σ
∞ −

≤ =

≤ =

P

P

 

 

where, σ
∞
(X) is the sigma-algebra generated by the 

rating process over the time interval [0, +∞] and σt−(R) is 

the sigma-algebra generated by the past payments of 

country c. 

In assumption 3, the distribution of the credit spread 

paid by country c at any given time t, conditional on the 

rating class occupied at the same time, is independent 

both on its previous payments and on the rating class 

occupied by other countries. This probability distribution 

is the same for all countries and times. As a consequence 

the probability distribution of the credit spread paid by 

each country (R
c
(t)) is a mixture of the possible 

allocation experienced by the country corresponding to 

the rating classes. More specifically: 

 

( )
( ){ }

1

1 ,
c

kd
c

xX t x
x

R t R
=

=

=∑  

 

where, 1{A} is the indicator function of the event A, while 
d

I J= means that the two random variables I and J have 

the same distribution. The random variables Rx, x∈E are 

independently drawn from the distributions Fx: 

 

( ) ( ) ( )( )| .
c c

x x
F R a R t a X t x= ≤ = ≤ =P P  

 

Assumption 3 arises from the recognition about the 

influence of the rating dynamics on the credit spread 

evolution, which has been already pointed out in other 

works focusing on corporate bonds (Huang and 

Huang, 2012; D’Amico et al., 2011). This influence 

has been introduced in the model by the assumption of 

a common spread distribution for countries with the 

same rating assignment. 

Assumption 4 

There exist a vector of perturbations S = (λ1,…λk) 

affecting the exit rates from each state of the Markov 

process, such that the matrix ( ) ( )( )ij
A a

λ λ
=  given: 

 
( )

( ) ( )

1,

, , , ,

,

ij ij i

k

ij ij

j i j

a a i j i j E

a a

λ

λ λ

λ

= ≠

= + ≠ ∈

= − ∑
 

is a generator. 

The structured perturbations of Assumption 4 ensures 

the perturbed generator to be a transition rate matrix of a 

Markov process. The introduction of such perturbations 

is justified by the need to understand how the measure of 

inequality reacts to estimation errors and generally to 

some perturbations on the rating dynamics. 

The Dynamic Theil Entropy 

In this section we review shortly the dynamic Theil 

entropy as applied to assess the inequality of the 

financial risk distribution. 

The inequality measure we used, has been based on 

the Theil index (Theil, 1967), which is computed as 

follows. Given the probability distribution built on the 

share of risk (credit spread) of each country c, i.e.: 

 

( ) ( ) ( ){ }1
,..., ,

N
p t p t p t=  

 

with: 

 

( )
( )

( )
1

,

c

c

N i

i

r t
p t

r t
=

=

∑
 (1) 

 

the Theil index, in its deterministic formalization, is 

given by: 

 

( )( ) ( ) ( )( )

( ) ( )( ) ( )( )
1

log

log : | ,
N

i i

i

T p t N S p t

p t Np t p t u
=

= −

= =∑ K

 (2) 

 

where, S(p(t)) = ( ) ( )log
N i i

i
p t p t−∑ is the Shannon 

entropy (for further information, Shannon, 1948). T(p(t)) 

coincides with the Kullback-Leibler divergence between 

the actual probability distribution p(t) and the uniform 

one. It measures the degree of dispersion/concentration 

of the financial risk in the group of European countries, 

ranging between values equal to 0 and log(N). The first 

value is reached when there is a perfect equal 

distribution of payments among countries, i.e., p
c
(t) = 

1/N ∀ c∀ ∈C . The latter one is reached in the opposite 

situation when one country pays the total spread of the 

group, i.e., p = {0,…,1,…0} for some c. 

Under Assumptions 1-3 the inequality measure is a 

stochastic processes as it depends on the credit spreads 

which, in turns, are driven by the rating process. In this 

way, the inequality measure becomes a stochastic process 

too. A generalization for stochastic processes has been 

proposed in (D’Amico et al., 2012) and a decomposition 

has been successively advanced by (D’Amico et al., 

2014). In the latter work, indeed, the authors derived a 

formula to assess the dynamic entropy by decomposing 
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it into inter-group entropy and intra-group entropy. In 

the present work we apply the decomposed formula in 

a simplified scheme where the spreads paid by any 

country coincide with the average payment in each 

class. In this way, the only source of randomness is in 

the credit rating process that in turn generates credit 

spread payments. Therefore, we have to allocate the 

countries in k groups, i.e., the rating classes {1,…,k}. 

