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Abstract: Multivariate exponential dispersion models (MEDMs) were 

defined in 2013 by Jørgensen and Martínez. A particular case of MEDM is 

the bivariate Gamma model; in this article we prove that, under certain 

conditions, this is a limit distribution for MEDM generated by bivariate 

regularly varying measures, extending a previous result given by the 

aforementioned authors for the univariate case. As necessary tools for 

proving the main result, we use bivariate regularly varying functions and 

bivariate regularly varying measures; we also state a bivariate version of 

Tauberian Karamata’s theorems and a particular Karamata representation 

of bivariate slowly varying functions. 
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Introduction 

The aim of this article is to extend to bi-dimensional 

space the result about Tauber type convergence of 

exponential dispersion models (EDM)s to a Gamma 

model, that has been proved by Jørgensen et al. (1994). 
It was Tweedie (1947) pointed out the main properties 

of EDMs; but his ideas remained unknown for decades. 
On the other hand, Nelder and Wedderburn (1972) 
introduced a new class of statistical models named Natural 
Exponential Family, just when computational tools were 
being developed in such a way that it became possible to 
perform the required computations. Their importance 
comes from the fact that they can represent the error 
distribution in Generalized Linear Models (GLMs). 

Later on, Jørgensen (1987) rescued Tweedie’s ideas and 

defined an extended family of distributions named 

Exponential Dispersion Model. He published systematic 

studies of mathematical properties of EDMs in 1986 and 

1987. In his own words, the main raison d’être of EDMs is 

to broaden the field of GLMs introduced by Nelder and 

Wedderburn (1972) allowing the researchers to choose 

between infinite probability distributions the one that 

optimally represents their data. 

Under certain conditions, it has been proved that some 

EDMs converge to the Gamma distribution. An essential 

tool in the study of these domains of attraction has been 

the theory of regularly varying functions, they arise when 

the mean parameter goes to zero or infinity, while the 

dispersion parameter remains constant or asymptotically 

constant. That is why this convergence has been called of 

regular variation type. Using these resources Jørgensen et 

al. (1994) proved an important theorem, making it 

possible to asses Gamma convergence of some EDMs 

under weaker conditions than those required for 

asymptotic convergence of variance functions. 
On the other hand, Jørgensen (2013; Jørgensen and 

Martínez, 2013) developed a unified methodology to build 
Multivariate Exponential Dispersion Models 
(MEDMs) with fixed known marginals and a flexible 
correlation structure. Based on previous univariate 
studies about EDMs convergence (Jørgensen et al., 
1994; 2009) they could conjecture that previous 
results might be extended to those MEDMs that they 
had just defined. Moreover, MEDMs are important for 
practitioners because they broaden the parametric 
distribution family covered by GLMs derived from 
Multivariate Natural Exponential Family. 

In the next Section we give the definition of MEDMs; 

then we define bivariate regular variation and we state 

Karamata’s theorems and we prove an asymptotic 

property of MEDMs, that is the main result of this article. 

Finally, some conclusions are developed. There are also 

three appendixes with some detailed calculations. 

Multivariate Exponential Dispersion Models  

A method to obtain MEDMs has been presented by 

Jørgensen (2013; Jørgensen and Martínez, 2013). It is 

based on an extended convolution method that ensures a 
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k+k(k+1)/2 parameters distribution for k-dimensional 

models, with marginal distributions that belong to the 

same family; these new MEDMs have a flexible 

covariance structure. In this section the construction of 

the bivariate EDM will be detailed. Consider the 

probability density function: 

 

( ) ( ) ( ); , ; ,  
T k

f c expλ λ λκ
∗  = − ∈  ℝz z z zθ θ θ  

 

where, θ ∈ Θ ⊆ ℝ
k
, c(·;·) is a suitable function and λ is 

the weight parameter. The cumulant generating function 

(CGF) is: 

 

( ) ( ) ( ){ } ;   = + − ∈Θ −forλ λκ θ κ θ κ θ θss s  

 

and it characterizes the distribution. 

The bivariate case of these new MEDMs is obtained 

as follows: let Z = (Z1, Z2)
T
 be expressed as: 

 

( ) ( ) ( )1 2 1 2
, , 0 0,= + +

T T T

U U U UZ  

 

where, the three terms are independent with CGFs given 

by ( ) ( )1 2 12 1 2
, , ;→

T

s s s sλ κ θ
, 

( ) ( )1 1 1
,0 ,0;→s sλκ θ and ( ) ( )2 2 2

0, 0, ;→s sλ κ θ respectively. 

( )1 2
,s s ( ) ( )1 2 12 1 2 1 2

, , ; ,
T

s s s sλ κ θ θ→ Adding these three 

expressions we obtain the bivariate CGF: 

 

( ) ( ) ( ) ( )*

1 2 12 1 2 1 1 2 2
, ; , ; ,0; 0, ;= + +K s s s s s sλ κ λκ λ κθ θ θ θ  

 

that characterizes the model denoted by ED∗(θ, Λ). 

