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Abstract: The study pattern of non-inferiority trials is increasingly used 

to show the non-inferiority of new health intervention. Although in such 

studies the data are longitudinally collected (data held over a period of 

time), the conclusion of these non-inferiority trials is based on data 

observed at a specific time during the study period (usually at the end of 

the study period). In this study, we present a method that takes into 

account all the data observed during the study period to perform non-

inferiority test. Thus, we approximate the observed data on a statistical 

unit by a function of time. This allows to transform the observed data on 

a time grid into functional data on a continuum domain. Although it 

could have some relevant applications, the functional data analysis for 

non-inferiority test has not been addressed. In this study, the functional 

non-inferiority hypothesis testing has been introduced. The optimal 

point-wise test and simultaneous confidence bands have been adapted 

and adopted for the purpose. The assessment of the methods has been 

done through simulations example. Both methods have good 

performances for large sample sizes. For small sample sizes, the optimal 

point-wise test would be too conservative while the simultaneous 

confidence bands based test would be a bit liberal. 
 

Keywords: Confidence Bands, False Discovery Rate, Functional Data, 

Non-Inferiority Test, Pointwise Test 

 

Introduction 

The study design of non-inferiority randomized 
cohort trials is increasingly applied to show the non-

inferiority of new health interventions (Ng, 2015). One 

of the advantages of such a study scheme is the 

longitudinal aspect of the collected data. Indeed, this 

study scheme makes it possible to collect repeated 

measurements on the people included in the study during 

the follow-up period. Depending on the follow-up 

duration and the delay between measurements, the 

number of repeated measurements per person could be 

important. Thus, longitudinal trials allow to get an array 

of data on the variation of the main endpoint on a 

predefined time grid. The general goal of the non-
inferiority trials is to show the non-inferiority of a new 

health intervention compared to a reference 

intervention. The evaluation may be related to the 

variation of the main endpoint in the whole study 

period. We situate our work, in this framework, 

motivated by the non-inferiority randomized trial 

conducted by Laurent et al. (2011). However, although 

the interest is on the variation of the endpoint on the 

follow-up period, the assessment of non-inferiority is 

carried out at a precise moment during the study 

(generally at the end of the study), thus reducing the 
problem of the non-inferiority hypothesis testing in the 

finite dimension. Indeed, in the finite dimension, the 
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non-inferiority test is a well-studied problem. However, 

the infinite dimensional functional case processes have 

additional difficulties. In this work, we will adopt 

functional data analysis approach to perform the non-

inferiority hypothesis testing. 

Although in practice the data are recorded discretely, 
with large measurement errors, in functional data analysis 

the data are treated as though they are in the form of a 

curve. Observed data are subject to a pre-processing steps, 

usually based on local polynomial or spline methods 

(Eubank, 1999; Wand and Jones, 1995; Green and 

Silverman, 1994; Ruppert et al., 2003), to transform them 

to the smooth curve from which the methods of functional 

data analysis are applied. In many instances, the pre-

processing step is not of great importance. However, 

some studies have shown that it has the potential to 

significantly reduce power Hall and Keilegom (2007). 
There has been a prosperous period in the development 

of functional hypothesis testing procedures to deal with 

simple hypothesis (Darlin, 1957; Johnson and Kotz, 

1990). However, the more common situation involving 

composite hypothesis is more challenging. Little 

development includes functional composite hypothesis 

testing and still less for functional non-inferiority 

hypothesis test. The point-wise test, L2-norm-based tests 

(Faraway, 1997; Zhang et al., 2010a; Zhang and Chen, 

2007), F-type tests (Shen and Faraway, 2004; Zhang and 

Liang, 2013), bootstrap tests (Faraway, 1997; Cuevas et al., 

2004; Zhang et al., 2010a; Zhang and Sun, 2010) are 
well described for two-sided composite hypothesis test. 

However, for the one-sided composite hypothesis test, 

all those tests could not be applied. 