Further, let denote by: 

 

( ) ( ) ( ) ( ){ }1 2
, ,...,

k
n t n t n t n t=  

 

the multivariate counting process, with ni(t) being the 

number of countries allocated in rating class i and by: 

 

( ) ( ) ( ){ }1
,..., ,

k
sh t sh t sh t=  

 

the probability distribution built on the share of credit 

spread paid by the rating classes, with: 

 

( )
( )

( )
1

,
i i

i k

j jj

r n t
sh t

r n t
=

⋅
=

⋅∑
 

 

where, ri is the mean credit spread paid by class i. It 

should be noted that ri is supposed to be constant over 

time and for each rating class. The dynamic inequality is 

then computed according to Equation 3: 

 

( )( ) ( ) ( )

( ) ( )( )

( )

1

1

1

;

log

log .

k

i i i

i

k

i i

i

k

i

i i

DT p t sh t TE r n

sh t k sh t

N
sh t

k n

=

=

=

= ⋅

+ ⋅ ⋅

+ ⋅

⋅

∑

∑

∑

 (3) 

 
The first term consists of the intra-group inequality 

measure which results in a weighted average of the 

inequality computed within each rating class i TE 

(ri;ni) and the share of risk of each class. In the 

present work, since all countries belonging to the 

same rating class i pay the same credit spread ri, the 

intra-group inequality is equal to zero. Accordingly, 

the dynamic inequality becomes: 
 

( )( ) ( ) ( )( )

( )

1

1

log

log .

k

i i

i

k

i

i i

DT p t sh t k sh t

N
sh t

k n

=

=

= ⋅

+ ⋅
⋅

∑

∑

 

 

The inter-group inequality is composed by the last two 

addenda of Equation (3). The second is the inequality 

measure assessed on the rating classes’ share of risk and 

the last one summarizes the divergence of the actual 

distribution with respect to the case of a uniform 

allocation of countries in the k rating classes (for further 

details about the interpretation of this measure 

(D’Amico et al., 2014; 2018a)). The process is better 

summarized by means of its first order moment, which 

according to (D’Amico et al., 2014) is given by: 

 

( )( )

( ) ( )( )
1 . . 1

1

!
,

!

h

kk
n

hk
i n p c hhh

DT p t

N
P t DT p t

n

′

′= ∈ =
=

  

 =  ′
∑ ∑ ∏

∏

E

 (4) 

 

where: 

 

( )
( )

( )
1

0
.

k

i

h ih

i

n
P t p t

N
=

=∑  

 

The symbol p.c. denotes the set of all possible 

configurations stemming from N countries and k rating 

classes. In particular: 
 

1
| . . |

1

N k
p c

k

+ − 
=  

− 
 

 

Simulations and Results 

In this section we evaluate how much the value of 

the dynamic Theil entropy changes responding to 

variations of the parameter λi. We performed a 

sensitivity analysis based on several simulations by 

varying the parameters and the way they affect the 

generator of the CTMC. To do so, we rely on structured 

perturbation (Lando and Skødeberg, 2002), by directly 

perturbing the parameters of the CTMC in such a way 

that a new Markov process is obtained having a 

generator matrix that is a perturbation of the initial 

generator. In this section we illustrate how the 

simulations are performed and the results. 

Simulation Scheme 

Given a vector of perturbations S = (λ1,…λk) each 

perturbation is applied to the infinitesimal generator 

according to Assumption 4. In particular, once estimated 

the infinitesimal generator A = {aij}i,j∈E of the CTMC, 

we introduce the perturbation parameter to the generator. 

Then, we evaluate the difference between the dynamic 

inequality computed with the nominal model and that 

with the perturbed model. We denote by ( )( )DT p t
λ

  E  

the measure of inequality resulting by applying the 

vector of perturbations S to the generator of the nominal 

model. The value of the perturbation λi depends on the 

smallest value of the exit rate of each state in the CTMC. 