Given the additive property of ED∗, it can be seen that 

the marginals are models of the same family with 

weights λii = λ12 + λi , i = 1,2. The mean vector is 

( ) ( )= = ɺ⊙ ⊙E κZ λ µ λ θ
, being ( )11 22

,=

T

λ λλ
, 

( )ɺκ θ a 

vector with elements ( )
( )∂

  =  ∂
ɺ

i

i

κ
κ

θ

θ
θ  and ⊙  denotes 

the Hadamard product. The covariance matrix is: 
 

( ) ( )= ⊙Cov VΛ µZ
 

 

where, 
11 12

12 22

 ,

 
=  
 

λ λ

λ λ
Λ  ( )1( ) −

= ɺɺ ɺ�V κ κµ µ  is the unit 

variance matrix and ɺɺκ  is a matrix with elements 

( )
( )2

 
 .

∂
  =  ∂ ∂
ɺɺ

ij
i j

κ
κ

θ θ

θ
θ

 

The reproductive MEDM is defined by the scale 

transformation ( )1 11 2 22
,=

T
Z Zλ λY , the random vector Y 

has mean ( )= ɺκµ θ and covariance matrix: 

( )
2

11 1 12 1 2

2

12 1 2 22 2

  

 

µ µ µ
Cov

µ µ µ

σ σ φ

σ φ σ

 
=  
 

Y  

 
where, σij are the components of the dispersion matrix: 
 

12

11 11 22

12

11 22 22

1

;
1

 
 
 =
 
 
 

λ

λ λ λ

λ

λ λ λ

Σ  

 

we will denote it by Y ∼ ED(µ, Σ). One slight disadvantage 

of the method is that only positive correlations are obtained. 

The parameter domain that ensures that K*(s1, s2;θ) is a 

CGF could be broaden in order to admit negative 

correlations, but this issue remains to be investigated. With 

this in mind, Cuenin et al. (2015) give a variables-in-

common method for constructing multivariate distributions 

admitting negative correlations, but it is restricted to 

Tweedie models. 

A Particular Case: Bivariate Gamma 

While passing from uni to multivariate distributions 

there is more than one direction to choose. In words of 

Letac: “While the names of distributions in ℝ  are generally 

unambiguous, at the contrary in the jungle of distributions 

in 
k

ℝ almost nothing is codified outside of the Wishart and 

Gaussian cases”. 

Let us consider Kibble and Moran bivariate Gamma 

distribution as given by Kotz et al. (2000) whose 

cumulant function is: 

 

( ) ( )1 2 1 2
, , 0logκ θ θ θ θ ρ ρ= − − >  

 

with domain: 

 

( ){ }1 2 1 2 1 2
, , 0, 0, 0θ θ θ θ θ θ ρΘ = < < − > ⋅  

 

The mean vector is: 

 

( ) ( )

( )

( )

1 2

12 1 2

12 2 11 2

11 1

22 2

,

1

=

 +
=  

+−  

 
=  
 

ɺ⊙E κ θ θ

λ λ θ

λ λ θρ θ θ

λ µ

λ µ

λZ

 

 

and the covariance matrix is: 

 

( ) ( )
2

11 1 12 1 2

1 2 2

12 1 2 22 2

, ,

 
= =  

 
ɺɺ⊙Cov

λ µ λ φµ µ
κ θ θ

λ φµ µ λ µ
ΛZ  
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where, ( )1 2

1 2

1
1  1 4 1

2
µ µ

µ µ
φ ρ

ρ
= − + − as is demonstrated 

in Appendix C (a detailed treatment can also be seen in 

Boggio’s (2019)). The moment generating function 

(MGF) of the reproductive model in terms of µ is then: 

 

( ) ( )
12

1 2

1 2 1 2

1 2 1 2

11 22 11 22

1 2

1 2

11 22

; , 1 1

1 1

−

− −

 
= − − + − 
 

   
× − −   
   

s s s s
M µ µ µ µ

s s
µ µ

λ

λ λ

φ
λ λ λ λ

λ λ

Λs µ

. (1) 

 

Note that when φ = 0, meaning independence, (1) 

becomes: 

 

( )
11 22

1 2

1 2

11 22

; , 1 1

− −

   
= − − ⋅   
   

s s
M µ µ

λ λ

λ λ
Λs µ  (2) 

 

Bivariate Regular Variation and Karamata 

Theorems 

In this section we present some definitions and results 

that will be needed in the next section. They include 

bivariate regular variation, Karamata Tauberian theorems 

about Laplace transforms and Karamata representation. 

Bivariate Regular Variation 

Regular variation functions were defined by J. Karamata 

(Goldie et al., 1987; de Haan, 1975), they behave 

asymptotically as their Laplace transforms. The next 

definition was given by Omey and Willekens (1989), 

extending the concept of regular variation to 
2

+
⋅ℝ  

Defnition 1. A measurable function 
2

:u
+ +
→ℝ ℝ is 

regularly varying at infinity with indexes ,α β ∈ ⋅ℝ if  ∀x, 

y > 0 and t > 0, the limit: 

 

( )

( )

( ),

,

 ,

,
min t s

u tx sy
lim x y

u t s

α β

→∞

=  

 
exists and is finite. 

