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Abstract: The stock market is an integral part of investments as well as 

the economy. The prediction of stock prices is an exciting and challenging 

problem that has been considered by many due to the complexity and noise 

within the market and to the potential profit that can be yielded from 

accurate predictions. We aim to construct and compare models used for the 

prediction of weekly closing prices for some of the top stocks in the New 

York Stock Exchange (NYSE) and to discuss the relationship between 

stock prices and the predictor variables. Relationships explored in the 

study include that with macroeconomic variables such as the Federal 

Funds Rate and the M1 money supply and market indexes such as the 

CBOE Volatility Index, the Wilshire 5000 Total Market Full Cap Index, 

the CBOE interest rate for 10-year T-notes and bonds, and NYSE 

commodity indexes including XOI and HUI. Models are built using 

methods of regression analysis and time series analysis. Models are 

analyzed and compared with one another by considering their predictive 

ability, accuracy, fit to the underlying model assumptions, and usefulness 

in application. The final models considered are a pooled regression model 

involving the median weekly closing price across all stocks, a varying 

intercept model considering the weekly closing price for each individual 

stock, and an ARIMA time series model that predicts the median weekly 

closing stock price based on past prices. 

 

Keywords: Model Comparison, Regression, Time Series Analysis, 

Varying Intercept, Stock Market 

 

Introduction 

Introduction to Data 

Data Description 

When it comes to creating an investment portfolio 

to build up held assets, there are several different 

asset classes to choose including bonds, cash 

equivalents, and equities. Equities, or stocks, are the 

most volatile but can generate a large profit. It is 

crucial to understand patterns in equity prices as it is 

vital to those who wish to invest in the stock market. 
The study focuses on stocks within a specific exchange 

rather than an index such as the S&P 500, so that the 

values estimated can be consistent within the same 

market. Stocks within the S&P 500 are sold in different 

exchanges which can affect the estimated price of that 

stock. Out of all possible exchanges, the NYSE is chosen 

since it is the largest stock exchange in the world. 

Stock data is time series since it contains prices over 

time where each time point is related to the previous time 

point. It is possible to look at stock prices over different 

time intervals such as hourly, daily, weekly and monthly. 

When looking at daily stock data, there are missing data for 

weekends and holidays. Excluding these data points would 

make the intervals between time points unequal, which 

would not be appropriate for time series analysis. Instead, 

this study uses weekly time points. There can be a great 

amount of variation among stock prices within a day, which 

can be largely attributed to white noise. Instead, this study 

considers trends over longer periods of time. 

New York Stock Exchange 100 

There are approximately 2,800 companies that have 

equities listed in the NYSE. The New York Stock 

Exchange 100, or NYSE 100, composes of a list of very 

promising, high achieving, and popular stocks. Since this 

group consists of successful and well-established stocks, it 
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provides a sample of stocks for this model that is relevant in 

application. The study investigates weekly closing stock 

prices in the NYSE 100 for each Friday from January 1, 

2000 through December 23, 2017 and includes 85 stocks 

from the NYSE 100. There are some stocks within the 

NYSE 100 that are missing from this study because they 

did not have the full range of data between these two dates. 

For each of the 85 stocks, this study contains data for 

the closing price for each Friday from January 1, 2000 

through December 23, 2017. The goal of this model is to 

be able to predict the closing price for a stock at a certain 

time point. For each stock, there are 939 data points 

which were retrieved from Yahoo! Finance. This study 

defines the closing price as Yit for each stock i = 1,..., 85 

for each week t = 1,..., 939. 

One variable that is used as a predictor is the volume 

of stock sold each week. The volume sold in the 

previous week is used to predict the volume sold in the 

current week. This study defines the volume sold as Vit 

for each stock i = 1,..., 85 for each week t = 1,..., 939. 

The second predictor is how stocks within the NYSE 

are categorized by sector. This is a way that stocks are 

grouped with other stocks that cater to the same sections 

of the economy and market. The 85 stocks that are 

modeled belong to 7 distinct sectors. 20 stocks belong to the 

Consumer Goods (CG) sector. This sector includes both 

cyclical and non-cyclical goods and services. Industry 

groups within this sector include automobile manufacturers, 

home construction, leisure goods and services, textiles and 

apparel, entertainment, broadcasting, retail, food, consumer 

services, cosmetics, and household products. 18 stocks 

belong to the Basic Materials (BSC) sector. Industry groups 

within this sector include chemicals, mining, metals, forest 

products, and paper. 16 stocks belong to the Financial (FIN) 

sector. Industry groups within this sector include banks, 

financial services, and insurance. 12 stocks belong to the 

Industrial (IDU) sector. Industry groups within this sector 

include construction, and industrial goods and services 

such as building materials, industrial equipment, 

aerospace, electrical components, and industrial 

transportation. 10 stocks belong to the Healthcare (HCR) 

sector. Industry groups within this sector include 

biotechnology, healthcare providers, medical products, 

and pharmaceuticals. 5 stocks belong to the Technology 

(TEC) sector. Industry groups within this sector include 

communications technology, technology services, 

technology hardware and equipment, and software. The 

last 4 stocks belong to the Utilities (UT) sector which 

includes electric, gas, and water utilities. 

Macroeconomic Variables 

Changes in stock prices are connected to several 

aspects of the economy, including those at the highest 

levels. Macroeconomic variables are those features of a 

national or international economy that describe the state 

of the market. These variables tend to be recorded 

monthly or annually rather than weekly and are useful 

for observing trends over long periods of time. 
The Federal Funds Rate (DFF) is the rate of interest 

in which institutions exchange funds held at Federal 
Reserve Banks. Institutions may lend portions of 
balances and funds to other institutions. The interest rate 
is influenced by the Federal Reserve, and decisions on 
the rate are determined by the state of the market. 
Changes in the interest rate influences spending. If the 
funds rate is high, exchange and spending is deterred 
resulting in decreased stock prices. If the funds rate is 
low, the cost of exchanging funds decreases, encouraging 
borrowing and spending, leading to increased stock prices. 
The data is monthly, was originally released by the Board 
of Governors of the Federal Reserve System and was 
retrieved from the Federal Reserve Bank of St. Louis 
(FRED). The study defines DFF as DFFt  for each week t = 
1,..., 939 (Online (a), 2018). 

M1 is the entire supply of physical money in the 
United States and is composed of federal notes and coins 
and some accounts such as demand deposits. M1 is also 
called narrow money because it includes only physical 
money and liquid assets that can be easily converted to 
physical money. M1 will always increase over time due 
to inflation. The data obtained is weekly and was 
originally released by the Board of Governors of the 
Federal Reserve System and was retrieved from FRED. 
The units for this data is in billions of U.S. dollars and is 
seasonally adjusted. The study defines M1 as M1t for 
each week t = 1,..., 939 (Online (b), 2018). 

Market Indexes 

Unlike the macroeconomic factors which give a broad 

look on the state of the economy, market indexes can be 

utilized to inspect the state of the stock market specifically. 