As a matter of fact: 
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( ) ( )( )min ,min ,
i ij ij

a aλ ∈ −  

 

otherwise the resulting model will be no more a Markov 

chain and the perturbation will not be structured. 

The simulations are carried out by firstly generating 

the entries of S from a Normal distribution. Secondly, to 

include dependencies between rating classes, we 

generate perturbation values from a multivariate Normal 

distribution. This is done supposing three cases: 

 

1. The perturbations affect all exit rates of the 

generator matrix, i.e., ( )
,ij ij ia a i j

λ
λ= + ∀ ≠   

2. The perturbations affect all upgrade intensities of 

the generator matrix, i.e., ( )
,ij ij ia a i j

λ
λ= + ∀ >  

3. The perturbations affect all downgrade intensities of 

the generator matrix, i.e., ( )
,ij ij ia a i j

λ
λ= + ∀ <  

 

In particular, the starting point for the simulations is 

the generator matrix of the CTMC. Therefore the 

generator matrix: 
 

{ }
,

ij ij i j E
A a

∈

=  

 

is estimated from the observed rating data according to 

(Sadek and Limnios, 2005): 
 

( )

( )
( )

{ }
( )

( )
( )

( )

, , 0,
,

,
ˆ , , , 0,

,

0 , 0,

ij

i

i

ijl E i

ij i

i

i

n
i j v t N

v t N

n t N
a t N i j v t N

v t N

v t N

∈


≠ ≠




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where, nij(t,N) is the number of total transitions from i 

to j observed for all countries over the time interval 

[0, t] and vi(t,N) is the total time spent in rating class i 

by all countries. Then, for each simulation we 

consider the perturbed generator and we compute 

( )( )DT p t
λ

  E . Given the huge amount of 

combinations required such for a computation
1
 we 

proceed with a Monte Carlo simulation both for the 

nominal and the perturbed model. For a number R of 

Monte Carlo iterations the rating dynamics are 

generated according to a CTMC, given the generator 

                                                           
1The number of combinations stemming from 24 countries and 8 rating 

classes is: 

 

31
. . 2629575

7
p c

 
= = 
 

 

{ }ˆ ˆ
ij

A a=  and the initial distribution. Therefore, the 

following sequence has to be built: 
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where, Xn denotes the rating class occupied at the n-th 

transition and Tn-Tn-1 represents the sojourn time between 

the (n-1)-th and n-th transition. The generation of a 

trajectory is done according to the following formulas: 
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Using current rating class, the next rating is simulated 

according to the probability distribution ij

i

a

a

 
  
 

while the 

sojourn time in rating i according to an exponential 

distribution of parameter ai. In particular, if {Tn} is 

the increasing sequence of transition times of the 

process X(t), then, by Xn = X(Tn), we denote the 

embedded Markov chain: 
 

( ) ( )1

,
, |

0 .

ij

n n i

a
i j

Q i j X j X i a

i j

+


≠

= = = = 
 =

P  

 
which represents the probability of transition from state i 

to state j disregarding the sojourn time length. The latter 

follows an exponential distribution with parameters ai. 

The evolution of payments is the simulated by assigning 

the mean of the empirical distributions of credit spread 

conditional on the rating class (ri). The dynamic Theil 

entropy is assessed as in Equation (3) on the simulated 

spreads and through the mean over all iterations we 

assess the dynamic entropy under the nominal model, 

i.e., ( )( )DT p t  E  and the dynamic entropy assessed 

with the perturbed generator, i.e., ( )( )DT p t
λ

  E . In 

particular, for the perturbed model, a number of P 

vectors of perturbations is generated and for each 

perturbation the Monte Carlo is performed. 

Computationally speaking, the resulting simulation 

algorithm is clearly embarrassingly parallel, that is 

almost always possible to obtain a linear speed up. The 

speed up is defined as: 
 

( )
1

,

p

T
S

T n
=  
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where, T1 is the time needed to run the serial code and 

Tp(n) is the time to run the same code in parallel using n 

processes/treads/processors. In our case we always used 

a number of processes n equal to the number of 

perturbations P. 

