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not identically distributed random variables and assumed to belong to 

one of two different general classes of distributions so that the first class 

is closed under maxima and the second one is closed under minima. We 

obtain maximum likelihood estimators of the parameters of interest 

under several estimation schemes and investigate their asymptotic 

properties. Plug-in type estimators are furnished for various quantities 

related to the system under study. 
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Introduction 

Let us consider a multi-state system with state space 

E = {1, 2,…, N}, defined on a probability space (Ω, F, 

P) (cf. Natvig, 1982; El-Neveihi and Proschan, 1984). 

As it will be introduced in the next section the evolution 

of the system is assumed to follow a continuous time 

semi-Markov process. 

The MSS could be investigated and analyzed with the 
use of Markov processes (cf. Limnios and Ouhbi, 2006; 
Limnios et al., 2005; Lisnianski et al., 2010; Lisnianski and 

Levitin, 2003). Markov processes are widely used for 
reliability analysis because the number of failures in 
arbitrary time intervals in many practical cases can be 
described as a Poisson process and time up to the failure 
and repair (or maintenance) is often Exponentially 
distributed. Such systems play a key role in reliability 

theory, engineering, economics and finance, geosciences 
and biomedicine with special interest lying in extreme or 
rare events like among others, natural disasters, total power 
supply failures, global economic crises, etc. 

The main characteristic of this paper is that the sojourn 

times in a given state are assumed to belong to one of two 

different general classes of distributions, cf. Relations (3) 

and (30) respectively. The first class of distributions is 

closed under maxima and contains several distributions, 

like the Bernoulli distribution, the power function 

distribution and the extreme value Type I distribution. 

The second class of distributions is closed under minima 

and includes the exponential, the Weibull, the Pareto, the 

Rayleigh and the Erlang truncated Exponential 

distribution (cf. Balasubramanian et al., 1991). 

Barbu et al. (2017) the class of distributions closed 

under minima has been considered. In this paper we deal 

with: (a) The class of distributions closed under maxima, 

where we consider several cases of no censoring and 

censoring at the beginning and/or at the end and 

appropriate estimators have been proposed; (b) the class of 

distributions closed under minima, where we consider 

censoring sojourn times at the beginning and/or at the end. 

Our main objective of this paper is the proposal of 

parsimonious modeling for multistate systems, 

considering also a semi-Markov framework. Thus, we 

can have a useful and powerful tool with a reduced 

number of parameters, which can be of great importance 

from a practical point of view. 

The outline of the paper is the following: In Section 

2, a brief discussion about semi-Markov processes and 

multi-state systems regarding a family of distributions 

closed under maxima is introduced. Section 3 provides 

the likelihood function in addition with the maximum 

likelihood estimators of the parameters under 

investigation obtained under several statistical settings. 

In Section 4 a special case for the class of distributions 

closed under minima is established while the maximum 

likelihood estimators of the parameters of interest in this 
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case are furnished as well. Section 5 is devoted to study 

the Markov renewal function Ψij(t) and the semi-Markov 

renewal matrix Pij(t) in order to establish their 

estimators. In Section 6, the corresponding estimators of 

reliability indicators are proposed. 

Semi-Markov Processes and Multi State 

Systems 

Semi-Markov (SM) processes are typical tools for the 

modeling of technical systems. Such class of stochastic 

processes generalizes typical Markov jump processes 

by allowing general distributions for sojourn times 

(Limnios and Oprisan, 2001). 

Assume that the time evolution of the system is 

governed by a stochastic process ( )t
t

Z Z
+

∈

=

ℝ

. Let 

( )
n

n

S S
∈

=

ℕ
 be the jump times of the process ( )t

t

Z
+

∈ℝ

 and 

( )
n

n

J J
∈

=

ℕ
 the visited states at these jump times. 

Furthermore, let ( )
n

n

X X
∈

=

ℕ
 be the sojourn times in the 

above states. Therefore, Xn = Sn-Sn-1, 
*

n∈ℕ  and without 

loss of generality let X0 = S0 = 0. 

We assume that (J, S) is a Markov renewal process (cf. 

Limnios and OpriAan, 2001) and ( )t
t

Z Z
+

∈

=

ℝ

 is a semi-

Markov (SM) process associated to (J, S); where Zt := JN(t), 

with N(t) := { }sup |
n

n S t∈ ≤ℕ , t
+

∈ℝ . In order investigate 

an SM model the initial law α = (α1,… αN), αj := 

( )0
J j=P , j∈E and the semi-Markov kernel Qij(t) := P (Jn 

= j, Xn≤ t|Jn-1 = i), are furnished. Note that we consider 

regular Markov processes. In addition, the transition 

probabilities of the embedded Markov chain ( )
n

n

J
∈ℕ
: 

 

( ) ( )1
: | lim ,

ij n n ij
t

p J j J i Q t
−

→∞

= = = =P  

 
and the conditional sojourn time distribution functions: 
 

( ) ( )

( )
1 1

1

: | ,

| , ,

ij n n n n

n n n

W t S S t J i J j

X t J i J j

− −

−

= − ≤ = =

= ≤ = =

P

P

 (1) 

 
are also defined. Observe that: 
 

( ) ( ).ij ij ij
Q t p W t=   (2) 

 
Let Tij be a potential time in state i before transit to 

the next state j. Let also Fij(t,  θij) be the cumulative 

distribution function (cdf) and θij its m-dimensional 

parameter. The above distribution is assumed to be 

absolutely continuous with respect to the Lebesgue 

measure with density fij(t,  θij). 

The evolution of the model is governed by the 

following characteristic: The maximum value of Til 

identifies the next visited state, assuming that the process 

was in state i. Hence, under this setting the semi-Markov 

kernel takes the form: 
 

( ) ( )

( ) ( )

1

1

1 1

max & max |

max , , |

max | , , |

( ),

ij il n
l

il ij ij n
l

il n n ij il n
l

ij i

Q t T t the occurs for j J i

T t T T l J i

T t J i J j T T l J i

p W t

−

−

− −

•

= ≤ =

 
= ≤ ≥ ∀ = 

 

= ≤ = = × ≥ ∀ =

=

P

P

P P

 

 
where: 

 

( ) ( )1 1
| , |ij n n ij il np J j J i T T l J i

− −
= = = = ≥ ∀ =P P  

 

and: 

 

( ) ( )

( )

( ) ( )

1 1

1

1

| ,

max | ,

max | : , ,

ij n n n n

il n n
l

il n i
l

W t S S t J i J j

T t J i J j

T t J i W t independent of j

− −

−

− •

= − ≤ = =

= ≤ = =

= ≤ = =

P

P

P

 

 
which represents the cdf of the sojourn time in state i 

(unconditional to the next state to be visited). 

Note that ( )ij

j

Q t∑ = Wi•(t), where Wi•(t) is absolutely 

continuous w.r.t. the Lebesgue measure and has a 

density denoted by fi•(t). 