The Chicago Board Options Exchange (CBOE) 
created the Volatility Index (VIX) to measure market 
expectations of volatility in stock index prices. The VIX 
serves as a way to measure market risk. A low VIX index 

indicates low expected volatility meaning that stock 
prices are not expected to change quickly. A high VIX 
index indicates a high expected volatility meaning that 
stock prices are expected to change quickly. A higher 
amount of volatility also indicates increased uncertainty 
and risk in the market, which can deter investments and 

spending. The data obtained is weekly. The VIX data was 
originally released by the CBOE and was retrieved from 
FRED. This study defines VIX as VIXt for each week t = 
1,..., 939 (Online (c), 2018). 

TNX is the CBOE’s index that measures the interest 

rate for 10-year T-notes and bonds. Equities are a type of 

asset class along with bonds. Since both equities and 

bonds are used in financial portfolios, it is possible that 

changes in bond rates can affect whether or not a person 

decides to invest in stocks or bonds. The study defines 

TNX as TNXt for each week t = 1,..., 939. 
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The Wilshire 5000 Total Market Full Cap Index is 

known as being a comprehensive measure of equity in 

the U.S. market by including the average price of nearly 

5000 different stocks from various exchanges. The data 

obtained is weekly, and was originally published by 

Wilshire Associates, and was retrieved from FRED. This 

study defines the Wilshire 5000 as WILt for each week t 

= 1,..., 939 (Online (e), 2018). 

Stock prices can also be related to prices of major 

commodities within the United States. The NYSE 

provides current prices of various commodity groups 

alongside the prices of their equities for reference. The 

NYSE are distributed in three different commodity 

groups. The first is softs and includes goods such as 

coffee, cocoa, sugar, and cotton. The NYSE does not 

have an index for summarizing the prices of softs, so 

instead this model looks to the other two commodity 

groups. The second commodity group is energy and 

includes fuels such as gas and oil. In this study, the 

changes in prices of fuels are modeled using the NYSE 

ARCA Oil and Gas Index (XOI). The index provides the 

average prices of major oil and gas components within 

the market. The data is weekly and was retrieved from 

Yahoo! Finance. The study defines XOI as XOIt for each 

week t = 1,..., 939. The third and final commodity group 

is precious metals and includes rates for gold, silver, and 

platinum. In this study, the changes in prices of precious 

metals are modeled by the NYSE ARCA Gold Bugs 

Index (HUI). The index provides the average prices of 

stocks in companies within the gold mining industry. 

The data obtained is weekly and was also retrieved from 

Yahoo! Finance. This study defines HUI as HUIt for 

each week t = 1,..., 939 (Online (d), 2018). 

Introduction to the Study 

In literature, a common method for stock prediction 

is through machine learning and neural networks due to 

its versatile nature in using many predictor variables and 

its lenient model assumptions. The most common neural 

network is the Artificial Neural Network (ANN) seen in 

studies such as one by Moghaddama et al. (2016), who 

consider the prediction of daily NASDAQ rates using the 

day of the week and historical prices as inputs to produce 

accurate predictions. The drawback with neural networks is 

that they act as a black box building relations between the 

stock prices and the predictors making it difficult to 

interpret the model and the relationships therein. Instead, 

this study turns to more classical methods including 

multiple linear regression and time series analysis to 

provide more meaningful interpretations. 

Chang et al. (2012) study the daily stock trends using 

another type of neural network, and the Evolving 

Partially Connected Neural Network (EPCNN) explains 

that “mining stock market trend is a challenging task due 

to its high volatility and noisy environment”. Stock 

prices can be very volatile especially in the short run, 

which is why this study considers a longer time interval 

using weekly data to account for this short term 

environment. Chang et al. (2012) also expresses the 

strong relationship between stock trends and other 

outside factors. This study therefore considers many 

other economic variables as described in last subsection. 

Previous studies such as those by (Al-Tamimi et al., 

2011; Sharif et al., 2015) consider regression analysis for 

the prediction of stock prices using other predictor 

variables even though it is understood that there is a 

dependent relationship within the data due to its time 

series nature. Despite failing to meet the underlying 

assumption of independence, regression can still be 

used to statistically show the relationships between 

stocks and other variables that are known from an 

economic standpoint. 

Section 2 is dedicated to the pooled multiple linear 

regression model which is based on the median weekly 

stock price over all indexes. Section 3 discusses the time 

series model which takes advantage of the time series 

nature of the data. Section 4 is a multiple linear regression 

model that considers each of the 85 selected stocks in the 

NYSE individually. This study is concluded in Section 5 

which gives comparisons of the three models. 

Pooled Regression Model 

Multiple Linear Regression 

Regression models are used to show how the variation 

of stock prices are related to the predictor variables. 

Since the data are time series, time is used as a predictor. 

The pooled model considers predicting Yt which 

represents the median closing stock price for each week 

t. When pooling the closing price over all stock indexes, 

the median is used rather than the average because the 

average merges the variability within the data over time 

while the median will retain the patterns of variation. 

The distribution of prices at time t tends to be right 

skewed. This is because there are some larger and more 

popular companies within the NYSE 100 that have 

significantly higher stock prices than other companies. 

The volume of stock i sold at time t is also a variable 

that depends on the stock index. Similarly, with the 

closing price, this model considers the median volume 

sold at time t over each stock i, denoted by Vit. 

When conducting regression modeling, the data are 

partitioned into two parts: Training and testing data. The 

training data is used in the process of fitting the model. 

The testing data is used to check the fit of the model and 

make sure that there is not an overfitting of the model to 

the training data. Since the pooled data contains one data 

point or observation for each week, t, the data set for this 

model contains 939 data points. The data are randomly 

partitioned into the two groups with a 70%-30% split. 
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We comment that these two percentages are a common 

choice for splitting the data and the size of 939 

observations is big enough for the estimation of the 

models. The other possible choices could be 80%-20% 

and 50%-50% splits. 

For the model fitting, it is assumed that the 

relationship between the median closing stock price Yt at 

week t and the selected set of predictors variables, Xt1,..., 

Xtk, roughly follows the linear regression model: 

 

0 1 1 ...t t k tk tY X X       , 

 

where t is a random variable that represents the error. Let 

0 be the intercept and 1,...,k be the parameter coefficients 

for the predictors. All ’s are defined as fixed and unknown 

parameters. The regression model uses the least squares 

estimates of 1, ...,k which are the values that minimize the 

residual sum of squares. 

The notation for a multiple regression model can be 

simplified by writing the model in terms of vectors and 

matrices. Y is set as the vector of median closing prices 

Ytj from t = 1,..., 657 and X as the (k+1) 657 matrix of 

all k predictor variables Xtj from t = 1,..., 657 and j = 1,..., 

k. The first column of the matrix is a vector of all ones 

corresponding to the intercept.  is the vector of the 

unknown parameters 1, ...,k and is the vector of error 

terms from t = 1,..., 657. The model can then be 

rewritten as Y = X  +. 