Results 

In this section we firstly give results of the dynamic 

entropy assessed under the nominal model, without 

perturbations and successively we presents the results of 

the simulations performed, each one introducing 100 

different perturbations. As a starting point it is necessary 

to estimate the generator of the Markov process that 

describes the rating dynamic. The estimation is done 

according to estimator shown in Equation 5. The results 

are reported in Table 1 where the estimated generator is 

presented. As it is possible to see, the value of this 

matrix are little showing that rating changes occur 

unfrequently. The matrix is tridiagonal and reveals that 

changes in rating classes occur only from one class to the 

adjacent ones. Figure 3 shows the expected value of the 

dynamic Theil entropy computed with R = 100000 

iterations and for 365 days, whereas Table 2 gives results 

on the moments of the dynamic Theil entropy. The 

number of considered simulations is in agreement with 

(D’Amico et al., 2018a) where the authors have showed 

that it is an adequate number of iterations that guarantees 

the stability of the results. 

 

 
 

Fig. 3: Expected value of the dynamic entropy without any perturbations 

 
Table 1: Estimate of the generator of the Markov process Â = {âij}i,j∈E  
 1 2 3 4 5 6 7 8 

1 -1.897e-04 1.897e-04 0 0 0 0 0 0 

2 2.253e-04 -4.13e-04 1.877e-04 0 0 0 0 0 

3 0 7.4e-05 -4.069e-04 3.329e-04 0 0 0 0 

4 0 0 3.669e-04 -6.115e-04 2.446e-04 0 0 0 

5 0 0 0 7.113e-04 -8.129e-04 1.016e-04 0 0 

6 0 0 0 0 5.997e-04 -1.1994e-03 5.997e-04 0 

7 0 0 0 0 0 1.5823e-03 -4.7468e-03 3.1646e-03 

8 0 0 0 0 0 1.33e-02 1.33e-02 -2.67e-02 

E[DT(t)] 

E
[D

T
(t
)]
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According to Fig. 3 and Table 2 the expected value of 
the Dynamic inequality shows an increasing trend, as 
well as its standard deviation, whereas the skewness and 
the kurtosis show high positive values which decrease 
over time. These empirical results suggest that, over the 
next year, the financial risk is more concentrated. This 
means, for instance, that some countries will pay more 
that the current time and this is caused by a deterioration 
of their creditworthiness. 

To investigate how perturbations should impact on the 

assessment of the inequality measure, several simulations 

are performed supposing both the existence and the non-

existence of some contagion concerning the way the 

perturbations affect the rating classes’ transition rates. To 

better evaluate the results, the higher order moments of the 

dynamic inequality resulting from the simulations are 

assessed. For the rest of the paper we will denote E  

[DTλ(p(t))] as DT and E [DTλ(p(t))] as DTλ. 

Case λi ∼ N (0,2.5e-10) 

In this case the perturbation values are generated from a 

Normal distribution with µ = 0, σ
2
 = 2.5e-10. The 

perturbations are then added to all off-diagonal entries and, 

alternatingly, only to the upgrades and only to the 

downgrade intensities. Table 3 and Fig. 4 give results of the 

simulations performed by adding the perturbation to all off-

diagonal entries of A = {aij}i, j∈E. For all Figures presented 

here, the solid black line denotes DT whereas the dashed 

line represents the expected value of the dynamic entropy 

influenced by the perturbations, denoted as 
DT

λ

µ . 

DT
λ

µ  is close the DT, the value of the standard 

deviation is increasing although is it very close to 0. The 

skewness is positive for almost all times except in the 

period between t = 250 and t = 300 when it is negative. In 

fact, as it can be seen from Fig. 4, DT is not centralized 

and a large number of observations is concentrated on its 

right side. Finally, the values of the kurtosis are close to 3 

(according to a Normal distribution). 
When the perturbations affect only the downgrade 

intensities, the results are almost similar to the first 
simulation (as it can be seen from Fig. 5 in the first panel 
and Table 4), except for higher value of the standard 
deviation. On the other hand, when the perturbation is 
added only to the upgrade intensities, differences are 
encountered in the evolution of the skewness (Fig. 5, in 
the second panel and Table 5). 