In this work, we used a Bayesian approach to 

construct an optimal point-wise test and simultaneous 

confidence bands to construct a global test procedure to 

perform the non-inferiority hypothesis testing on the 

whole period of the follow-up. 

The section 2 present the formulation of the problem 

and introduce the notion of functional non-inferiority 

hypothesis test. The section 3 present the optimal test for 

functional data which is adopted for functional non-

inferiority test on a continuum domain. In this section, it 

is also presented a global test procedure based on 

simultaneous confidence bands. The assessment of the 

adopted methods is done in the section 4 through a 

simulation example. 

Formulation of Functional Non-Inferiority 

Hypothesis Test 

Let’s consider an active controlled non-inferiority 

trial with repeated measurements over time, where the 

goal is non-inferiority testing of a new treatment or 

health intervention(N) versus a reference health 

intervention (R). We assume that the endpoint is a 

continuous variable X, XN and XR for group N and R 

respectively that should be observed on finite grid point 

{t1,, tm}. Generally, the non-inferiority hypothesis 
testing is performed at the end of the follow-up period tm. 

This makes the data collected before the end of follow-

up period useless for non-inferiority test. However, the 

repeated outcomes can be viewed as variable of 

dimension m, (XN(t1), ,XN(tm)) and (XR(t1), ,XR(tm)) for 

the groups N and R respectively. The idea is to get a 
decision on non-inferiority testing on the whole 

continuum domain  = [t1, tm] not only at the end of 
follow-up period tm. To overcome that, some tools such 

as longitudinal and functional data analysis can be used. 

Longitudinal data analysis has been much used in the 

context of cohort studies. However, the functional data 

analysis is more flexible and consists of modelling or 

converting the initial data set on the discrete grid {t1, , 
tm} into curves or functional dataset on the continuum 

interval  = [t1, tm], Ramsay and Silverman (2005) have 
provided a broad overview. Basically, it’s consist of 

assuming there exist functions fi on t which modelled 

individual trajectory (Xi,c(t1) , , Xi,c(tm)), i = 1…n, 

c{R,N}. That is by: 

 

    ,

, , , 1, ,i c

i c i i c j jX t f t j m     

 

where, ,i c

j  is the error measurement process for ith 

individual in group c{R,N} at tj. In the practise, the 
true expression of individual function fi,c is unknown, 

but can be approximated by using observed data and 

approximations techniques such as local polynomial 

kernel smoothing, P-spline, regression and smoothing 

splines. The general principle is to get the 

approximation of functions fi,c such that the error 

measurements are minimised. It follow that the 

underline individual functions: 

 

     , ,i c j c j i c jf t t v t   

 

are independent and identically distributed (i.i.d). 

copies of the underlying stochastic process fc(t)  

GP(c(t), c(t)), t; c{R,N}, where c, are mean 

function and c the covariance matrix defined on  in 

each group. By using functional data analysis 

modelling, the non-inferiority testing would be the 

comparison of mean functions N(t) and R(t) of the 

new and reference treatments respectively in term of 

non-inferiority on the continuum domain  = [t1, tm]. 

That requires the formulation of non-inferiority with 

functional endpoints. A simple and intuitive way is to 

formulate similarly to the case of scalar endpoint, at 

every point of the domain : 
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     

     

0

1

: ,

:

N R L

N R L

H t t t t Thereisnonon inferiorityonthecontinuum

H t suchthat t t t Thereisnon inferiorityonthecontinuum

         


        

 (1) 

 

where, L(.) is the predefined non-inferiority margin 

function, such that L(t) > 0, for all t. The hypothesis 
test in Equation 1 will refer to functional non-

inferiority hypothesis test on the continuum domain . 
Most of the statistical tests for overall testing 

addressed are for two-sample problem for functional 

mean differences. Zhang et al. (2010b; Zhang, 2014) is 

proposed an overall test for mean difference based on L2-

Norm, Staicu et al. (2014) and Shen and Faraway (2004) 

have proposed pseudo likelihood ratio test. All such 
methods could not be applied for the one-sided 

hypothesis test problem for the functional means 

difference in Equation 1. In fact, the construction of the 

test statistic uses the L2 Norm or other global test statistic 

based on Sup norm (Taylor et al., 2007), which cannot 

allow knowing to the direction of the inequality when 

the null hypothesis is rejected. 