Stepwise Variable Selection 

Classically, there are three popular methods of 

variable selection: forward selection, backwards 

elimination, and stepwise selection. Each of these 

methods determines which predictor variables should be 

included in the model with the goal of minimizing a 

selection criterion such as the Akaike Information 

Criterion (AIC), which is defined as: 

 

AIC = -2log (L()) + 2k, 

 

where k is the number of parameters and L() is the 

likelihood function. The median closing prices are assumed 

to be normally distributed such that YN (X,2). 

AIC is a criterion used for model comparison where 

the ideal model is the one with the smallest AIC. The 

criterion considers the fit of the model to the data by 

maximizing the likelihood function. The added 2k 

penalizes the complexity of the model. The method of 

forward selection begins with a null model where Y = 1. 

Then for each step or iteration in the process, a variable 

is added until either the AIC is minimized or there are no 

more predictor variables to introduce into the model. 

Backward elimination begins with a full model where Y 

= X +. In the full model, X contains all of the 

predictor variables that we are considering for the model. 

Then for each step or iteration in the process, a variable 

is removed from the model until the AIC reaches a 

minimum value. This study uses the method of stepwise 

selection since it is a combination of the previous 

methods. Stepwise selection begins with the null model 

where Y = 1. For each iteration in the process, a variable 

is either introduced to or removed from the model. The 

process ends once the AIC is minimized. 

Table 1 shows each of the iterations of the stepwise 

process for the pooled training data. In this variable 

selection procedure, all of the possible predictor 

variables were included in the final model meaning that 

each variable increased the maximum likelihood 

function so as to outweigh the cost of adding an 

additional variable. There are 9 iterations, and for each 

iteration a variable was introduced to the model. For 

each iteration, the AIC decreases at a slower rate, 

indicating that there are diminishing returns for the 

reduction of AIC due to the cost of adding an additional 

variable. Finally, note that the variables introduced into 

the model first are the variables that increase the 

likelihood function the most. 

Model Assumptions 

To obtain the final mode, the significance of the 

predictor and possible multicollinearity between 

predictors must be analyzed. 

Multicollinearity in a model occurs when 

predictors are highly correlated with one another. 

Multicollinearity is undesirable because it adds 

unnecessary complexity to the model. 

One way to check for multicollinearity is by 

assessing the correlation between each of the predictor 

variables. Figure 1 gives the correlation between each of 

the variables in the model rounded to the nearest tenth. 

Some of the strongest correlations involving predictors 

include time, the Wilshire 5000 index, and M1. For 

example, there is a strong positive correlation between 

M1 and time (nearly 90%). This relationship is due to 

the effect of inflation over time. Inflation causes prices 

to increase over time relating to an increase of the money 

supply. The result of inflation over time can be an 

underlying effect for correlation between the predictors 

and time. 

To deal with multicollinearity, it is best to remove 

predictors that are highly correlated with other predic-

tors. The Variance Inflation Factor (VIF) for each 

variable, as shown in Table 2, can be used to 

determine which predictors should be removed from 

the model and is defined as: 

 

2

1

1
j

j

VIF
R




.



Victoria Switlyk and Junfeng Shang / Journal of Mathematics and Statistics 2019, Volume 15: 233.249 

DOI: 10.3844/jmssp.2019.233.249 

 

237 

 

 

Fig. 1: Correlation Matrix 

 
Table 1: Iterations of the stepwise process and the 

corresponding AIC 

Iteration Add/Remove AIC 

0 - 3422.66 

1 +WIL 1869.37 

2 +XOI 1388.94 

3 +V IX 1290.56 

4 +HUI 1243.28 

5 +TNX 1238.86 

6 +DFF 1205.88 

7 +M1 1201.46 

8 +TIME 1193.40 

9 +V 1188.19 

 
Table 2: VIF of predictor variables 

Variable VIF VIF 

WIL 53.12 5.79 

XOI 7.52 4.35 

V IX 2.76 2.69 

HUI 4.75 3.28 

TNX 12.82 7.34 

DFF 5.22 3.69 

M1 133.05 - 

TIME 93.76 - 

V 3.79 2.60 

For the predictors X1,..., Xk, 
2

jR  is the correlation 

coefficient for the fit of Xj on the remaining k-1 variables. 

The correlation coefficient represents the amount of 

variation in Xj explained by the remaining predictors. If Xj is 

highly correlated with the other predictors, 2

jR  will be 

closer to 1 meaning that VIFj will be larger. 
M1 is the most highly correlated with the other 

predictor variables with a VIF of 133.05. Considering a 
reduced model with M1 removed solves the 
multicollinearity problem. 

If a predictor variable is significant, then the variation 
in the predictor variable can be used to explain the 
variation in the median closing price. In terms of the 
model, the slope coefficient for the variable will be 
significantly greater than zero. The significance is tested as: 
 

H0: E(Y) = 0 + 1 X1 +...+7 X7 

H: E(Y) = 0 + 1 X1 +...+6 X6. 
 

The null hypothesis is that the expected value of the 
median closing price follows a reduced model where one 
variable is removed leaving 6 predictor variables. The 
alternate hypothesis is that the expected value follows 
the full model instead where the 7 remaining predictor 
variables are included. The test statistic is: 
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/ ( 1)

F R

F

SSR SSR
F

SSE n k




 
, 

 

where SSRF and SSRR are the sum of squares for the 

regression model for the full and reduced models. These 

represent the amount of variation explained by the 

model. SSEF is the error sum of squares for the model or 

the amount of variation that is not explained by the 

model. n  k - 1 is the degrees of freedom under the full 

model where n = 657 is the number of observations in 

the training data and k = 7 is the number of predictor 

variables. The corresponding p-value results for the tests 

are shown in Table 3. 

Most p-values for the F test statistics (Table 3) are 

close to zero indicating that for each of those predictors 

is significant in the model. The only insignificant 

predictor is the median volume sold in week t (p-value is 

0.7298) and it is concluded that the median volume is not 

significant for predicting the median closing price when 

also considering the other predictors. 

After removing volume, the final pooled model is 

defined as: 

 

0 1 2 3 4 5 6
ˆ ˆ ˆˆ ˆ ˆˆ

t t t t t t tY WIL XOI VIX HUI TNX DFF            , 

 

where Ŷ  is the predicted median closing price at week t, 

0 6
ˆ ,...,   are the parameter estimates for the intercept 

and slope coefficients. The chosen predictor variables 

include the Wilshire 5000 Index (WIL), the Oil and Gas 

Index (XOI), the Volatility Index (VIX), Gold Bugs 

Index (HUI), the interest rate for 10-year T-notes and 

bonds (TNX), and the Federal Funds Rate (DFF). 

The four main assumptions of the model as shown by 

Dielman (2005), are linearity between the closing price 

and the predictor variables, independence of the error 

terms or residuals, constant variance or ho-

moscedasticity of the residuals, and normality for the 

distribution of the residuals. 