Case λi ∼ N (0,5e-9) 

In this Section we present results of the simulations 
made supposing that the perturbation λi follows a Normal 
distribution as in the previous section. The difference here 
is in the value of the variance which is larger and equal to 
5e-9. Table 6 to 8 collect the descriptive statistics of DTλ 
when the perturbations are added to all exit rates, only to 
the downgrade and only to the upgrade rates, respectively. 

Table 2: Descriptive statistics of DT(p(t)) 
t 50 150 250 350 

E[DT(p(t))] 0.5975 0.6054 0.6102 0.6117 

σDT (t) 0.0410 0.0675 0.0806 0.0868 

skw 5.3904 3.1780 2.5299 2.1954 

kurt 35.19 13.472 9.2289 7.4557 

 
Table 3: Descriptive statistics of DTλ when λI ∼ N (0,2.5e-10) 

and ( )
ij
a

λ  = aij + λi, ∀aij > 0. 

Day 50 150 250 350 

DT
λ

µ  0.5981 0.6056 0.6096 0.6118 

DT
λ

σ  0.0015 0.0021 0.0029 0.0031 

skew 1.0733 0.4864 -0.3228 0.3861 

kurt 2.7724 2.8192 3.1082 3.1667 

min 0.5950 0.6008 0.6028 0.6052 

max 0.6016 0.6105 0.6173 0.6221 

range 0.0066 0.0097 0.0145 0.0170 

 

Table 4: Descriptive statistics of DTλ when λi ∼ N (0,2.5e-10) 
and ( )

ij
a

λ  = aij + λi, ∀i < j 

Day 50 150 250 350 

DT
λ

µ
 

0.5982 0.6058 0.6099 0.6115 

DT
λ

σ  0.0016 0.0027 0.0031 0.0032 

Skew 1.0978 0.1591 -0.2897 0.2169 

kurt 2.8144 2.4289 2.5781 3.0752 

min 0.5943 0.5996 0.6020 0.6049 

max 0.6019 0.6111 0.6170 0.6215 

range 0.0076 0.0116 0.0150 0.0166 

 

Table 5: Descriptive statistics of DTλ when λi ∼ N (0,2.5e-10) 
and ( )

ij
a

λ  = aij + λi, ∀i > j 

Day 50 150 250 350 

DT
λ

µ  0.5978 0.6053 0.6090 0.6112 

DT
λ

σ  0.0014 0.0022 0.0031 0.0033 

skew 1.0986 -0.4012 -0.7451 -0.4063 

kurt 3.6708 3.1403 2.1745 2.4632 

min 0.5949 0.5988 0.6028 0.6040 

max 0.6020 0.6109 0.6154 0.6194 

range 0.0073 0.0121 0.0126 0.0154 

 

Table 6: Descriptive statistics of DTλ when λi ∼ N (0,5e-09) 
and ( )

ij
a

λ  = aij + λi, ∀i ≠ j 

Day 50 150 250 350 

DT
λ

µ  0.5980 0.6051 0.6091 0.6109 

DT
λ

σ  0.0014 0.0026 0.0034 0.0039 

skew 0.9913 -0.4474 -0.8191 -0.6173 

kurt 3.1146 2.7112 2.2092 2.4256 

min 0.5944 0.5983 0.6027 0.6024 

max 0.6018 0.6110 0.6158 0.6198 

range 0.0074 0.0127 0.0131 0.0174 
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Table 7: Descriptive statistics of DTλ when λi ∼ N (0;5e-09) 
and ( )

ij
a

λ  = aij + λi, ∀i < j. 

Day 50 150 250 350 

DT
λ

µ  0.5980 0.6054 0.6098 0.6116 

DT
λ

σ  0.0017 0.0033 0.0047 0.0059 

skew 1.0334 0.1434 -0.1462 -0.1211 
kurt 3.0501 2.3170 2.4323 2.3164 
min 0.5949 0.5975 0.6008 0.5981 
max 0.6027 0.6125 0.6223 0.6250 
range 0.0078 0.0150 0.0215 0.0269 
 

Table 8: Descriptive statistics of DTλ when λi ∼ N (0,5e-09) 
and ( )

ij
a

λ  = aij + λi, ∀i > j. 