One could then alternatively use the pointwise 

approach which had been used in Forgaty and Small 

(2014) for equivalence testing for functional data. In that 

case, it is required to control the compound error for the 

test on the whole continuum domain. 

Methodology 

Notations and Assumptions 

1. We assume that the functional random variables Xi,c, 

c{N,R} are i.i.d. That means, for all t in , the real 
individual trajectories Xi,c are independent and 
identically distributed 

2. Gaussian Process(GP) with mean function m and 

covariance matrix g will be denoted GP(, ) and 

fc(t)  GP(c(t), c(t)), t, c{R,N} 

3. Lets by ˆ
c , c{N, R} the estimator of the mean 

function c: 
 

   1

,

1

ˆ
cn

c c i c

i

t n X t



    

 

4. Lets by  ˆ ,c t s , c{N, R} the classical unbiased 

covariance estimate of c: 
 

             
1

, ,

1

ˆ ˆ ˆ, 1
cn

c c i c c i c c

i

t s n X t t X s s




        

 

Pointwise Approach based Test 

To perform the functional non-inferiority hypothesis 

testing in Equation 1, one can perform the pointwise 
non-inferiority hypothesis testing using scalar case at 

each point. Then, for a given t, let define by r(t) = 0 
and r(t) = 1 when the null and alternative hypothesis are 

respectively true, w(t) = 0 and w(t) = 1 when the null and 
alternative hypothesis are declared respectively true from 

the observed data. The total of set of true and false null 
hypothesis is defined by: Tk = {t, r(t) = k}, k = 0,1, the 

total of set of declaration and non-declaration of null 
hypothesis from data is defined by: Dk = {t, w(t) = k}, 

k = 0,1 respectively. The Table 1 summarizes the 
outcomes of pointwise functional non-inferiority 

hypothesis testing : Let assume that at every point t 
there is type I error t. For the decision about the non-

inferiority test on the whole domain , it is required a 
compound error measure like in multiple hypothesis 

testing. The False Discovery Rate (FDR) formally 
introduced in Benjamini and Hochberg (1995) and 

Family Wise Error Rate (FWER) introduced in 
Hochberg and Tamhane (1987) are respectively the main 

indicators used for evaluating the compound type error 
in the setting of multiple hypothesis testing. The FWER 

for functional data by Cox and Lee (2007) is well 
appropriated on the condition of permutation pivotality 

which may not be held in the functional non-inferiority 
hypothesis testing. In fact, for functional non-inferiority 

hypothesis testing, the inequality in the null hypothesis 
tests, prevent this condition to be satisfied. In the setting 

of this work, the false discovery rate is used as the 
compound type I error measure. Then, there are some 

methods devoted to the control of the false discovery rate 
in the context of mean differences, such as Bejamin-

Hochberg method and Benjamin-Yekutieli methods in 
Benjamini and Hochberg (1995). Xu et al. (2018) 

proposed another point-wise method controlling the false 
discovery, which had been found better than Bejamin-

Hochberg method and Benjamin-Yekutieli methods. 
Therefore, in this work, the optimal pointwise test 

introduced in Xu et al. (2018) is adopted for the 
functional non-inferiority hypothesis testing. 

This marginal false discovery rate it is defined by: 

 

  
  

1

1

E V
mfdr

E D


L

L
 (2) 

 

where, L  is the Lebesgue measure of interval subsets. 