Class of Distributions 

As mentioned at the beginning, we consider two 

classes of distributions; the first is discussed below while 

the second one in Section 4. The first one is closed under 

maxima and the second one is closed under minima. 

More specifically, although the distribution functions 

Fij(⋅; θij), have different parameters for different values 

of I, j = 1,…,N, they have the same form-pattern. 

Equivalently, the random variables involved in the above 

distributions are independent but not identically 

distributed (inid). Any member of the specific class of 

distribution functions with parameter a can be written in 

the following form (Balasubramanian et al., 1991): 
 

( ) ( )( ); : ;1 ,
a

F t a F t=  (3) 

 
which is assumed to be absolutely continuous w.r.t. the 

Lebesgue measure with density f(t; a). 

The above class of distributions includes the Bernoulli 

distribution, the power function distribution and the 

extreme value Type I distribution. A representative 
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example comes from structural engineering where 

engineers are interested in stress and strain diagrams that 

graphically display the basic material characteristics when 

designing various types of constructions like bridges, 

highways or building. Strain is the elongation or 

contraction of a material per unit length of the material 

while stress is the applied load divided by the material 

area it is acting on. For measuring the extend of stress 

and strain, engineers often use (a) the tensile strength 

which is the amount of tensile stress that a material can 

resist before failing, (b) the compressive strength which 

is he amount of compressive stress that a material can 

resist before failing and (c) the ductile which is the 

ability of a material to be subjected to large strains 

before it ruptures or fails. In such cases the investigator 

is looking for the maximum time that represents the 

moment the material ruptures, fails or cracks (cf. 

Carreira and Chu, 1985; 1986; Courtney, 2005). 

The following Lemma, shows that the distribution 

function of the maximum order statistic falls also to class 

3, in other words the above class of distributions is 

closed under maxima. This is stated in the next result. 

Lemma 1 

Let X1,…,XN be inid random variables such that Xi ∼ 

F(x; ai) which belongs to class (3). Then the distribution 

function F
(N)
 of the maximum order statistic X(N) belongs 

also to (3) (Balasubramanian et al. 1991). 

For notational convenience and for Tij the sojourn time 

as defined in the previous section, we set Fij(t) := Fij(t; 1), 

fij(t) := fij(t; 1) and Qij (t; aim; m = 1,…,N) := Qij(t). 

Note that the dependence of semi-Markov kernel to 

aim is due to the fact that the parameter of the distribution 

function F(t) that appears in the semi-Markov kernel is 

im

m E

a
∈

∑ (Equation (4)). 

Proposition 1 

According the setting of the present section, the 

following quantities can be derived: 
 

( ) ( ). ,

im

m E

aij

ij

im

m E

a
Q t F t

a
∈

∈

∑=   
∑

 (4) 

 

,

ij

ij

im

m E

a
p

a

∈

=

∑
  (5) 

 

( ) ( ) 1

N

im

m

a

i
W t F t ∈

•

∑=     (6) 

 
and: 

 

( ) ( )
( )

( )
1

1

.

N

im

m

N
a

i im

m

f t
f t a F t

F t
∈

•

∈

∑=   ∑  (7) 

Proof 

Note that: 
 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

1 , 1 , 1

0

1

0

... ...

1

. .

i i j i j

iN ij

im im

m E m E

t a a a

ij

a a

t a aij

ij

im

m E

Q t F u F u F u

F u d F u

a
a F u dF u F t

a

− +

∈ ∈

−

∈

=           

   −    

∑ ∑=   =     

∫

∫ ∑

 (8) 

 
By taking the limit: 

 

( )lim .
ij

ij ij
t

im

m E

a
Q t p

a→∞

∈

= =

∑
 (9) 

 
We also need the distribution of the maximum which 

is given by: 
 

( )

( ) ( ) ( ) 1

max

1 1

| ,

.

N

im im

m

i n im

N N
a a

im

m m

W t T t J i T t m

F t F t F t =

•

= =

   = ≤ = = ≤ ∀   

∑ = =   =      ∏ ∏

P P

 (10) 

 
Thus, by taking the derivative of the above equation, 

the pdf in (7) is easily derived. 

Maximum Likelihood Estimation 

We consider two statistical settings. In the first one 
we have only one sample path of the system, while in the 
second one we have several sample paths. On each 
situation we take into account several cases: One where 
all sojourn times are observed and one where the sojourn 
time in the last and/or in the first visited state can be 
right censored. In addition, the cases where right 
censoring appears only at the beginning or at the end are 
also considered. Right censoring at the end is associated 
with "the lost to follow up" while right censoring at the 
beginning is associated with the lack of information in 
the moment the action had began. 

Maximum Likelihood Estimation for one Trajectory 

Let denote the total observation time with M. For the 

scope of this section we introduce the processes Ni(t) 

which counts the number of visits to state i of the 

process ( )
n

n

J
∈ℕ
 up to time t and Nij(t) which counts the 

number of jumps of the process ( )
n

n

J
∈ℕ
 from state i to 

state j up to time t, where I, j∈E and t
+

∈ℝ , i.e.: 

 

( )
{ }

( )

{ }

( )
{ }

( )

{ }

1

1 1

1

,
0 0

, , ,
1 0

: 1 1 ,

: 1 1 .

n n n

n n n n n

N t

i J i J i S t
n n

N t

ij J i J j J i J j S t
n n

N t

N t

+

− −

− ∞

= = ≤

= =

∞

= = = = ≤

= =

= =

= =

∑ ∑

∑ ∑
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The Case of no Censoring for One Trajectory 

Firstly, we take into account one single sample path 

of a semi-Markov process {j0, x1, j1, x2,…, jN(M)} where 

the evolution of the system for 1 trajectory is given by 

the following likelihood: 

 

( )
( ) ( ) ( )

( )( )

( ) ( )( )
( )

0 0 1 0 1 1

0

1 ,

1,

, 1

...

,

N M N M N M

i

ij

N Mj j j j j j j

N M
N M k

ij i ij
i j E i E k

p f x p f x

p f x

α

α

− −

• •

•

∈ ∈ =

=

  
 =      

∏ ∏ ∏

L

 (11) 

 

where, ( )1,k

i
x  is the sojourn time in state i during the k

th
 visit, 

k = 1,…,Ni(M). The superscript "1" indicates the use of a 

single trajectory; later we will have several trajectories. 

Under the class of distributions (3), the likelihood 

above can be written as: 

 

( ) ( )( )( )
( )( )
( )( )0

1,

1,

1,
, ,

.

im
ij m E

k
a iN M k

ij ij k
i j E i k

i

f x
a F x

F x
α

∈

∈

 ∑   
=     

    

∏ ∏L  

 

The estimator of aij are obtained through derivation 

of the preceding log-likelihood w.r.t. aij, I, j∈E, that is: 

 

( )
( )

( )
( )( )( ),

1

ˆ .

log
i

ij

ij N M

i k

i

k

N M
a M

F X

=

= −

∑

 (12) 

 

As for the estimators of Q, p, W and f can be derived 

using expressions (4) - (7). 