Based on the Q-Q plot shown in Fig. 2, points near 

zero tend to follow a straight line while points farther out 

tend to stray farther from the line and create a curved 

shape on the end points. This indicates that values closer to 

the zero are closer to the theoretical values following the 

normal. Values on the end points of the graph indicate 

values that differ greatly from the normal model. The 

unusual prices can be due to external effects or anomalies in 

the market or across the economy as a group. 

Interpretation and Fit of the Model 

The most common way to assess the fit or the 

predictive capabilities of the model is with the 

coefficient of determination which represents the 

percentage of the variability in the response value that 

can be explained by the variability in the predictor 

variables. The coefficient of determination is defined as: 

 
Table 3: Significance of the predictor 

Variable F-Statistic p-value 

WIL 17493.0100 <0.0001 

XOI 941.1400 <.0001 

V IX 123.0200 <.0001 

HUI 53.8500 <.0001 

TNX 6.7200 .0098 

DFF 35.5000 <.0001 

V .1194 .7298 

 

 

 
Fig. 2: Normal Q-Q Plot 
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Table 4: Estimates of model parameters 

Variable Parameter Estimate 

Intercept 0 22.4656 

WIL 1 0.3539 

XOI 2 0.0136 

V IX 3 -0.1587 

HUI 4 -0.0094 

TNX 5 -1.3197 

DFF 6 0.5498 

 

2

,
1

SSR
R

SST
   

 

where SSR is the sum of the squares of the residuals, or 
2

tt
e and SST is the total sum of squares, or 

2( )tt
y y . The residuals represent the amount of error 

caused by the discrepancies between the estimated 

values and the actual values. Therefore, the ratio of the 

residual sum of squares and the total sum of squares 

gives the percentage of variation related to the residuals. 

Therefore, R2 gives the variation of the median stock 

price that is accounted for by the model. Models that 

have a higher coefficient of determination tend to be a 

better fit and give better predictions because the model 

explains more of the variation in the stock price. The 

coefficient of determination for the pooled model is R2 = 

0: 9664, indicating that 96.64% of the total variance in 

the weekly median stock price for the top stocks in the 

NYSE 100 is linearly associated with the variance in the 

Wilshire 5000 Index (WIL), the Oil and Gas Index 

(XOI), the Volatility Index (VIX), Gold Bugs Index 

(HUI), the interest rate for 10-year T-notes and bonds 

(TNX), and the Federal Funds Rate (DFF). The 

percentage of explained variation is very high indicating 

that the model provides a good fit for the median stock 

price for the top stocks in the NYSE. 

The problem with considering R2 as a measurement 

of the fit for the model is that it will always increase 

when more predictors are added to the model. This means 

that based solely on the R2 a better model would be a model 

with more predictors. However, this is not true. As 

discussed previously, when creating a model, the goal is to 

have a well fit model that is as simple as possible. The 

adjusted coefficient of determination accounts for the 

complexity of the model and is defined as: 

 

2 / ( 1)
1

/ ( 1)
adj

SSR n K
R

SST n

 
 


. 

 

While the unadjusted value will always increase with 

each additional predictor added to the model, the 

adjusted value will only increase if the additional 

variation explained by the added predictor is greater 

considering the added complexity to the model. Given 

the two values, 2

adjR is preferred given the consideration 

of model complexity. The adjusted coefficient of 

determination for the pooled model is 2

adjR  = 0:9661 and 

indicates that 96.61% of the total variance in the weekly 

median stock price for the top stocks in the NYSE 100 is 

linearly associated with the variance in the Wilshire 

5000 Index (WIL), the Oil and Gas Index (XOI), the 

Volatility Index (VIX), Gold Bugs Index (HUI), the 

interest rate for 10-year T-notes and bonds (TNX), and 

the Federal Funds Rate (DFF). Compared to the 

unadjusted value, the adjusted value is only slightly 

smaller. This indicates that all of the predictors give 

additional explanation in the price variation meaning that 

their inclusion within the model is beneficial to the fit of 

the model considering the increased complexity. 

The coefficients feature the relationship between 

each predictor and the median closing price by analyzing 

the change or variability in stock price related to the 

change in our predictors. Table 4 lists the independent 

variables in the final model along with the corresponding 

coefficients which are estimates of the model parameters 

built from the least squares regression model. 

The estimate for the parameter 0 or the y-intercept is 

22.4656 and can be interpreted as the predicted median 

stock price when all predictors take a value of zero. The 

intercept does not have a meaningful interpretation in 

this model since it does not make sense for any of the 

predictors to take a value of zero. 
The regression coefficient for WIL is 0.3539 and 

indicates that holding all other variables constant, when the 
Wilshire 5000 Index increases by 1 point, it is predicted that 
the median closing stock price for the top stocks is NYSE 
100 and will increase by an average of $0.3539 or 
approximately 35 cents. As discussed earlier, the Wilshire 
5000 is used as a method to estimate the state of the stock 
market, so it is expected that we see a positive relation with 
the median closing price and the Wilshire Index. 

The regression coefficient for XOI is 0.3539 and 

indicates that holding all other variables constant, when 

the NYSE ARCA Oil and Gas Index increases by 1 

point, it is predicted that the median closing stock price 

for the top stocks in the NYSE 100 will increase by an 

average of approximately 35 cents. Since oil and gas are 

commodity goods, their price has a positive relationship 

with the price of stocks across the board. 

The regression coefficient for VIX is -0.1587 and 

indicates that holding all other variables constant, when 

the CBOE Volatility Index increases by 1 point, it is 

estimated that the median closing stock price for the top 

stocks in the NYSE 100 will decrease by an average of 

approximately 16 cents. Here we see the negative 

relationship between expected volatility and stock price. 

When it is expected that stock prices will become more 

volatile, people are more hesitant to invest in the market 

relating to a decrease in price. 
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The coefficient for HUI is -0.0094 and indicates that 

holding all other variables constant, when the Gold 

Index increases by 1 point, it is predicted that the median 

closing stock price for the top stocks in the NYSE 100 will 

decrease by an average of approximately 1 cent. The price 

of gold and the price of stocks have a negative relationship. 

Although there is a correlation between the two, they are 

not considered to be equivalent assets. That is, if the prices 

of stock equities are down, investors tend to choose to move 

their holds into gold instead, hoping to gain higher returns 

rather than continue to invest in a declining asset. For a 

well-balanced investment portfolio, it is safest to invest in a 

variety of assets such as stocks as well as gold because 

different assets can hold different price trends. 

The coefficient for TNX is -1.3197 and indicates that 

holding all other variables constant, when the CBOE 

interest rate for 10-year T-note bonds increases by 1 

percent, it is estimated that the median closing stock 

price for the top stocks in the NYSE 100 will decrease by 

an average of approximately $1.32. Similarly, with gold, 

bonds are a separate type of asset from stocks. Bonds are 

commonly found along with other equities in an investment 

portfolio. When the rates on bonds are increased, there is a 

higher yield for bonds value meaning that investors will 

tend to invest more in bonds as opposed to stocks. 