The overall power for the functional non-inferiority test is 

define in a similar way as in Leventhal and Huynh (1996) 
and Sun et al. (2015) for multiple two-sided testing by: 

 

  
  

2

1

1
E V

E T
  

L

L
 (3) 
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Table 1: Outcomes of multiple non-inferiority hypothesis testing 

 No non-inferiority declared Non-inferiority declared 
 (w(t) = 0) (w(t) = 1) Total 

No non-inferiority (r(t)=0) / Type I error (V1) T0 
Non-inferiority (r(t)=1) Type II error(V2) / T1 
Total D0 D1 τ 

 

For a given compound nominal type I error c, we 
want to determine the test w with a false discovery rate 

ˆmfrd  such that ˆ
cmfrd  . As shown in Xu et al. (2018), 

the optimal test w should be searched among the test 

family w,  > 0 defined by: 
 

 

  
  

  
  

1
1

0

1
0

0

j

j

j

j

j

Pr r t
If

Pr r t
w t

Pr r t
If

Pr r t



 
  
 


 


 




 (4) 

 

The false discovery rate for a test w being estimated by: 
 

 
    

 

1 1

1 1

Pr 0 1
ˆ

1

i

i

N

ii w t

N

i w t

r t

mfrd w






 

 







 (5) 

 

where, t1,, tN are the center points of the sequence of 

subintervals [si-1, si[, i = 1,,N, which is a partition of . 
The probability S0(tj) = Pr(r(tj) = 0) is the probability of 

true null hypothesis of no non-inferiority at the point tj, it 

is unknown and can be estimated only in a Bayesian 

setting. Therefore, one would assume a prior distribution 

on N and R and get the posterior distribution from the 
observed data XN and XR. Then, from the posterior 

distribution, one uses Monte Carlo simulations techniques 

to get a couple of M functional process samples i

N and 

mi i

R , i = 1,,M. Thus, estimate S0(tj) by: 

 

       0

1

ˆ 1 i i
N j R j j

M

j t t t
i

S t
  



  (6) 

 
Therefore, the test decision at any point t is given by: 

w (t) =  
11 ,

1
i i

N

ii t s s
w t


  
 

 . The optimal test w 

controlling the false discovery rate at a given nominal 

compound type I error rate ac is then w w



★

, where 

  ˆmin 0, cmfrd w    ★ . 

Algorithm for Determining the Optimal Test 

The expression of ˆmfdr  is not explicit, therefore, 

the determination of ★ requires numerical 

computation techniques. As shown in Sun et al. 

(2015), ˆmfdr  is monotone decreasing, then, the  

which provides the maximum false discovery rate 

should be found in a positive neighbourhood of 0. 

Also, when  tends to infinity, the function ˆmfdr  will 

tend to null. Therefore, the computational algorithm 

will depend on c (smaller or greater). For larger c 
(for example 10% or 5%), the forward algorithm 

presented in the Algorithm 1 can be suitable with an 

initial value 0 closer to 0. In the case of smaller c 
(for example 2.5% or 1%) the backward algorithm 

presented in the Algorithm 2 can be preferable with 

larger initial value 0. Whatever the case, as any 
computational problem with the initial input 

parameter, the results will depend on. 
 
Algorithm 1: Algorithm for the computation of the 

optimal ★ which controls the false discovery rate using 

forward direction: 

 Data: 0, tol, Maxiter,  

 Result: ★, mfrd(★) 

  = 0; 
 Niter = 1; 

 m =  ˆmfrd  ; 

 while m >  and Niter <= Maxiter do 

  =  + tol; 

 m =  ˆmfrd  ; 

 Niter = Niter +1; 

 end 

 Return ★, m. 
 