Censoring at the End for One Trajectory 

Let {j0, x1, j1, x2,…, jN(M), uM} a censored sample path, 

where uM := M-SN(M) is the last censored sojourn time in 

the last visited state. We follow the methodology 

proposed in Barbu et al. (2018) for parametric estimation 

of discrete-time semi-Markov processes. The 

contribution to the likelihood of a right censored time k, 

in state i is defined as: 

 

( ) ( ) ( )1

1

| 1 .
k

i n n n i

t

W k S S k J i f t
• + •

=

= − > = = −∑P  

 

Then, the likelihood is given by: 

 

( )
( )

( )( )
( )

( )
( ) ( )( )

( )

( )
( )( )

0 0 1 0 1

0

1

1,

, 1

...

.

N M N M

i

ij

N M

MN Mj j j j j j

N M
N M k

ij i ij
i j E i E k

Mj

p f x f x X u

p f x

W u

α

α

−

•

• •

•

∈ ∈ =

= × >

  
 =      

×

∏ ∏ ∏

PL

 (13) 

Under the class of distributions in (3), the estimator 

( )ˆ
ij
a M , for the case of censoring at the end, is obtained 

by solving the following equation: 

 

( ) ( )
( )( )( )

( ){ }

( ) ( )

( )( )

1,

1

log
log

log
1 0.

1

i

im

m E

imN M

m E

N M
kij

i

kij ij

a

M M

aJ i

M

N M
F x

a a

F u F u

F u

∈

∈

=

=

∂
= +

∂

∑

− =
∑

−

∑
L

 (14) 

 

Censoring at the Beginning for One Trajectory 

Let now {x0, j0, x1, j1, x2,…, jN(M)}, where x1 is the 

first censored sojourn time in the first visited state. Note 

that the contribution to the likelihood is the same as 

before. Hence, the likelihood can be written as: 
 

( ) ( )
( ) ( ) ( )

( )( )

( ) ( ) ( )( )
( )

0 0 1 0 1 2 1 1 1

0 0

0 1 ,

1,

0

, 1

...

.

N M N M N M

i

ij

N Mj j j j j j j j j j

N M
N M k

ij i ij j
i j E i E k

p W x p f x p f x

W x p f x

α

α

− −

• • •

•
•

∈ ∈ =

=

  
 =      

∏ ∏∏

L

 (15) 

 
Under the class of distributions in (3), by taking the 

derivative of the log-likelihood w.r.t. aij, i, j∈E, we get that 

the estimator ( )ˆ
ij
a M  is given by solving the equation: 

 

( ) ( )
( )( )( )

{ }

( ) ( )

( )( )
0

1,

1

0 0

0

log
log

log
1 0.

1

i

im

m E

im

m E

N M
kij

i

kij ij

a

J i a

N M
F x

a a

F x F x

F x

∈

∈

=

=

∂
= +

∂

∑

− =
∑

−

∑
L

 (16) 

 

Maximum Likelihood Estimation for Several 

Trajectories 

The following counting processes will be useful later: 

 

• ( ) ( ) ( ) ( ) ( ){ }0 1 0 1
, ,

1

1
l l l l

L

b

i
J i S S t S M

t l

N L
•

= − > <

=

=∑∑ is the number of 

trajectories starting in state i with censored first 

sojourn time in state i 

• ( )

( )

( )

( )

( )
( )1

,

1

l l

l lN M j
lN M

L

e

i

t l
J i X t

N L•  
 = = > 
 
 

=∑∑ is the number of 

trajectories ending in state i with censored last 

sojourn time in state i 

 

Note that, the inequality ( )
1

l
S M<  is involved in the 

definition of ( )b L

i
N

•
 in order not to count the case when 

we have censoring at the beginning without any 

transition until the observed time M (so, having also 
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censoring at the end). Note that, this case (only 1 visited 

state with censoring at the beginning and at the end) is 

counted only in ( )e

i
N L

•
. 

The case of no Censoring for Several Trajectories 

Let us consider L sample paths of a semi-Markov 

process, ( ) ( ) ( ) ( )

( )

( ){ }0 1 1 2
, , , ,..., l

l l l l l

N M
j x j x j , l = 1,…,L, without 

censoring. In this case the likelihood becomes: 
 

( )
( ) ( ) ( )

( )( )
( )

( ) ( )

( )( )

( )
( )

( )
( )( )

( )
( )

0 0 1 0
1

,0 1

1

1

1,

, 1 1

...

,

ll l l l

lN M

L ll
iij

i l

L
l l l

j N Mj j j j
l

N MLN M
N L k

i ij i i

i E i j E l i E k

p f x f x

p f x

α

α

−

=

• •

=

•

∈ ∈ = ∈ =

=

   ∑    = ×        

∏

∏ ∏ ∏∏ ∏

L

 

 
where: 
 

• ( ) ( ){ }0

,0

1

: 1
l

L

i
J i

l

N L
=

=

=∑ : The number of trajectories 

starting in state i 

• ( ) ( )l

iN M : The number of visits to state i up to time 

M of the lth trajectory, l = 1,…,L 

• ( ) ( )l

ijN M : The number of transitions from state i to 

state j up to time M during the l
th
 trajectory, l = 

1,…,L 

• ( ) ( ) ( )
1

, :

L
l

ij ij

l

N L M N M

=

=∑  

• ( ),l k

i
x : The sojourn time in state i during the k

th
 visit, 

k = 1,…, ( ) ( )l

iN M  of the l
th 
trajectory, l = 1,…,L 

 
Note that for L = 1 the likelihood (17) reduces to the 

likelihood of the one trajectory case given in (11). 