The regression coefficient for DFF is 0.5498 and 

indicates that holding all other variables constant, when 

the Federal Funds Rate increases by 1 percent, it is 

predicted that the median closing stock price for the top 

stocks in the NYSE 100 will increase by an average of 

approximately 55 cents. As explained earlier, the Federal 

Funds Rate is the interest that companies and banks must 

pay when borrowing from the Federal Reserve. From an 

economic standpoint, when the funds rate increases, it 

becomes more costly for businesses to invest or expand on 

their business, and higher costs are generally related to 

lower profit. When the economy is suffering, the Federal 

Reserve lowers the borrowing rate in order to promote 

borrowing and spending. For example, during the Great 

Recession, there are both low stock prices as well as low 

Federal Funds rates. 

The predicted values are obtained by plugging in the 

values for each of the predictors for each week into the 

model. The testing data include the values for 282 

randomly selected weeks from the original data set. 

Figure 3 features a plot of the testing data representing 

the actual median closing prices and the predicted 

closing prices obtained from the model. 

If the model is successful, the predicted values are close 

to the actual values. There is a very strong correlation 

between the predicted and training values indicating that the 

model has created accurate predictions. Since these 

predictions were made on data not used in the creation of 

the model, it is concluded that there is not a problem of 

overfitting of the model to the training data. 

Time Series Analysis 

Exploratory Data Analysis 

Time series analysis is available uniquely to data that 

occur sequentially over intervals of time. The purpose of 

this analysis is to forecast the weekly median closing 

price for the top stocks in the NYSE as is done in the 

pooled regression model from the previous chapter. 

The consideration of exploratory data analysis of the 

time series data is required before modeling can occur. 

Patterns are visualized through a time series plot of the 

data as shown in Fig. 4 which includes the median 

closing price for the NYSE for each week from January 

01, 2000 through December 23, 2017. 

Based on the time series plot over time, the median 

weekly closing price tends to increase, since inflation will 

drive prices higher. The data analyzed in this study has been 

recorded over 17 years which is a substantial period such 

that the effects of inflation are visible. 

Although there is a clear increasing trend in the closing 
price over time, there is a clear abnormality in this trend that 
occurs between late 2007 through mid 2009. Starting in late 
2007, there is a break in the increasing trend. At this point 
in time, the median closing price drastically decreases 
compared to the prices previously observed in the data. The 
visibility of this anomaly is not coincidental, but instead 
reflects the period that covers the Great Recession which 
officially occurred from December 2007 through June 
2009. When the recession began in 2007, it was a result of a 
crash in the United States real estate market which then 
brought repercussions to a global recession. Since the top 
stocks in the NYSE 500 mainly include companies based in 
the United States, the median closing prices for these stocks 
decrease sharply at this initial shock. During the early to 
mid 2000’s, the housing market in the United States was 
booming which led to increased investment in mortgage-
backed securities. These securities were issued at high rates 
which were not strictly regulated during this time. Because 
of the booming housing market, the values of the securities 
were high, but because of loose regulations, the mortgage-
backed securities were issued at high-risk rates. When the 
housing market crashed in late 2007, these securities 
drastically decreased in value causing many financial 
institutions invested in these securities unable to meet 
financial obligations or file for bankruptcy. The financial 
instability in major institutions expanded on the economic 
shock of the market crash. The recession led to 
decreased GDP, increased unemployment, decreased 
spending and other negative economic repercussions 
including a dramatic decrease in stock prices across 
the board. Even though the effects of the Great 
Recession on GDP and unemployment were not a 
large as the effects of the Great Depression, the 
effects of the former lasted for such a significant 
period and then spread across the world that it still 
holds the title Great. 
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Fig. 3: Fit of testing data vs predicted values 
 

 
 

Fig. 4: Closing price for each week 

 

Response to the crisis included federal funds rates to be set 

at minimum levels by the Federal Reserve. This action was 

to stimulate the economy by promoting spending and 

borrowing to increase liquidity of assets in the economy. 

From the time series plot in Fig. 4, there are periods 

where the change in the closing stock price is either larger 

or smaller. The most obvious example of this was the 

extreme decrease in price observed during the Great 

Recession. Because the occurrence of the recession is an 

anomaly in the economy, not only can it be related to a non-

stationary process, it can also have a potential of creating a 

model that is over fitted to this anomaly. Therefore, only the 

data after the Great Recession is used. 

Stationarity can be formally tested using the 

Augmented Dickey-Fuller (ADF) test which tests the 

null hypothesis that the data are not stationary against 

the alternative hypothesis that the data are stationary. For 

the entire set of data for all 939 weeks, the test statistic is 

-2.0018 with a p-value of 0.5776, which indicates that 

there is not sufficient evidence to reject the null 

hypothesis and we conclude that the data are non-

stationary. For the data occurring after the Great 

Recession, the test statistic is -2.5896 with a p-value of 

0.3282, which indicates that there is not sufficient 

evidence to reject the null hypothesis and it is concluded 

that the data are non-stationary. Also, the p-value for the 

data after the Great Recession is smaller than that for the 

entire data set which indicates that removing the drastic 

drop in price that occurred during the recession has 

reduced non-stationarity in the data. 
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Since it has been established that the data are non-

stationary, it is necessary to make the data stationary 

before modeling can be done. The most common way 

to obtain stationarity is through differencing which 

uses the difference or change in price over each week. 

In other words, the response of model is represented 

as Yt = Yt Yt1. 

Similarly, with the construction of the pooled 

model, the data for two-time intervals must be 

partitioned into training and testing data. Since the 

data are being retained as time series, the data are not 

partitioned randomly. Instead, the data for the last 

year will be reserved for testing so that the actual data 

can be compared with the model predictions. The 396 

weeks from June 6, 2009 through December 31, 2016 

make up the training data while the year of 2017 still 

represents the testing data set.  

Model Identification and Selection 

It has been determined that the differenced data, 

Yt = Yt Yt1 are stationary. The differenced data can 

be expressed as: 

 

1 0

p q

t j t j i t i

j i

Y Y  

 

      , 

 

where t represents the white noise that is assumed to be 

normally distributed with mean 0 and variance 2
. The 

past p observations included in the model and the 

corresponding coefficients of  represent the components 

of an auto-regressive process of order p. The past q white 

noise terms and the corresponding coefficients of  

represent the components of a moving average process 

of order q. These types of models are called Univariate 

Box-Jenkins (UBJ) models. They are also referred to as 

ARIMA (p, d, q) models where AR (p) indicates the 

auto-regressive component, MA (q) indicates the moving 

average component and d is the degree of differencing 

for non-stationary data. As discussed on the previous 

section, first degree differencing is satisfactory meaning 

that we consider the median closing stock price to follow 

an ARIMA (p, 1, q). The goal is to identify possible 

candidate models of auto-regressive and moving average 

components and then select the model with the best fit. 