Algorithm 2: Algorithm for the computation of the 

optimal ★ which controls the false discovery rate using 

backward direction: 

 Data: 0, tol, Maxiter, c 

 Result: ★, mfrd(★) 

  = 0; 
 Niter = 1; 

 m =  ˆmfrd  ; 

 while m > c and Niter <= Maxiter do 

  =  -tol; 

 m =  ˆmfrd  ; 

 Niter = Niter +1; 

 end 

 Return ★, m. 
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Confidence Bands based Test 

Likewise in the non-inferiority hypothesis testing for 

scalar data Ng (2008); Elie et al. (2008); Food and Drug 
Administration (2016), one can adopt confidence bands for 

the formulated functional non-inferiority testing in Equation 

1. The idea is to reject the null hypothesis when the margin 

function -L is under the lower confidence band of N-R on 

a subset   of . The Fig. 1 gives an illustration of functional 

non-inferiority testing based on confidence bands. Denoting 

by l and u the lower and upper confidence bands of N-R 

respectively,  the confidence bands level, following are 
the steps of the test procedure: 
 

1. Construct a confidence bands [l, u] of level  of NR 

2. Compare the two functions l and -L on  
3. Reject the null hypothesis H0 of no non-inferiority 

on  if and only if there exist a subset   of  such 

that l is greater than -L on   
 

The construction of confidence bands can be done using 

a pointwise approach in parametric or non-parametric 

settings. That will not be valid for overall or simultaneous 

inference, since the coverage level of confidence bands will 

be less than  Degras (2017). In this work, the simultaneous 
confidence bands (SCB) by Degras (2017) is adopted. The 

lower and upper confidence bands l and u for N-R are 

defined for all t respectively by: 
 

     
   

     
   

1

2

ˆ,

1

2

ˆ,

ˆ ˆ, ,
ˆ ˆ

ˆ ˆ, ,
ˆ ˆ

NR

NR

R N

N R

R N

R N

N R

R N

t t t t
l t t t z

n n

t t t t
u t t t z

n n

 

 

 
 

 
 

 
     

 

 
     

 

  (7) 

 

With 
, NR

z
 

 the -quantile of supt |Z(t)|, Z 

 ˆ0, NRGP   and Z   ˆ0, NRGP  , ˆ ˆ ˆ
NR R N    , 

 
 

   

ˆ ,
ˆ ˆ, ,

ˆ ˆ, ,

R

R R

R R

t s
s t

t t s s


 

 
  is then define similarly. 

The application of SCB with level  for overall 
testing of the equality of two mean functions in a two-
sided problem in Degras (2017), provided a type I error 
which is asymptotically equal to 1- and the statistical 
power tending to 1. The level of the proposed test 
procedure for functional non-inferiority test and the 
statistical power will be evaluated through a simulation 
example by using the Monte-Carlo method. 

Simulations Example 

Simulations Scenario and Settings 

The purpose of the simulation example is the 

evaluation of the proposed functional non-inferiority 

hypothesis testing based on the optimal pointwise test 

and confidence bands based test. The nominal type I 

error rate is evaluated for the SCB based test, the mfrd is 

evaluated for the optimal pointwise test, the power is 

estimated for both proposed tests. Two scenario were 

considered: A scenario simulating functional data with 

the null hypothesis satisfies and a scenario with the 

alternative satisfies. Each scenario purposing 

respectively the evaluation of actual type I error rate and 

mfdr for the optimal pointwise test and SCB based test 

and statistical power for both tests. 
The inputs parameters using for generating 

functional data sets are functional margin L, functional 

means N and R, co-variance matrix N and R. In all 
simulations, we consider the discrete grid point 

(0,6,12,24) and continuum domain  = [0,24]. In all 
simulations, it has been assumed the equality co-

variance matrix, (t, s) = N(t, s) = R(t, s). It was 
considered the case of correlated data, which is the 

most encountered in the practice. Then, it was assumed 

that the correlation depends on the distance between 
time points, the data at two closer points are assumed 

more correlated than the data at two distant points. 