Day 50 150 250 350 

DT
λ

µ  0.5978 0.6049 0.6088 0.6104 

DT
λ

σ  0.0015 0.0028 0.0041 0.0050 

skew 0.8862 -0.2280 -0.7333 -0.5258 
kurt 3.2791 2.3371 2.5009 2.5985 
min 0.5946 0.5985 0.5990 0.5991 
max 0.6025 0.6108 0.6177 0.6227 
range 0.0078 0.0124 5 0.0187 0.0236 

 
 

Fig. 4: Simulations when λi ∼ N (0,2.5e-10) 
 

 
 

Fig. 5: Simulations when λ ∼ N (0,2.5e-10) and it is applied to downgrade/upgrade rates in the first/second panel 
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Fig. 6: 
( )
ij
a

λ
 = aij + λi, ∀i ≠ j 

 

 
 

Fig. 7: 
( )
ij
a

λ
 = aij + λi, ∀i < j 

 

 
 

Fig. 8: 
( )
ij
a

λ
 = aij + λi, ∀i > j 
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Whereas Fig. 6 to 8 show the plot of the 

simulations in terms of DTλ for all 100 perturbations 

(the expected value is represented by a dashed black 

line), compared with DT (solid black line) According 

to the results we observe that by giving a larger 

variance, the results are similar to the first situation 

except for a higher dispersion around the expected 

value, confirmed by the larger values of the standard 

deviation of DTλ in all three cases. We also observe 

that when the variance of the perturbation is higher 

then the range of values of DTλ tends to increase with 

an amplifications of possible values of the financial 

inequality. 

Case λi ∼ N (0,Σ) 

In this subsection we introduce a dependence 

among the rating classes while performing the 

simulations for the perturbed model. More 

specifically, the perturbation parameter λi are 

generated according to a multivariate Normal 

distribution with zero mean and the covariance matrix 

shown in Table 9. The variance is the same as that 

proposed in the previous case. However, we introduce 

different covariance values for investment and 

speculative rating classes where the covariance 

between investment and speculative rating classes 

represents the smallest value. Figures 9 to 11 show the 

plots of the simulations in terms of DTλ for all 100 

perturbations in all three cases. While Table 10 to 12 

give results about the descriptive statistics of DTλ for 

all three cases. When the perturbations are added to 

all exit rates of the generator matrix, DTλ is closer to 

DT with respect to the case without dependence 

among rating classes. Furthermore, the value of the 

skewness, which in the previous simulations was 

decreasing, shows now an alternating trend. Finally, 

the kurtosis are close to 3 (according to a Normal 

distribution) as well as the case with λi ∼ N (0,2.5e-

10), but different from the case with λi ∼ N (0,5e-9). 

When the perturbations affect only the downgrade 

rates of A = {aij}i,j∈E, differences are encountered in 

the skewness and kurtosis values. They, in fact, show 

an alternating trends, which are dissimilar from what 

we have found in the simulation with λi ∼ N (0,5e-9). 

Finally, when the perturbations influences only the 

upgrade rates of A = {aij}i,j∈E the values of 
DT

λ

σ  are 

smaller than when the perturbations affect the 

downgrade intensities even if the differences are very 

small. Regarding the skewness, it shows positive 

value up to t = 300, which is different from the case 

without dependence, when the skewness becomes 

negative starting from t = 150. But the main 

difference concerns the kurtosis, whose value are very 

high with respect to all other cases. 