Since the the differenced data are stationary, the notation 

can be simplified. The mean is written as E (Yt) = t = 

 since there is a constant mean difference. The variance 

is written as V (Yt) = t,t = 0 since the variance is constant 

over time. The covariance between any two observations 

Yi and Yj where |ij| = h can be simply written as h since 

the covariance is a function of the lag. Based on these 

observations, the correlation between any two observations 

Yi and Yj where |ij| = h, is defined as 
0

hh





  which, is 

the Autocorrelation Function (ACF).  

 The auto-regressive model of degree p, AR (p), is 

defined as: 

 

1 1 = +...+ +t t - p t - p tY Y Y     . 

 

The process is based on the previous p observations. 

Consider a simple AR (1) model. If the equation for the AR 

(1) is multiplied by Yth and the expected values are taken, 

the autocorrelation function, h, can be derived as: 

 

1

0 0

,hh h
h

 
 

 
    

 

as shown in Cryer and Chan (2008). Based on the 

theoretical values of the autocorrelation function for an 

AR (1) model, the process can be identified as being 

auto-regressive if ACF experiences exponential decay. 

However, the autocorrelation function does not allow us 

to identify the degree of the auto-regressive process. For 

this, the Partial Autocorrelation Function (PACF) is 

utilized. The parital autocorrelation at lag k is defined as 

the correlation of two observation Yt and Ytk 

accounting for the effect of the variables in between, 

Yt1,...,Ytk+1. So we have kk = Corr (Yt, 

Ytk|Yt1,....,Ytk+1). 

As shown in Cryer and Chan (2008), this means that 

for an auto-regressive process of degree p, k,k = 0 for k > 

1. Furthermore, an AR (p) model can be identified by a 

dampening of the PACF after lag p. 

Next, the moving average model of degree q, MA (q), 

is considered and defined as: 

 

Yt = t + 1t1 +... + tq. 

 

The moving average process defines the differenced 

median closing price as a function of the current random 

error and previous random error terms. Since the error 

terms are assumed to be normally distributed with mean 

zero, the expected value of the differenced data would 

also be zero. The simplest moving average model is one 

of degree one where Yt = t + 1t + 1t1. Then the 

variance is 0 = 2(1 + 2). The autocorrelation function 

is then 
21

h









for h = 1 and h = 0 for h > 1. This 

can be expanded to the general case for any MA (q) 

model. If a process follows an MA (q) model, the 

autocorrelation is zero for any lag greater than q. 

Therefore, the moving average component can be 

identified from a plot of the ACF. 
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Fig. 5: SACF and SPACF of post-recession price difference 
 
Table 5: Post-recession candidate models and AIC 

Model Equation AIC 

ARIMA(0,1,1) Yt =t + t1 1337.058 

ARIMA(1,1,0) Yt = Yt1 + t 1337.651 

ARIMA(1,1,1) Yt = Yt1 + t + t1 1333.520 

 

The Sample Autocorrelation Functions (SACF) and 

Sample Partial Autocorrelation Functions (SPACF) of the 

differenced data can be analyzed in order to identify 

appropriate ARIMA (p, 1, q) candidate models. 

From the autocorrelation function, the correlation for 

a lag of zero is 1. This is because any point is 100% 

correlated with itself. There is a significant correlation 

when the lag is 1, meaning that there is a significant 

relationship between the difference in price between two 

weeks and the difference in price for the week prior, also 

meaning that there is a significant correlation between 

Yt and Yt1 for any week t. After lag 2, the correlation 

becomes insignificant. In other words, there is not a 

significant relationship between Yt and Yt2 for any 

week t. These observations indicate the presence of a 

moving average component of order 1 within the model. 

Therefore, the first candidate model is an ARIMA (0, 1, 

1) or Yt = t + t1. 

From Fig. 5, the sample partial autocorrelation 

function is significant for a lag of 1, and then becomes 

insignificant for any lag greater than 1. This means that 

when accounting for the effect of all intervening 

variables, there is only a significant relationship between 

the difference in price and the difference in price for the 

previous week. These observations indicate the presence 

of an auto-regressive component of degree 1 within the 

model. Therefore, the second candidate model is an 

ARIMA (1, 1, 0) or Yt = Yt1 + t. 

For consistency, the Akaike Information Criterion 

(AIC) is used as the selection criterion. Table 5 provides 

the AIC values for the candidate models. 

When considering the post-recession data, the model 

with the best fit is an ARIMA (1, 1, 1) since it has the 

smallest AIC with a value of 1333.520. This is 

interesting since this model contains more unknown 

parameters than the other candidate models meaning that 

the added complexity of the model is outweighed by the 

improvement of the fit. 

Diagnostics 

The model has been described as Yt = Yt1 + t + 

t1, however the error for the current week is not 

obtainable. Therefore, to use the model, it is written in 

terms as the predicted price difference: 

 

1 1
ˆ ˆˆ

t t tY Y       , 

 

where the error is represented by the difference between 

the predicted price difference and the actual value. The 

values of the estimates for the unknown parameters are 

given in Table 6. 

The coefficient for the auto-regressive component is 

0.70381 with a corresponding p-value of less than 0.0001, 

which means that the auto-regressive component, or the 

previous price difference, is significant in the prediction of 

the price difference. The coefficient for the moving average 

component is - 0.82398 with a corresponding p-value of 

less than 0.0001, which means that the moving average 

component, or the previous error term, is also significant. 

Next, it is necessary to check to see if the selected model 

meets the model assumptions of normality, constant 

variance, and independence of the residuals. For normality, 

Anderson-Darling tests the null hypothesis that the 

standardized residuals are normally distributed against the 

alternative hypothesis that the residuals are not normally 

distributed. The value of the test statistic is A = 1:5122 with 

a corresponding p-value of 0.0007 which indicates that 

there is sufficient evidence to reject the null hypothesis and 

conclude that the residuals are not normally distributed. 
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The variance over time is represented by how large or 

small the residuals are. It appears that there tends to be a 

larger amount of variance for more current periods of 

time which was an observation that was also noticeable 

from the original time series plot in Fig. 4. 

Independence can be formally tested using the Ljung-

Box test which tests the null hypothesis that the residuals 

are independent against the alternative hypothesis that 

the residuals are correlated. The p-values for the test are 

visualized in the plot since the test is performed for 

every lag value. Figure 6 shows the time series model 

diagnostics plots.  

Forecasting and Model Interpretation 

Since the estimated values of the model parameters 

have been obtained, the final equation of the time series 

model is written as: 

 

1 1
ˆ 1.7038 0.8240t t tY Y     . 

 

The value 1 +  = 1: 7038 indicates that holding all 

other variables constant, when the median closing price 

increases by $1, the median closing price for the next 

week is predicted to increase by an average of 

approximately $1.70. The value  =  0: 8240 indicates 

that holding all other variables constant, when the error 

increases by 1, the median closing price for the next 

week is predicted to decrease by an average of 

approximately 82 cents. 