Therefore, one could take (t, s) = 1902 exp(-(t-s)2). 
The equal sample sizes are considered (nR = nN = n), n 

= 30,100,1000. The Gaussian process was used to 

simulate process on the discrete grid point (0,6,12,24), 

then splines was used for smoothing on the continuum 

domain  = [0,24]. The nominal compound type I error 

has been set to c = 10%. In all simulations, the 
estimation of the mfrd was based on the forward 

algorithm 1, therefore, the initial parameter 0 was 
chosen smaller and in the closer neighborhood of 0. 

The estimation of false discovery rate for the 

optimal pointwise test and the actual type I error rate 

for the SCB based methods, the data are generated on 

the null hypothesis, for example, that is when N(t) = 

R(t)-L(t) for all t. In that case we chose R(t) = 30t, 

L(t) = (35/3)t +50. The power for both methods is 

estimated by drawing the functional data on the 

alternative. Similarly to the case of scalar data (Zhang, 

2006; Flight and Julious, 2016), it is considered the 

particular case when N = R on  = [0,24]. The actual 

type I error rate and statistical for the procedure based 

on SCB are also evaluated according to the level of 

SCB. Therefore, it is considered a confidence bands 

level  = 95%, 90% and 80%. 
The R software programming language (R Core 

Team, 2016) has been used to conduct all the 

simulations and codes are accessible in a separate file. 

However, the packages FDA by Ramsay et al. (2018) 

and mvtnorm by Genz et al. (2018) have been 
specially useful for the simulations and the 

manipulations of functional process data. 
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Fig. 1: Illustration of functional non-inferiority hypothesis testing based on confidence bands. The null hypothesis is not rejected 

(left), the alternative, non-inferiority on [0,24] demonstrated (right) 
 

The estimation of the probability of getting the null and 
alternative in the optimal test require a prior distribution on 

the process N and R. Most time, one choose Gaussian 
processes with zero means and co-variances functions KN 

and KR (It is assumed equal co-variances functions: k = KN 

= KR) which belongs to a known family of functions. There 

are constant, polynomial, Matérn, rational quadratic, 

exponential and so on. In this work, we will use the 

exponential family defines by: 
 

    2
, , , exp / 2k x y w w x y     (8) 

 

where, w and  are called hyper-parameters, x and y 
are the points where the co-variance function is 

estimated. In this work,  will be chosen fixed and 
equal to 1902 and w = 100. 

Simulation Procedures 

The estimation of mfdr and , are done by the 
following steps: 
 
1. Simulate two couples of Gaussian process XN and XR 

on the discrete grid {0,6,12,18,24} with functional 

mean N and R as described above such that the null 

hypothesis is satisfied and with sample size n 
2. Convert Gaussian process XN and XR into functional 

data on the continuum [0,24], then get two 

functional data set XN(t) and XR(t) 

3. Compute the mean functions estimated  ˆ
N t  and 

 ˆ
R t . Then, get the posterior expression of the 

mean and co-variance functions for N and R 
4. Simulate M couples of Gaussian process sample 

ˆ i

N  and ˆ i

R  form the posterior distribution 

obtained in the step 3. Then estimate 

 
     0 ˆ ˆ1

1ˆ 1 i i
N R

M

t t ti
S t

m   
   

5. Define the function:  
   

 

01 1

1 1

ˆ 1
ˆ

1

i

i

N

ii w t

N

i w t

S t

mfdr 
 

 





, 

where the function 1w(t) =1 = 1 if  0Ŝ t  > (1+ )-1 

6. Compute   ˆmin ,mfdr    ★ . Replace ★ in 

the step 5 to get the optimal test which controls the 

mfdr at level c as well an estimate of mfdr 
7. Repeat the steps 1-6 B times, then get a distribution 

1
ˆ ˆ, , Bmfdr mfdr  of ˆmfdr  

 
The estimation of the power is done in a similar way, 

but at the step one, the data are generated on the 

alternative hypothesis. then, estimate the power by 

   11 1

ˆ 1
ˆ 1

24

i

N

ii w t
S t

N


 

 


. Repeat B times then get the a 

distribution 1
ˆ ˆ, , B  . 