Under the class of distributions given in (3) the 

likelihood for L trajectories without censoring becomes: 
 

( )
( ) ( ) ( )( )( )

( )( )
( )( )

,0

,

,

,
1 , , ,

l im
iji m E

l k
L a iN MN L l k

i ij i l k
i E l i j E l i k

i

f x
a F x

F x

∈

∈ = ∈

 ∑   
α     

    

∏ ∏∏ ∏L =  

 

and we obtain the estimator of aij, namely ( )ˆ ,
ij
a L M , 

which is given by: 
 

( )
( )

( ) ( )
( )( )( ),

1 1

,
ˆ ,

log

l

i

ij

ij
N ML

l k

i

l k

N L M
a L M

F X

= =

= −

∑ ∑

 (18) 

 
The MLE of the initial law is given by: 
 

( )
( ),0ˆ , .

i

i

N L
L M

L
α =  (19) 

Censoring at the end for Several Trajectories 

Let ( ) ( ) ( ) ( )

( )

( )
( )
( ){ }0 1 1 2

, , , ,..., ,l

l l l l l l

MN M
j x j x j u , l = 1,…,L, be the 

L censored sample paths of a semi-Markov process 

with censoring at time M, then the associated 

likelihood is: 

 

( )
( ) ( )

( )( )
( ) ( )

( )( )
( )

,0 1

,

,

,

1 1 1

,

L
l
ij

i l

l e
ii

N M
N L

i ij

i E i j E

N M N LL
l k k

i i i i M

l i E k i E k

p

f x W x

=

•

∈ ∈

• •

= ∈ = ∈ =

 ∑  α    

 
 ×
 
 

∏ ∏

∏∏ ∏ ∏∏

L =

 (20) 

 

Where: 

 

• ( )

( )
: l

l

M N M
u M S= −  is the censored sojourn time in the 

last visited state of the l
th
 trajectory 

• ( )
,

k

i M
x  is the last censored sojourn time in state i 

during the k
th
 visit, k = 1,…, ( )e

i
N L

•
. 

 

Note that, if the censoring time M in a certain 

trajectory l is a jump time, then for the corresponding 

observed censored time we have ( )
0

l

M
u = . 

Consequently, the contribution to the likelihood of the 

associated term will be equal to 1. For this reason, if 

no censoring is involved, the uncensored likelihood 

given in (17) is just a particular case of (20). Note 

also that for L = 1 the likelihood given in (20) 

becomes the likelihood of one trajectory with 

censoring, given in (13). 

The estimator ( )ˆ ,
ij
a L M , under the class of 

distributions in (3), is established by solving the 

following equation: 

 

( )
( ) ( )

( )( )( )

( )( ) ( )( )
( )( )( )

( )

1,

1 1

, ,

1

,

,log
log

log
0.

1

l

i

im
e

m Ei

im

m E

N ML
kij

i

l kij ij

a
k k

N L
i M i M

a
kk

i M

N L M
F x

a a

F x F x

F x

∈
•

∈

= =

=

∂
= +

∂

∑

− =
∑

−

∑ ∑

∑

L

 (21) 

 

Regarding the estimator of the initial distribution, 

given by (19). 

Censoring at the Beginning for Several Trajectories 

Let now ( ) ( ) ( ) ( ) ( )

( )

( ){ }0 0 1 1 2
, , , , ,..., l

l l l l l l

N M
x j x j x j , l = 1,…,L, be 

the L censored sample paths of a semi-Markov process 

with censoring at the beginning. In this case the 

likelihood takes the form: 
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( ) ( )( )
( )

( )

( )( )
( ) ( )

,0
,

,0

1 ,

,

1 1

,

b
i

iji

l
i

N L
N L MN L k

i i i ij

i E i E k i j E

N ML
l k

i i

l i E k

W x p

f x

•

•

∈ ∈ = ∈

•

= ∈ =

  
α     

   

 
 ×
 
 

∏ ∏∏ ∏

∏∏ ∏

L =

 (22) 

 

where, ( )
,0

k

i
x  is the first censored sojourn time in state i as 

the first state, during the k
th
 visit, k = 1,…, ( )b

i
N L

•
. 

The estimator ( )ˆ ,
ij
a L M  in this case, is obtained by 

solving the following equation: 

 

( )
( ) ( )

( )( )( )

( )( ) ( )( )
( )( )( )

( )

1,

1 1

,0 ,0

1
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,log
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1

l

i
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m Ei

im

m E

N ML
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i

l kij ij

a
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N L
i i

a
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F x F x

F x

∈
•

∈

= =

=

∂
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∂

∑
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∑

−

∑ ∑

∑

L

 (23) 

 

Censoring at the Beginning and at the End for 

Several Trajectories 

We can combine the cases considered in Sections 

3.2.2 and 3.2.3 so that all trajectories have censoring 

both at the beginning and at the end. Note through that, 

from practical point of view, it is important to properly 

write the case where only several trajectories have 

censoring at the beginning and/or at the end. This will be 

done in this section. 

Consider the case of L trajectories where some of the 

sojourn times are censored either at the beginning or/and 

at the end. Given L censored sample paths of a semi-

Markov process: 

 

( )
( )

( ) ( ) ( ) ( )

( )

( ) ( )
( )

0 0 1 1 2
, , , , ,..., , ,  1, , ,

l l

eb

l

l l l l l l l

MN M
x j x j x j u l L

δ δ 
= … 

 
 

 

Where: 

( ) 1, , , ,

0, , , .

th

l

b th

if the first sojourntime of thel trajectory iscensored

if the first sojourntime of thel trajectory isnotcensored


δ = 



( ) 1, , , ,

0, , , .

th

l

e th

if thelast sojourntime of thel trajectory iscensored

if thelast sojourntime of thel trajectory isnotcensored


δ = 


 

 

The likelihood in this case can be written as: 

 

( )
( ) ( )

( )( )
( ) ( )

( )( )
( )

( )( )
( )

,0 1
,

, 1 1

,0 ,

1 1

.

L ll
iij

i l

b e
i i

N MLN M
N L l k

i ij i i

i E i j E l i E k

N L N L

k k

i i i i M

i E k i E k

p f x

W x W x

=

• •

•

∈ ∈ = ∈ =

• •

∈ = ∈ =

  ∑   α       

  
  ×
  
  

∏ ∏ ∏∏ ∏

∏∏ ∏∏

L =

 (24) 

Note that, in the above likelihood, due to the 

appearance of the counting processes ( )b

i
N L

•
 and 

( )e

i
N L

•
, we do not take into account all the trajectories 

but only those that have censoring at the beginning 

and/or at the end. All others without censoring, are 

included in the term ( )( )
( ) ( ) ,

1
1

l

i

L
N M l k

i ii E k

l

f x
•

∈ =

=

∏∏ ∏ . 

For the class of distributions given in (3), the 

logarithm of the likelihood given in (24) takes the form: 
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+
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 (25) 

 

The estimator ( )ˆ ,
ij
a L M  is obtained by solving the 

following equation: 
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 (26) 

 

Among the estimators of aij, one should choose, 

according to the case under investigation, the appropriate 

expression for the determination of the estimators of pij, 

Wi and Qij, namely: 

 

( )
( )

( )

( )

( )

ˆ , ,
ˆ , ,

ˆ , ,

ij ij

ij

im i

m E

a L M N L M
p L M

a L M N L M
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= =

∑
 (27) 

 

( ) ( )
( )ˆ ,ˆ ; ,

im

m E

a L M

i
W t L M F t ∈

∑=     (28) 

 

and: 
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( )ˆ ,ˆ ,
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m E
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Vlad Stefan Barbu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 259.272 

DOI: 10.3844/jmssp.2019.259.272 

 

265 

Note that for L = 1, ( )ˆ 1,
ij
a M  = ( )ˆ

ij
a M . 