Finally, the time series model is used to make 

predictions for the weekly median closing price from 

January 7, 2017 through December 31, 2017. Figure 7 

shows a plot of the training data along with the values 

predicted from the model. 
From the forecasting plot, the model retains the 

increasing trend of the median closing price over time. 
However, the model does not capture the periods of 
increase and decrease in price that occur in the short run. 
Instead, the time series model is better for describing the 
price without considering short term changes or the 
“white noise” that occurs. The model therefore appears 
successful in predicting the overall trend in price over 
time, but not useful for predicting short term anomalies. 

The fit of the model can also be assessed by 
comparing the predicted values for the weekly closing 
price from January 7, 2017 through December 31, 2017 
with the actual closing prices. These actual values 
represent the testing data set and were not used in the 
building of the model. Figure 8 shows a comparison of 
the time series plots for the predicted values and the 
actual values which illustrates the variation visible in the 
weekly closing price opposed to the steady rising trend 
provided by the model. In conclusion, the time series 
model can predict the increasing trend in price but 
cannot predict short-run variation. 

 
Table 6: Coefficients for the ARIMA(1,1,1) model 

Parameter Estimate p-value 

 0.70381 <0.0001 

 -0.82398 <0.0001 

 

 
 

Fig. 6: Time series model diagnostics plots 
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  Fig. 7: Time series forecasting 
 

 
 

 
 
 

Fig. 8: Time series plots for predicted and actual prices 
 

Varying Intercept Regression Model 

Regression Revisited 

Previously, this study has considered a pooled 
regression model and a time series model. Instead of 

considering each stock individually, the median is used 
to describe the closing price for the top stocks of the 
NYSE as one. These types of models are useful to 
predict the overall state of the stock market and can be 
used as a market index for popular stocks in the NYSE. 
However, these models cannot be used to predict the 

prices Fig. 8: Time Series Plots for Predicted and Actual 
Prices for individual stocks. If each stock is considered 
separately, the model then can be used by anyone who is 
invested into a stock within the top stocks in the NYSE. 

This type of model is also useful for comparing the 
differences in prices over time for different stock types. 
Analyzing these patterns can be helpful o investors 
considering various stocks and which stocks tend to have 
higher or steadier prices. 

This model includes the closing stock price for each 

of the 939 weeks for each of the 85 stocks chosen from 

the NYSE 100. For the modeling process, the data set is 

randomly partitioned at a 70%-30% split so that out of 

the 79,815 observations, 60,882 are in the training data 

and 18,993 are in the testing data. The distribution of 

stock prices is skewed right due to a minority of 

companies that on average have high stock values. To 

normalize the distribution, the log transformation of the 

stock price will be used. 
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Table 7: Iterations and AIC for the stepwise process 

Iteration Add/Remove AIC 

0 - -31651.85 

1 + IDX -74701.11 

2 + WIL -90274.54 

3 + XOI -93120.6 

4 + V -96448.91 

5 + M1 -96608.61 

6 + TIME -96829.34 

7 + V IX -96901.5 

8 + DFF -96935.42 

9 + TNX -96937.78 

 
Table 8: VIF of predictor variables 

Variable VIF VIF 

IDX 1.0033 1.0032 

WIL 7.1368 - 

XOI 2.7199 1.3988 

V 1.3496 1.3332 

M1 9.8433 - 

TIME 6.5781 - 

V IX 1.2708 1.1033 

DFF 2.2827 1.8453 

TNX 3.5399 2.1564 

 

The varying intercept model is written as: 

 
84

0 1 1

1

log( ) ... ,it i i t k tk t

i

Y I X X   


         

 

where i = 1,..., 85 represent the 85 stock indexes in the 

NYSE 100 that we are considering and Ii is an indicator 

function relating to each index i. In other words, the 

stock index is a dummy variable which corresponds to a 

unique coefficient i such that i +0 represents a 

different intercept for each stock. It is for this reason that 

the model is referred to as having a varying intercept. 

Notice that the model does not include a coefficient for 

the 85th index so that there is not an issue of 

multicollinearity among the variables. The intercept for 

the 85th stock index is represented simply by 0. Note that 

essentially, this varying intercept model is similar to a 

standard regression model with a dummy variable 

associated with the different stocks because these two 

models all use a constant to adjust the difference between 

two distinct stocks. However, this varying intercept model 

is more straightforward and easier to interpret than a 

standard regression model with a dummy variable. 

Stepwise Variable Selection 

Similarly, with the modeling process for both the 

pooled regression model and the time series model, the 

Akaike Information Criterion (AIC) is again used as the 

selection criterion. All variables that are considered in 

the process are identical to those considered in the 

pooled model except for two variables. The first variable 

is the dependent variable that is being modeled which is 

the log closing price for each stock index for each week. 

This difference is discussed in the previous section. The 

second variable is volume which represents the weekly 

volume sold for each index individually. 

Table 7 shows each of the iterations of the stepwise 

process for the training data. The process shows that the 

categorical variable representing the stock index is the 

first variable added into the model. This indicates that 

the stock index is the variable most related to the closing 

price. Some stocks can see increasing prices and other 

stocks can see decreasing prices over time depending on 

the financial health of its corresponding company. 

Table 8 gives the VIF for each predictor in the model 

selected by the stepwise process and shows that the 

predictors with the highest VIF are the Wilshire 5000, 

M1 and time. It is not surprising that these variables 

would be highly correlated with other predictors since 

the Wilshire is representative of stock prices altogether 

while M1 and time are both related to the effects of 

inflation. After removing the highly correlated 

predictors, there no longer appears to be a problem of 

multicollinearity within the model. 

Diagnostics and Model Assumptions 

Since the variables for the final model have been 

chosen, it is possible to run diagnostics on the model. 

If a variable is significant within the model, the slope 

or coefficient for that variable is significantly different 

from zero. The null hypothesis that the slope coefficient is 

equal to zero is tested against the alternative hypothesis 

that the slope coefficient is not equal to zero. The test 

statistics and corresponding p-values for each of the 

predictor variables are calculated, and they are not 

presented, but will be discussed in next section. For each 

variable, the corresponding p-value is less than 0.05 which 

indicates that there is sufficient evidence to reject the null 

hypothesis and conclude that the estimated coefficients are 

significantly greater than zero. Among all variables, the 

only exception is the variable corresponding to the stock 

index DVN. However, the variable is still included since it 

represents one category for the stock index variable. 

Next, it is necessary to check to see if the model meets 
the four underlying assumptions of the linear regression 

model. The first assumption is that there is a linear 
relationship between the log of the weekly closing stock 
price and the predictor variables. The relationship can be 
visualized from the plot of residuals versus the fitted 
values in Fig. 9. If there is a linear relationship, the 
residuals should have a distribution centered around a 

straight line across all fitted values. The plot shows 
some curvature of the relationship which indicates 
possible problems with linearity, but not too much.
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Fig. 9: Residuals Vs fitted values 

 

The second assumption is the constant variance of the 

residuals. Constant variance can be checked visually by 

looking at the fitted residual plot in Fig. 9. For the 

variance to be constant, the residuals should be spread 

out equally around zero for all fitted values. For fitted 

values below 2, the values of the residuals are much 

higher than for other fitted values. This indicates a 

problem of heteroscedasticity among the residuals. 