For the test based on confidence bands, it is 
considered a level of  = 95%, 90% and 80% for 
confidence bands and all the input parameters as in the 
optimal pointwise test are considered. The type I error 
and statistical power is estimated as follows: 
 
1. Simulate two couples of Gaussian process XN and XR 

on the discrete grid {0, 6, 12, 18, 24} with functional 

mean N and R as described above such that the null 
hypothesis is satisfied and with sample size n 

2. Convert Gaussian process XN and XR into functional 

data on the continuum [0,24], then get two 

functional data set XN(t) and XR(t) 
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3. Compute the functional means estimated  ˆ
N t  and 

 ˆ
R t  as well as the functional variances estimated 

 ˆ ,N t t  and  ˆ ,R t t  

4. Then, determine the lower confidence bands l of N-

R of level  with the formula in Equation 7. 

5. Set the function f(t) = l(t) + L(t) defined on   and 

solve the equation, denoting by  the subset of  

such that f(t) > 0, the null hypothesis of no non-

inferiority on  is rejected when   0 

6. Repeat the steps 1-5 B times, then get B subset  

denoted 1,,B. The type 1 error is then estimated 

by: 
01

ˆ 1
i

B

i


  
  

 

The estimation of statistical power is done in the 

similar way with the data sample on the alternative 

hypothesis at step 1. 

Stability Analysis and Simulation Results for 
Optimal Pointwise Test 

The optimal pointwise test is based on the numerical 

algorithm with the input parameters. The optimal 

pointwise test is studied according to the initial parameter 

0 by fixing the tolerance tol and the maximal number of 
iteration Maxiter. A smaller value in a closer 

neighborhood of 0 has been chose by 0 = 1e-10, then 

larger values of 0 = 1 and 0 = 100. The idea is to provide 
a better guess of the initial parameter for more accurate 

results of the pointwise test. The results are presented in 

the Fig. 2. With the same value of 0, the test with large 
sample sizes gets closer to the nominal compound type I 

error rate. While for the smaller sample size the test would 

be more conservative. Whatever the sample sizes, the 

mfdr estimate gets smaller as the initial parameter 0 gets 

larger. The larger value of 0 would lead to a more 
conservative test. Therefore, the results suggest that the 

smaller value of the initial guess 0 at a closer 
neighborhood of 0 would be preferred. For more accuracy, 

the stability analysis is done to study the pollution of 

results for a random choice of 0 at a closer neighborhood 
of 0. Due to computation time, which is high, the stability 
analysis was limited to three cases of a random choice of 

0 at a closer neighborhood of 0. Let’s estimate the mfrd 

thrice with three different random values of 0 at a closer 

neighborhood of 0 (For instance, 0 chooseen with 

uniform distribution on [1e-10, 1e-1]). The results are 
represented in the Fig. 3, Whatever the sample size, the 

results show that the boxplot distribution of ˆmfrd  is not 

much affected by a random choice of 0 at a closer 
neighborhood of 0. Fixing the tolerance and the number of 

iterations, the optimal pointwise test would be stable for 

0 guess at a closer neighborhood of 0 and for small 
sample size n = 30, the mfrd estimate would be around 

5%, for the medium sample size n = 100, the mfrd 

estimate would be around 7% and for large sample size n 

= 1000, it would be around 9%. Concerning the statistical 

power, as shown in Table 2, the power tends to 1. 