Case λi ∼ N (0,Σ), with Σi,j < 0, i∈{1,2,3,4}, 

j∈{5,6,7,8} 

The latest simulations are performed by including 

a negative covariance between investment grade 

rating classes and speculative grade rating classes. In 

particular, we imposed Σi,j = -1e-10, with i and j 

denoting, respectively, the investment rating classes 

and the speculative rating classes. The resulting 

covariance matrix is showed in Table 13. Figure 12 to 

14 show the results of the simulations while Table 14 

to 16 give results about the descriptive statistics of 

DTλ for all three cases. When the perturbations are 

added to all exit rates of the generator matrix, the 

difference between 
DT

λ

µ  and DT is higher with respect 

to the simulations illustrated in the previous 

subsection, so as the standard deviation. Regarding 

the skewness, as it can be seen in Table 10 and 14, it 

shows a similar trend with respect to the previous 

simulations, even if it becomes negative before (t = 

150). In the second case, the differences between 
DT

λ

µ  

and DT, along with 
DT

λ

σ , are more pronounced with 

respect to the other two cases and to the simulations 

exposed in the previous subsection. Finally, the third 

case shows the lowest values of 
DT

λ

σ , but there are no 

crucial differences compared with the corresponding 

case of the previous subsection. The kurtosis is also 

different: It shows a different trend and lower values. In 

this case it is, in fact, firstly decreasing and successively 

increasing whereas with all element of the covariance 

matrix being positive, it shows an opposite trend. 

To sum up, results of the simulations highlight the 

fact that the dynamic Theil index reacts differently 

and dependently on the type of the perturbations. As a 

matter of example: 

 

• 
DT

λ

µ  is closer to DT when ( )
ij
a

λ
 = aij + λi, ∀i < j with 

respect to the two other cases 

• When ( )
ij
a

λ
 = aij + λi, ∀i > j, the skewness in negative 

for most of the simulated time whereas in the two 

other cases it becomes negative almost at the end 

• By including the dependence among rating classes, 

the dissimilarities on the skewness described in the 

previous point are mitigated 

• 
DT

λ

µ  is closer to DT when the perturbation is 

generated from a multivariate normal distribution 

than in the other cases 

• There are also differences in the kurtosis while 

looking at the simulation with dependence among 

rating classes, most of all considering the variations 

of upgrade intensities 
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Fig. 9: 
( )
ij
a

λ
 = aij + λi, ∀i ≠ j 

 

 
 

Fig. 10: 
( )
ij
a

λ
 = aij + λi, ∀i < j 

 

 
 

Fig. 11: 
( )
ij
a

λ
 = aij + λi, ∀i > j 
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Fig. 12: 
( )
ij
a

λ
 = aij + λi, ∀i ≠ j 

 

 
 

Fig. 13: 
( )
ij
a

λ
 = aij + λi, ∀i < j 
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Fig. 14: ( )
ij
a

λ  = aij + λi, ∀i > j 

 
Table 9: Covariance matrix 

k 1 2 3 4 5 6 7 8 

1 5e-9 2.5e-10 2.5e-10 2.5e-10 1e-10 1e-10 1e-10 1e-10 
2  5e-9 2.5e-10 2.5e-10 1e-10 1e-10 1e-10 1e-10 
3   5e-9 2.5e-10 1e-10 1e-10 1e-10 1e-10 
4    5e-9 1e-10 1e-10 1e-10 1e-10 
5     5e-9 4e-10 4e-10 4e-10 
6      5e-9 4e-10 4e-10 
7       5e-9 4e-10 
8        5e-9 
 

Table 10: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i ≠ j 

Day 50 150 250 350 

DT
λ

µ   0.5977 0.6055 0.6100 0.6119 

DT
λ

σ   0.0013 0.0029 0.0035 0.0044 

skew 0.4848 0.2970 -0.1620 0.2435 
kurt 3.3276 2.5097 2.5800 2.9974 
min 0.5940 0.6000 0.6013 0.5992 
max 0.6015 0.6124 0.6188 0.6236 
range 0.0075 0.0124 0.0175 0.0244 
 

Table 11: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i < j 

Day 50 150 250 350 

DT
λ

µ  0.5981 0.6057 0.6098 0.6115 

DT
λ

σ  0.0016 0.0034 0.0045 0.0054 

skew 0.9971 0.1355 0.1044 0.0905 
kurt 2.7638 2.9221 2.8739 2.7938 
min 0.5942 0.5974 0.6008 0.6009 
max 0.6020 0.6138 0.6227 0.6265 
range 0.0078 0.0164 0.0219 0.0256 
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Table 12: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i > j 