For the uncensored case the above estimators have 

explicit forms by combining (27) - (29) with (12) - (18) 

depending on the number of trajectories. Furthermore, 

the consistency of the resulted estimators in the case of 

no censoring can be established due to the explicit 

expression of the associated estimators. In such cases the 

following proposition holds: 

Proposition 2 

For all I, j∈E, the estimators ( )ˆ
ij
a M  of aij given in 

(12), ( )ˆ ,
ij
a L M  of aij given in (18) and ( )ˆ ,

i
L Mα of αi 

given in (19), are strongly consistent, i.e.: 

 

( )

( )

( )

. .

. .

. .

ˆ ,

ˆ , ,

ˆ , .

a s

ij ijM

a s

ij ijL

a s

i iL

a M a

a L M a

L M

→∞

→∞

→∞

→

→

α →α

 

 

Proof 

The proof follows along the lines of the proof of 

Theorem 1 (Barbu et al., 2017) by taking under 

consideration the convergence of the empirical 

estimators to the true transition probabilities of the 

embedded Markov chain, the law of large numbers and 

the fact that the MRC is regular. 

The following Corollary follows immediately from 

the Proposition above. 

Corollary 1 

For all I, j∈E and t > 0 and under the setting of this 

Section, for L sample paths, L≥2 of length M of a semi-

Markov process, the estimators of Qij(t), pij, Wi(t), fi(t) 

obtained by considering the estimators ( )ˆ ,
ij
a L M  of aij 

given in (18) and ( )ˆ ,
i
L Mα  of αi given in (19), are 

strongly consistent, as L goes to infinity. 

The above Corollary holds also for L = 1 with 

( )ˆ
ij
Mα given in (12) when M tends to infinity. 

Special Case for the Class of Distribution 

Closed Under Minima 

In this Section, a similar framework as in Barbu et al. 

(2017) is considered in order to investigate the case of 

censoring at the beginning for the following class of 

distribution functions which is closed under minima 

(30). More precisely, in the cited paper we have 

considered the case of no censoring and the case of 

censoring at time M for both situations of one sample 

path and several sample paths. However, here we deal 

with the general case where some of the sojourn times 

are censored either at the beginning and/or at the end for 

several trajectories. 

Similarly, as in the case of class (3), the class of 

distributions given by: 

 

( ) ( )( ); : 1 1 ;1 ,
a

F t a F t= − −  (30) 

 

is absolutely continues w.r.t the Lebesgue measure and 

with density f(t; a). 

Members of the above class if distributions is the 

Geometric distribution, the Pareto distribution, the 

Weibull distribution, the Exponential, the Rayleigh and 

the Erlang truncated exponential. 

The following Lemma shows that the class (30) is 

closed under minima (cf. Balasubramanian et al., 1991). 

Lemma 2 

Let X1,…,XN be inid random variables such that Xi ∼ 

F(x; ai) which belongs to class (30). Then the 

distribution function F
(1)
 of the minimum order statistic 

X(1) belongs also to (30). 

The evolution of the model, in this case, is governed 

by the following characteristic: The minimum value of 

Til identifies the next visited state, assuming that the 

process was in state i. Thus, under this setting the semi-

Markov kernel takes the form (cf. Barbu et al., 2017): 

 

( ) ( ),ij ij i
Q t p W t

•
=  

 

where: 

 

( ) ( )1 1 1
| , |ij n n ij il np J j J i T T l J i

− − −

= = = = ≤ ∀ =P P  

 

and: 

 

( ) ( ): ,   ,
ij i

W t W t independent of j
•

=  

 

which represents the cdf of the sojourn time in state i 

(unconditional to the next state to be visited). 

Similarly, as before, it holds that: 

 

( ) ( ).ij i

j

Q t W t
•

=∑  

 

Proposition 3 

According the setup of this section, the following 

quantities can be derived: 

 

( ) ( )( )1 1 ,
im

m E

aij

ij

ik

k E

a
Q t F t

a
∈

∈

∑ = − −
  ∑

 (31) 
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,
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im

m E

a
p

a

∈

=

∑
 (32) 

 

( ) ( ) 11 1

N

im

m

a

i
W t F t =

•

∑= −  −    (33) 

 
and: 
 

( ) ( )( )
( )

( )
1

1

1 .
1

N

im

m

N
a

i im

m

f t
f t a F t

F t
=

•

=

∑
= −

−
∑  (34) 

 
Consider the case of L trajectories where some of the 

sojourn times are censored either at the beginning or/and 

at the end. Recall that ( )l
b

δ  and ( )l
e

δ  are indicators of 

censored for the beginning and for the end respectively. 

Given L censored sample paths of a semi-Markov process: 
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δ δ 
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then the associated likelihood: 
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L =

 (35) 

 
For the class of distributions given in (30), the above 

likelihood takes the form: 
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Therefore, the estimator ( )ˆ ,
ij
a L M  in this case becomes: 
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where: 
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and: 
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1
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i
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•

=
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The estimator for the initial law, as in the previous 

class, is described by: 
 

( )
( ),0ˆ , .

i

i

N L
L M

L
α =  (38) 

 

Remark 1 

In the case of no censoring, the estimator in (37) is 

reduced to the estimator given in Barbu et al. (2017): 
 

( )
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1 1
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ˆ , .

log 1

l
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ij

ij
N ML

l k
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F X
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 (39) 

 
Note that the proper form of the estimators given in 

Barbu et al. (2017), in the case of L trajectories with 

censoring at time M is as follows: 
 

( )
( )

( ) ( )

,
ˆ , ,

, ,

ij

ij

i i

N L M
a L M

B L M C L M
= −

+

 

 
where, Ci(L,M) is in place of C(L,M). 

The consistency of the above estimators is provided 

in the Proposition below. 

Proposition 4 

For all I, j∈E, the estimators ( )ˆ ,
ij
a L M  of aij given in 

(37) is strongly consistent, i.e.: 
 

( ) . .ˆ , .
a s

ij ijL
a L M a

→∞
→  

 
The proof is omitted due to the similarity with the 

proof of Theorem 1 (Barbu et al., 2017) and Proposition 

2 at the end of Section 3. 

Markov Renewal Function and Semi-

Markov Transition Matrix 

The Markov renewal function and the semi-

Markov transition function are furnished and 

discussed in this section. 