 

 
 

Fig. 2: The boxplots of ˆmfrd  controlling the test at the nominal level c = 0.1 according to the initial parameters (0 = 1e-10, 0 = 1, 

0 = 100) and sample sizes (n = 30, 100, 1000) 
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Fig. 3: The boxplots of ˆmfrd  controlling the test at the nominal level c = 0:1 according to random initial parameters 0 at a closer 

neighborhood of 0 and sample sizes (n = 30;100;1000) 

 
Table 2: Estimation of the power according to sample sizes for the optimal pointwise test 

 Power 

nN = nR = 30 0.93 
nN = nR = 100 0.99 
nN = nR = 1000 1.00 

 
Table 3: Estimation of the type I error rate according to the level of confidence bands (95, 90 and 80%), sample sizes (n = 

30,100,1000) and the type of data (non-correlated and correlated data) using the SCB based test 

 95% 90% 80% 

nN = nR = 30 0.041 0.076 0.14 

nN = nR = 100 0.038 0.074 0.12 
nN = nR = 1000 0.03 0.058 0.11 

 

Results for the SCB Based Test 

The results for SCB based test are summarized in 

Table 3. The type I error rate and power are estimated 
according to the sample sizes and confidence bands 

level. As the sample sizes increase, the simulated type I 

error rate decrease and seem converging to specifics 

values. The results can allow concluding that the method 

based on confidence bands with level of 95%, 90% and 

80% lead approximately to a type I error rate of 2.5%, 

5% and 10% for large sample size respectively. 

Therefore, for a given confidence bands level , the 
methods would produce a test with a type I error rate 

approximately to (1-)/2 asymptotically. Whatever the 
sample sizes and the confidence bands level and the 

statistical power estimation was equal to 1. 

Discussion 

This work has introduced functional non-

inferiority hypothesis testing for the continuous 

variable in longitudinal trial. After formulating the 

hypothesis test, the optimal pointwise test in Xu et al. 

(2018) and simultaneous confidence bands in Degras 

(2017) were adopted. The pointwise test has the 

advantage to show the significant area. It was not 

possible to adopt the classical global test for 

functional two-sample mean problem in Zhang et al. 

(2010b); Zhang (2014). Since they are based on a 

norm which could not allow evidence for the direction 
of the inequality when the null hypothesis is rejected. 

However, the proposed SCB based test procedure can 

be regarded as a global test. The both proposed test 
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procedure for functional non-inferiority testing got 

good performances for large sample sizes. 

The added value of this work is that the non-

inferiority hypothesis testing is determined on a whole 

continuum domain not only at the end of follow-up period. 

That can allow more flexibility in the interpretation of the 
results of the trial. Also, that could be relevant for the 

determination of non-inferiority delay which could be 

helpful to determine the follow-up duration of future trials 

with the similar treatment effect. The proposed methods 

based on the pointwise multiple testing procedure involved 

numerical techniques methods which approximations 

depend on parameters such as the initial value and tolerance 

from which the results would depend on. This study 

provided a stability analysis for a proper guess of the initial 

value, which had not been studied in Xu et al. (2018). 

Like any scientific study, this study presents some 

limitations, for example, an improper guess of the initial 

parameter would lead to a too conservative test. Also, the 

usage of optimal test required non-linear recursive 

programming which is costly in terms of execution time. 

All these, as well as a global test for functional non-

inferiority based on a test statistic, could be another 

interesting future avenue of research. The study has 

introduced the non-inferiority test with functional 

endpoint which has not been previously studied in the 

literature. But, that involve many methodological aspects 

for non-inferiority trial such as assay sensitivity, 

constancy assumption and non-inferiority margin which 

should be studied for functional endpoint. This may 

constitute an interesting issue for future research work in 

the non-inferiority trials. 

Conclusion 

This article introduced the non-inferiority 

hypothesis testing with a functional endpoint. The 

pointwise based test and simultaneous confidence 

bands based test were proposed. Both proposed test 

procedures got good performances for large sample 

sizes. For small sample sizes, the pointwise based test 

would be too conservative while the simultaneous 

confidence bands based test would be a bit liberal. 

The functional endpoint is less used in clinical trial 

studies. We hope that this study could attract the 

attention of practitioners in the area of clinical trials 
of the relevance of functional endpoint in clinical 

trials in general and non-inferiority trials in particular. 
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