Day 50 150 250 350 

DT
λ

µ   0.5981 0.6060 0.6104 0.6121 

DT
λ

σ   0.0015 0.0027 0.0039 0.0046 

skew  1.0644 1.0703 0.3811 -0.2450 

kurt  3.2191 3.9959 4.9079 3.9667 

min  0.5943 0.6011 0.5972 0.5960 

max  0.6024 0.6149 0.6231 0.6238 

range  0.0081 0.0138 0.0259 0.0278 

 
Table 13: Covariance matrix 

k 1 2 3 4 5 6 7 8 

1 5e-9 2.5e-10 2.5e-10 2.5e-10 -1e-10 -1e-10 -1e-10 -1e-10 

2  5e-9 2.5e-10 2.5e-10 -1e-10 -1e-10 -1e-10 -1e-10 

3   5e-9 2.5e-10 -1e-10 -1e-10 -1e-10 -1e-10 

4    5e-9 -1e-10 -1e-10 -1e-10 -1e-10 

5     5e-9 4e-10 4e-10 4e-10 

6      5e-9 4e-10 4e-10 

7       5e-9 4e-10 

8        5e-9 

 

Table 14: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i ≠ j 

Day 50 150 250 350 

DT
λ

µ   0.5978 0.6056 0.6104 0.6124 

DT
λ

σ  0.0015 0.0030 0.0037 0.0046 

skew 0.5379 -0.2176 -0.2580 0.1311 

kurt 3.0695 2.8560 3.4653 2.8239 

min 0.5937 0.5977 0.5986 0.5999 

max 0.6014 0.6127 0.6192 0.6225 

range 0.0077 0.0150 0.0205 0.0226 

 

Table 15: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i < j 

Day 50 150 250 350 

DT
λ

µ  0.5981 0.6062 0.6106 0.6127 

DT
λ

σ  0.0017 0.0033 0.0047 0.0059 

skew 1.1635 0.8669 0.3325 0.5140 

kurt 2.6469 2.7366 2.2493 2.6975 

min 0.5951 0.6000 0.6002 0.5984 

max 0.6015 0.6134 0.6201 0.6271 

range 0.0064 0.0135 0.0200 0.0286 

 

Table 16: Descriptive statistics of DTλ when λi ∼ N (0,Σ) and 
( )
ij
a

λ  = aij + λi, ∀i > j 

Day 50 150 250 350 

DT
λ

µ  0.5981 0.6057 0.6098 0.6118 

DT
λ

σ  0.0015 0.0026 0.0034 0.0040 

skew 1.0960 0.2698 -0.3920 -0.2167 

kurt 3.0254 2.7170 2.9179 3.0725 

min 0.5942 0.5996 0.5995 0.5986 

max 0.6015 0.6123 0.6167 0.6217 

range 0.0073 0.0126 0.0172 0.0231 
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Concluding Remarks 

In this work we investigate the sensitivity of the 

dynamic Theil index computed on the credit spread 

process with respect to perturbations affecting the 

underlying rating dynamics. Starting from the model 

proposed in (D’Amico et al., 2018b), we consider 

different structured perturbations to the generator and we 

perform several simulations to evaluate how the inequality 

measure changes to different perturbations. The 

methodology is applied to real data concerning long-term 

interest rate on government bonds and sovereign credit 

ratings assigned by S&P, whereas the perturbations are 

arbitrarily chosen. Obtained results suggest different 

sensitivity of the inequality measure to perturbations in the 

different presented scenarios, as there are difference when 

the perturbations affect all off-diagonal rates, only the 

upgrade rates and only the downgrade rates, respectively. 

The dependencies among ratings classes play a crucial 

role too, that should be more extensively investigated. To 

conclude, this study could be used to understand the 

impact on a financial system of the occurrence of some 

perturbations represented by estimation errors in credit 

risk models, with a particular focus on the inequality 

measure. Possible extension include a more sophisticated 

model that could take into account all the possible 

scenarios we presented in the simulations and also the 

consideration of higher order correlation in the 

perturbation scheme. 
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