The Markov renewal function Ψij(t), i, j∈E, t≥0, is 

defined as (cf. Limnios and OpriAan, 2001): 
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 (40) 
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where, ( )n
ij

Q  denotes the n
th
 convolution of Q by itself, 

namely: 
 

( ) ( )

( ) ( ) ( )
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{ }
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1 , 0.

t n
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≥

 − ≥
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

= =
 δ =

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∑∫
 

 
For the class of distributions closed under maxima 

and according to (4), the Markov renewal function takes 

the form: 
 

( ) ( )( ) ( )( ) ( ) ( )
1 1

0
0

.
im

m E

t a n

ij ik kj

n k E

t a F s f s Q t s ds∈

∞

−
−

= ∈

∑Ψ = −∑∑∫  (41) 

 
The semi-Markov transition matrix (function) is 

defined as: 
 

( ) ( )0
: | , , .ij tP t Z j Z i i j E= = = ∈P  (42) 

 
Limnios and OpriAan (2001) proved that the semi-

Markov transition function satisfies the following 

Markov renewal equation (MRE): 
 

( ) ( ) ( )( ); ,N ij

j

P t I diag Q t i E Q P t
 

= − ∈ + 
 
∑ �  

 
where, IN is the N × N identity matrix, � represents the 

convolution and "diag" is a diagonal matrix. 

Let W(t) := diag (Wi(t); i ∈ E) = 

( );ij

j

diag Q t i E
 

∈ 
 
∑ = diag (Q⋅1N) (t) be the diagonal 

matrix where the (i, i) element is Wi(t) = ( )ij

j E

Q t
∈

∑ and 1N 

= ( ) ( )
T T

1, ,1 ,

N

⋯
�����

 denotes the transposed of a vector. 

Limnios and OpriAan (2001) established the unique 

solution of the above MRE: 

 

( ) ( )
( )

( )( )( ) ( )( )( )
1

,

N N N
P t I Q I W t I W t

−

= − − = Ψ −� �  (43) 

 

where, Ψ(t) = (Ψij(t))i,j∈E and it is shown that (IN-Q)
(-1)
 (t) = 

Ψ(t), where ()
(-1)
 denotes the inverse convolution function. 

Let us consider the case of several trajectories where 

we may have censoring at the beginning and/or at the 

end. Then, the estimators ( )ˆ
ijP t  and ( )ˆ

ij
tΨ , i, j∈E, t > 0, 

are given by: 

 

( ) ( )ˆˆ ˆ; , 1 ; ,ij ij jk

k E

P t L M Q t L M
∈

  
= Ψ −  

  
∑�  (44) 

and: 
 

( ) ( ) ( )

( ) ( ) ( )

0

1

0
0

ˆˆ ; , ; ,

ˆ ˆ; , , , ,

n

ij ij

n

t n

ik kj

n k E

t L M Q t L M

Q s L M Q t s L M ds

∞

=

∞

−

= ∈

Ψ =

= −

∑

∑∑∫
 (45) 

 
where the appropriate estimator for aij obtained in the 

previous section, is chosen for deriving ( ) ( )ˆ ; ,
n

ij
Q t L M . 

Reliability/Survival Analysis Indicators 

For the purpose of this section we assume that the state 

space E can be splitted into two subsets, U (containing the 

functioning states) and D (containing the failure states), 

such as E = U∪D and E = U∩D = ∅, where let say that U 

= {1,…, n} and D = {n +1,…,N}. Each matrix can be 

partitioned according to this state space partition. 

This section is devoted to the construction of estimators 

for a variety of reliability indicators in the case of several 

censored paths at the beginning and/or at the end (Limnios 

and Ouhbi, 2003). 

Reliability 

The reliability at time t, R(t), is defined by: 
 

( ) ( ) ( ), ,

D s
R t T t Z U s t= > = ∈ ≤P P  

 

where, TD := inf{t|Zt ∈ D} is the lifetime of the system. 

The following result presents the estimator of the 

reliability of a semi-Markov system in terms of 

estimators of basic quantities of a semi-Markov process. 

Proposition 5 

For a semi-Markov system, the estimator of the 

reliability at time t > 0 is given by (cf. Ouhbi and 

Limnios, 1996): 
 

( ) ( ) ( )ˆ ˆˆ; , , ; , 1 ,
U UU n

R t L M L M P t L M= α  (46) 

 

where, ( )ˆ ,
U

L Mα  is an estimator of αU and b ( )ˆ ; ,UUP t L M  

is an estimator of PUU(t). 

Lemma 3 

The estimator of the failure rate of the system is 

given by: 

 

( )
( )

( )

ˆ ; ,
ˆ ; , : , 0.

ˆ ; ,

R t L M
t L M t

R t L M

′
λ = − >  (47) 

 

Availability 

The availability of the system, A(t), is defined as: 
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( ) ( ).t
A t Z U= ∈P  (48) 

 

Proposition 6 

The estimator of the availability at time t > 0, for a semi-

Markov system, is given by (Ouhbi and Limnios, 1996): 

 

( ) ( ) ( )
;

ˆ ˆˆ; , , ; , 1 ,
N n

A t L M L M P t L M= α  (49) 

 

where, ( )ˆ ; ,P t L M  is the estimator of P(t), ( )ˆ ,L Mα  is the 

estimator of α and ( )
T

;
1 1, ,1,0, ,0
N n

n N n−

= ⋯ ⋯
����������

. 

Maintainability 

The maintainability of the system, M(t), is defined by: 

 

( ) ( ) ( )1 , ,
U s

M t T t Z D s t= ≤ = − ∈ ≤P P   (50) 

 

where, TU := inf{t|Zt ∈ U} is the duration of repair. 

Proposition 7 

The estimator of the maintainability at time t > 0, for 

a semi-Markov system, is given by (cf. Limnios and 

OpriAan, 2001): 

 

( ) ( ) ( )ˆ ˆˆ; , 1 , ; , 1 ,
D DD N n

M t L M L M P t L M
−

= − α  (51) 

 

where, ( )ˆ ,
D

L Mα  is an estimator of αD and b ( )ˆ ; ,
DD
P t L M  

is an estimator of PDD(t). 

The Mean Time to Failure 

The Mean Time To Failure (MTTF) is defined as the 

mean lifetime, namely: 

 

( ): .
D

MTTF T= E  

 

Let introduce first the mean sojourn times vector m := 

(m1,…,mN)
T
, where: 

 

( ) ( ) ( ) 1
1 0

0 0

: | 1 1

N

ij

j

a

i i
m S J i W t dt F t dt=

∞ ∞ ∑= = = − = −     
 

∫ ∫E  

 

is the mean sojourn time spent in state i. Note that for a 

regular and positive recurrent MRP, we have mi < ∞, I ∈ 

E (cf. Limnios and OpriAan, 2001). 

The estimator of mi can be obtained in two ways, 

firstly using an MLE considering the estimators obtained 

in Section 3 and secondly using the empirical estimator. 

We can estimate the mean sojourn time in state i in two 

different ways, namely using a plugin MLE (considering 

the estimators obtained in Section 3) or the empirical 

estimator, namely: 

 

( ) ( ) ( )( ) ( )
( )

1

ˆ ,1

0 0

ˆˆ , : 1 ; , 1

N

ij

j

a L M

i i
m L M W t L M dt F t dt=

∞ ∞ ∑= − = −     
 

∫ ∫  

 

and: 

 

( ) ( )

( )

( ) ( )

( )

,

2 1ˆ , : ,
,

l

i
N M

l k

i

k

i

i

X

m L M
N L M

=

=

∑
 

 

where the estimators of aij are obtained in Section 3. For 

more details concerning the MTTF of a semi-Markov 

system, one can see (Limnios and OpriAan, 2001). 