The third assumption is that the residuals are 

independent of one another. Independence is tested 

formally using the Durbin-Watson test where the null 

hypothesis that the autocorrelation among the residuals 

is zero is testing against the alternative hypothesis that 

the autocorrelation is greater than zero. The test statistic 

for the varying intercept model is d = 0:037461 with a 

corresponding p-values of less than 0.0001. This 

indicates that there is sufficient evidence to reject the 

null hypothesis and conclude that the autocorrelation 

among the residuals is greater than zero. So, the 

independence assumption has been violated. 

The final assumption is that the residuals are 

normally distributed. Normality is tested formally using 

the Anderson-Darling test where the null hypothesis that 

the residuals are normally distributed is tested against the 

alternative hypothesis that the residuals are not normally 

distributed. The test statistic for the varying intercept 

model is A = 686:87 with a corresponding p-value of less 

than 0.0001. This indicates that there is sufficient 

evidence to reject the null hypothesis and conclude that 

the residuals are not normally distributed. 

Model Fit and Interpretation 

The final model obtained for the varying intercept 

regression can be written as: 

84
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The coefficient of determination for the varying 

intercept model is R2 = 0:6433 and indicates that 65.33% 

of the total variance in the log of the weekly closing 

stock price for the top stocks in the NYSE 100 is linearly 

associated with the variation in the weekly traded 

volume for each stock index (V), the Oil and Gas Index 

(XOI), the Volatility Index (VIX), the interest rate for 10-

year T-notes and bonds (TNX), and the Federal Funds 

Rate (DFF). The percentage of explained variation is 

relatively high indicating that the model provides a good 

fit for the log weekly closing stock price. The coefficient 

of determination adjusted for the degrees of freedom is 
2

adjR = 0: 6428 and indicates that considering the 

complexity and sample size used in the model, 64.28% 

of the total variance in the log of the weekly closing 

stock price for the top stocks in the NYSE 100 is linearly 

associated with the variation in the weekly traded 

volume for each stock index (V), the Oil and Gas Index 

(XOI), the Volatility Index (VIX), the interest rate for 10-

year T-notes and bonds (TNX), and the Federal Funds 

Rate (DFF). Even accounting for the degrees of freedom 

in the model, the explained variance is still high which 

indicates that the model is a good fit. 

Interpreting the coefficients for the predictors gives 

insight on the relationship between the closing price for 

each stock and each predictor individually. The coefficient 

for XOI is 0.00051 and indicates that holding all other 

variables constant, when the NYSE ARCA Oil and Gas 

Index increases by one point, it is predicted that the closing 

stock price will increase by 0.0510%. This means that there 

is a positive relationship between the overall oil and gas 

prices and the prices of individual stocks in the NYSE. 
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The regression coefficient for V is 1.608e-09 and 

indicates that holding all other variables constant, when 

the weekly volume increases by one unit, it is 

estimated that the closing stock price will decrease by 

a percentage that is near zero. This means that when 

more volume of a stock is sold, the price tends to be 

cheaper. This makes sense because people tend to buy 

more when prices are lower. Also notice that the 

coefficient for volume is extremely small yet still 

significant based on the p-value. This is because the 

weekly volume of stock sold is extremely high, 

therefore a change in one unit is very small. However, 

when considering larger changes in volume yields a 

more substantial predicted decrease in the price. 

The slope coefficient for VIX is -0.007607 and indicates 

that holding all other variables constant, when the 

CBOE Volatility Index increases by one point, it is 

estimated that the closing stock price will decrease by 

an average of approximately 0.7578%. This indicates 

that there is a negative relationship between volatility 

and price meaning that when there is more volatility 

or uncertainty for the future, buyers tend to hold off 

and prices decrease. 

The coefficient for DFF is 0.03756 and indicates 

that holding all other variables constant, when the 

Federal Funds Rate increases by one percent, it is 

predicted that the closing stock price will increase by 

an average of 3.8274%. This illustrates a positive 

relationship between the interest rate and price as also 

seen in the pooled model. 

The coefficient for TNX is -0.1047 and indicates that 

holding all other variables constant, when the CBOE 

interest rate for 10-year T-note bonds increases by 1%, it 

is estimated that the closing stock price will decrease by 

an average of 9.94%. Similarly, to the pooled model, 

there is a negative relationship. 

Lastly, the intercepts of the model represented by the 

dummy variables for each individual stock are 

considered. Since the coefficients for each dummy 

variable is significant but one, this indicates a significant 

difference in the closing stock prices for each variable. 

Conclusion 

Now that each of the three models have been 

thoroughly explored, it is important to compare the 

benefits and drawbacks of the models. Table 9 gives the 

equations for the pooled regression, time series, and 

varying intercept regression models. 

Here, we comment that the approach of the three 

models for predicting stock prices can also be utilized in 

other markets of the same or similar size, even for smaller 

markets, provided that the data size of observed stock prices 

is large enough to conduct statistical inferences and the 

stock market across the economy as a group is not 

unusually affected by external effects or anomalies. 

First, consider the time series model against the 

regression models. The benefit of the regression models 

over the time series model is that multiple regression 

allows the consideration of other variables as predictors 

and provides insight on the relationship between the 

closing stock price and these additional factors. A benefit 

of the time series model over the regression models is 

that the time series better fits the nature of the data where 

the closing price is highly correlated with the closing 

price of the previous week. For this data, more 

underlying assumptions of the time series model are 

satisfied over the underlying assumptions of linear 

regression. The time series model also uses previous 

observations which are more readily available 

information that current data which is used for prediction 

in the regression models. A benefit of the regression 

models is that time is not used as a variable but rather as 

an index. It means that the model only requires 

knowledge of the values for the week of interest, not the 

time relative to other data points. 

Next, consider the differences between the two 

regression models. The pooled regression model uses the 

median or “pooled” weekly closing stock price over all 

of the stock indexes considered from the NYSE. The 

benefit of this is that the model can be used to give a 

comprehensive overview of the trends of these selected 

stocks. The drawback to pooling the data is that the 

model cannot be used to predict individual stocks. On 

the other hand, the varying intercept model considers 

each stock individually which allows for investors 

interested in specific NYSE stock to compare the trends 

of each. However, the varying intercept model includes 

the index as a categorical variable which adds 84 dummy 

variables to the model making it a much more complex 

model than the pooled regression. Finally, the regression 

models can be compared by their predictive ability by 

considering the coefficient of determination or the 

amount of variation in the closing price that is 

explained by each model. The amount of variation 

explained by the pooled model is 96.61% and the 

amount of variation explained by the varying intercept 

model is much lower with 64.28%. In conclusion, the 

pooled model gives a general comprehensive view of 

the NYSE stocks overall with high accuracy in 

predictive power while the varying intercept model 

gives more in-depth information on individual stocks 

at the cost of lower predictive capabilities. 
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Table 9: Model equations  

Pooled regression 
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Time Series 
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Varying Intercept Regression 
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