Proposition 8 

Let a semi-Markov system, where the matrix 

( )( )ˆ
n UU
I p M−  is nonsingular. The estimator of MTTF 

can be obtained by one of the following two expressions: 

 

�
( )
( ) ( ) ( )( ) ( ) ( )

�
( )
( ) ( ) ( )( ) ( ) ( )

1 1
1

2 1
2

ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ, , , , ,

U n UU U

U n UU U

MTTF L M L M I p L M m L M

MTTF L M L M I p L M m L M

−

−

= α −

= α −

 

 

where, ( )ˆ ,
UU
p L M  is the estimator of pUU; ( )ˆ ,

U
L Mα  is 

an estimator of αU, 
( ) ( )1
ˆ ,
U

m L M and ( ) ( )2
ˆ ,
U

m L M are the 

restrictions to set U of ( ) ( )1
ˆ ,
U

m L M  and ( ) ( )2
ˆ ,
U

m L M , 

respectively. 

Following a similar procedure, one can obtain the 

estimator of the Mean Time To Repair (MTTR), defined 

as ( ):
U

MTTR T= E . 

Corollary 2 

For all i, j∈E and t > 0 and under the setting of Section 

3, for L sample paths, L ≥ 2 of length M of a semi-Markov 

process, the estimators of Ψij(t), Pij(t), R(t), λ(t), A(t), M(t), 

MTTF, obtained by considering the estimators ( )ˆ ,
ij
a L M  of 

aij given in (18) and ( )ˆ ,
i
L Mα  of αi given in (19), are 

strongly consistent, as L tends to infinity. 

Simulations 

Estimation 

A series of simulations in R is analyzed in order to 

evaluate the accuracy of the proposed procedures. For 

this purpose we consider L sample paths of a semi-

Markov process, where we assume that the observation 

time M is set to be 1000 and the sojourn times follow the 
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Power Function distribution that belongs to the class of 

distributions closed under maxima, namely: 
 

( ) 1

; , 0 , 0,ij

ij

aij

ij a

a
f t a t t c c

c

−

= ≤ ≤ >  

 
where, c is the scale parameter and is taken to be 100. 

The initial distribution α is considered to follow the 

discrete Uniform distribution with parameters 1 and N. 

In this work we study several cases, like: 
 

• Uncensored sample paths 

• Censored sample paths at the end (50% censored 

rate for the times associated with the end of the 

trajectory) 

• Censored sample paths at the beginning (50% 

censored rate for the times associated with the 

beginning of the trajectory) 

• Censored sample paths at the beginning and/or at the 

end (50% censored rate for the times associated with 

the beginning/end of the trajectory) 
 

The above cases can also be studied in the case of 

one trajectory. Variations of the above cases are also 

possible. Furthermore, one can consider other 

distributions for the sojourn times that belong to one 

of the two classes of distributions and investigate a 

variety of scenarios like the ones above. For the 

purpose of the simulation study the values are 

arbitrarily chosen in Table 1. 

Several Uncensored Sample Paths 

One way of illustrating the accuracy of the 

estimators is by providing the Squared Errors (S.E.) of 

the estimators for several values of L. The results are 

shown in Table 2. Observe that the accuracy for the 

transition probabilities of the embedded Markov chain 

is higher than that of the transition rates. As expected 

the squared errors are extremely good even for very 

small sample sizes. 

Observe that the larger the number of trajectories, the 

smaller the squared errors of the estimators of aij and pij. 

On the other hand, according to Table 3, the smaller the 

value of t the most accurate the estimators of the 

transition probabilities of the semi-Markov process. In 

other words, we have more accurate predictions as we 

get closer to the present. 

Several Censored Sample Paths at the Beginning 

and/or at the End 

Let us first explain, the way we simulate the 

censoring at the beginning. Using a Bernoulli we 

randomly choose the trajectories that have censored 

sojourn time in the first visited state. For the 

trajectories that do have censoring at the beginning, 

we randomly cut the interval that have been computed 

as the first sojourn time in two parts using the 

Uniform distribution with parameters 0 and the first 

sojourn time that has been computed. The second part 

is considered to be the censored sojourn time in the 

first visited state. Of course, one can consider 

modifications of the above procedure. 

As for the trajectories that have censored sojourn time in 

the last visited state, the same procedure is followed. 

It should be noted that the censoring rate which is 

taken to be equal to 50% refers not to all sojourn times but 

only to the times associated with the beginning and/or the 

end of the trajectory. Consequently, the overall percentage 

of all sojourn times is much less than 50%. 

The estimated values of the parameters for L = 1000 

rejection with censoring at the beginning and/or at the 

end one pointed in the Table 4. Table 5 gives a 

comparison between the estimators of aij and pij obtained 

for different values of L. The estimators approach the true 

value as L increases. In addition, Table 6 shows that we 

obtain good estimators for values of t approaching the upper 

limit and even better estimators, in terms of the squared 

errors for small values of t. The estimators in the central 

part of the time interval appear to be less accurate as 

compared with the ones at the end points of the intervals. 

One Censored Sample Path at the Beginning and at 

the End 

Table 7 provides the estimated values of aij, pij in the 

special case of one censored sample path at the 

beginning and at the end, where the observation time M 

is set to be 100000. For the specific example the number 

of visited states is 74031. 

The accuracy of the estimators is studied using the 

square errors for several values of M. The results for M = 

1000, 10000 and 100000 are shown in Tables 8 and 9. 

The conclusions are similar to the ones in the case of 

several censored paths. According to Table 8 as M 

increases we obtain much better estimators. Table 9 

gives better estimators for small values of t with a small 

reduction of the squared errors while we approach the 

upper limit of the time variable. 
 
Table 1: Transition rates aij and transition probabilities pij used 

for the simulation study. 

 1 2 3 

aij 

1 0 0.5 1 

2 1.2 0 0.9 

3 1.4 1.5 0 

pij 

1 0  0.333  0.667 

2 0.5714  0  0.4286 

3 0.4828  0.5172  0 
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Table 2: S.E. for the estimators of aij and pij in the case of no censoring, for various values of L 

S.E.\L 5 10 100 1000 

( )ˆ ,
ij
a L M   3.70943×10−1 2.21032×10−1  1.31127×10−2  7.240581×10−3 

( )ˆ ,
ij
p L M   4.24745×10−2 1.79203×10−2  5.74847×10−5 8.24954×10−6 

 
Table 3: S.E. for the estimators of the semi-Markov transition probabilities in the case of no censoring (L = 1000), for various 

values of t 

S.E.\t 1 25 50 75 100 

( )ˆ ; ,
ij
P t L M  3.19490×10−8 4.57773×10−5 1.10313×10−4 1.84713×10−4 6.43798×10−4 

 
Table 4: Estimated values of the transition rates aij, transition probabilities pij and initial law ai in the case of L = 1000 trajectories 

with censoring at the beginning and/or at the end 

 1 2 3 

( )ˆ ,
ij
a L M   

1  0  0.4625  0.9789 

2  1.0893  0  0.8407 

3  1.2890  1.3778  0 

( )ˆ ,
ij
p L M  

1  0  0.3209  0.6791 

2  0.5644  0  0.4356 

3  0.4833  0.5167  0 

i  

( ),
i
L Mα  0.319  0.355  0.326 

 
Table 5: S.E. for the estimators of aij and pij in the case of censoring at the beginning and/or at the end, for various values of L 

S.E.\L 5 10 100 1000 

( )ˆ ,
ij
a L M   2.423613  2.98703×10−1 6.50080×10−2  4.48959×10−2 

( )ˆ ,
ij
p L M   2.67957×10−2  1.95020×10−2 7.11892×10−2  4.09628×10−4 

 
Table 6: S.E. for the estimators of the semi-Markov transition probabilities in the case of censoring at the beginning and/or at the 

end, for various values of t. 

S.E.\t 1 25 50 100 

( )ˆ ; ,
ij
P t L M   1:61768×10−7  5:61013×10−5  2:23401×10−3  9:09540×10−4 

 
Table 7: The estimated values of the transition rates aij and the transition probabilities pij in the case of 1 trajectory with censoring at 

the beginning and at the end 

 1 2 3 

( )ˆ
ij
a M   

1  0  0.4864  1.0332 

2  1.2421  0  0.9254 

3  1.4786  1.6130  0 

( )ˆ
ij
p M  

1  0  0.3201  0.6799 

2  0.5731  0  0.4269 

3  0.4783  0.5217  0 

 
Table 8: S.E. for the estimators of aij and pij in the case of 1 trajectory with censoring at the beginning and at the end, for various 

values of the observation time M 

S.E.\M 1000 10000 100000 

( )ˆ
ij
a M   7.71  1.88320×10−1  2.26453×10−2 

( )ˆ
ij
p M   4.32255×10−1  1.73480×10−2  3.97106×10−4 
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Influence of Taking into Account the Censoring 

We would like now to examine the case of 

estimating the parameters where in the target case we 

have censoring (for example at the end). We take into 

account two different cases: (i) The case of estimating 

the parameters using the formula with censoring at the 

end; (ii) and estimating the parameters using 

(incorrectly) the formula without censoring, under the 

assumption that the first and the last observation times 

(0 and M) are jump times. 

This is done in order to investigate the influence of 

taking into account the censoring. For this procedure we 

consider both statistical settings with one trajectory and 

several trajectories. 

The average number of visited states in L = 10 

trajectories for the values of M in Table 10 is 8.5, 

15.8, 150.1, 1483.3 and 14825.5 respectively. The 

average length of trajectories (the average total non-

censored sojourn time) is 471.4447, 967.3908, 

9964.861, 99950.99 and 999956.5 respectively. 

Observe that, in the cases where the censored part 

represents approximately more than 1% of the average 

number of visited states, the target case gives better 

estimators than the case where we do not take into 

account the censored part. However, when the 

censored part represents less than 1% of the average 

number of visited states, the contribution of the 

censored part is not significant. 

The number of visited states for the values of M in 

Table 11 is 7, 19, 147 and 1467 respectively. The length 

of the trajectory (the total non-censored sojourn time) is 

421.7443, 999.8391, 9937.624 and 99988.39 

respectively. Observe that, in the cases where the 

censored part represents the 12% of the number of 

visited states, the target case gives better estimators than 

the case where we do not take into account the censored 

part. However, when the censored part represents less 

than 12% of the number of visited states, the 

contribution of the censored part is not significant. Note 

that the huge difference between the two cases for M = 

500 is predictable since the censored part is not to so 

small as compared to the total trajectory. 

Simulations: Reliability 

Let us consider the complete (full) case of several 

sample paths with censoring at the beginning and/or at 

the end in order to investigate the behavior of several 

reliability indices that have been proposed in Section 6. 

According to Table 12 the Reliability estimator 

performs better for values of t that belong to the second and 

third quarter of its domain. However, as for the estimators 

of Availability and Maintainability, there is no significant 

difference for the entire spectrum of the time interval. 

 
Table 9: S.E. for the estimators of the semi-Markov transition probabilities in the case of censoring at the beginning and/or at the 

end, for various values of t 

S.E.\t 1 25 50 100 

( )ˆ ;
ij
P t M  1.15749×10−8  7.84353×10−5  5.87928×10−3  5.695643×10−4 

 
Table 10: S.E. for the estimators of aij in the case of L = 1000 trajectories with censoring at the end, for several values of the 

observation time M 

S.E.\M 500 1000 10000 100000 1000000 

( )ˆ ,
ij
a L M  (case (i)) 0.6119373  0.04237282  0.02595444  0.001830896  0.0001634836 

( )ˆ ,
ij
a L M  (case (ii)) 0.6571087  0.0511309  0.02698702  0.001829154  0.0001637393 

 
Table 11: S.E. for the estimators of aij in the case of 1 trajectory with censoring at the end, for several values of the 

observation time M 

S.E.\M 500 1000 10000 100000 

( )ˆ
ij
a M  (case (i))  8.754049  2.637813  0.3570539  0.05331928 

( )ˆ
ij
a M  (case (ii))  18.75966  2.6378166  0.3603736  0.05330249 

 
Table 12: S.E. for Reliability indices in the case of several trajectories (L = 1000) with censoring at the beginning and/or at the end, 

for several values of t 

S.E.\t 1 25 50 100 

( )ˆ ;  ,R t L M  5.26994×10−5  7.72747×10−6  1.60258×10−6  3.18534×10−5 

( )ˆ ;  ,A t L M   5.27137×10−5  2.34896×10−5  2.45494×10−5  2.83508×10−5 

( )ˆ ;  ,M t L M  5.37922×10−5  8.83381×10−5  1.829589×10−4  2.25083×10−5 
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Conclusion 

As mentioned earlier the main objective of this work 

is the proposal of parsimonious modeling for multi-state 

systems, considering also a semi-Markov framework. 

This is a useful and powerful tool applicable to diverse 

scientific fields such as economics and finance, 

biomedicine, geosciences, engineering, etc. As future 

work we wish to implement the proposed methodology 

to geosciences and in particular to seismology using real 

seismic data. In such a case the seismic zones are 

considered as the states of a semi-Markov process and 

the proposed methodology is employed for estimating 

the transition probabilities of seismic events transit from 

a specific seismic zone to another one. 
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