We will denote a regularly varying function at 

infinity with indexes α and β by u∈VR (α, β)∞; 

analogously u(x, y) is regularly varying at 0 if 
1 1
,u

x y

 
 
 

is 

regularly varying at infinity and we will denote it by u∈ 

VR (α, β)0. If α = β = 0 the function is said to be slowly 

varying at infinity (zero) and we will denote it by 

L∈VL∞(0). The concept of regular variation can be 

extended to measures as follows. 

Defnition 2: A measure ν on
2

+
ℝ  is said to vary regularly 

at infinity or zero with indexes ,α β ∈ℝ if the distribution 

function ( ) ( ] ( ],   { 0,  0,  }= ×νv x y x y does. 

Bivariate Karamata’s Theorems 

Next we extend a theorem stated by Jørgensen et al. 

(1994), that relates regular variation of a measure with 

regular variation of its Laplace transform. Hereafter the 

notation “f(x)∼kg(x) when x→∞” means that 

( )

( )
lim  
x

f x
k

g x→∞

= ⋅  

Theorem 1 (Bivariate Karamata Tauberian 

Theorem). 

Let ν be a measure on 
2

+
ℝ  with Laplace transform 

(.,.)ω , then: 
 

( )
( ) ( )

( )

( )

1
,  ,

 1  1

1 1
,  ,

∼ ⇔
Γ + Γ +

 
∼ 

 

α β

α β

α β

ω

v t s t s L t s

t s L t s
t s

 

 
when min(t, s) → ∞, L∈VL∞, α and β being non negative 

numbers and v  the function given in Definition 2. 

 

Proposition 1. The statement on the left is equivalent to 

affirm that ( , )v VR α β
∞

∈ as is proved in Appendix A. 

Now let ν be a measure of the form: 
 

( ) ( ) 1 1
, ,   ,dx dy g x y x y dxdyα β

ν
− −

=  
 
g being analytic and zero at (0,0), then ν∈VR(α, β)0. 

Theorem 1 allows us to say that the MGF of the natural 

exponential family generated by such a measure takes 

the form: 
 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2
, , , , 0,M L

α β

ν θ θ θ θ θ θ θ θ
− −

= − − − − <  (3) 
 

where ( )1 2 .
,L VLθ θ

∞
− − ∈  

On the other hand, de Haan and Resnick (1987) 

proved an extension of Karamata representation to the 

multivariate regular variation case; we are interested in 

the particular case of bivariate slow variation. A slowly 

varying function 
2

:L
+
→ℝ ℝ  can be represented as: 

 

( ) ( )
( )

( ),

1

,

, ,

x y

a t t
L x y d x y exp dt

t

  
=  

  
∫  (4) 

 

where, 
2

:  d
+
→ℝ ℝ  and 

2
:  a

+
→ℝ ℝ  such that 

( ) 0
  ,  0

t

lim d tx ty d
→∞

− =  for some 0<d0<∞ and 

( ) , 0.
t

lim a t t
→∞

=
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The Main Result  

In the univariate case several convergence theorems 
have been proved considering three types of convergence: 
central limit type, infinitely divisible type and regular 
variation type (Nielsen, 2000; Jørgensen, 1997: p149). Our 
main result concerns convergence of regular variation type, 
where the dispersion parameter remains constant while the 
mean tends to zero or infinity. In this section we extend a 
theorem that has been proved in the univariate context to the 
bivariate case. This theorem asses the asymptotic 
equivalence between some bivariate EDM and the bivariate 
Kibble and Moran’s Gamma distribution, with weaker 
assumptions than previous theorems. Extension to 

k

+
ℝ is 

straightforward. 
We will introduce now some notation in order to 

simplify next developments. Let the bivariate EDM (µ, 

Λ) be generated by a measure ν with support S ⊆ (0,∞) × 

(0,∞). If ν is regularly varying at zero or infinity with 

index α > 0, then given (3) its CGF is: 
 

( ) ( ) ( ) ( )1 2 1 2
, ,= − − + − −log log lκ α θ α θ θ θθ   (5) 

 
where, l(x, y) = log L(x, y). The mean value vector takes 

the form: 
 

( )

( )

( )

( )
1 11

2

2 2

 

.

 

 ∂ − 
− − 

∂   = =   ∂ −   − −
∂  

l

l

α

θ θτ

τ α

θ θ

θ

θ

θ θ
µ  

 
We define functions δi (µ1, µ2), i = 1, 2 as: 

 

( )

( )
( )1 1 2 1 1

2 1 2 2

,

.

,

−

   
= =   
  

µ µ

µ µ

δ θ
τ

δ θ
µ  

  
Now: 
 

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

1 2

1 11

2 1 2

2 2

,

,

,

 ∂ − −
− − 

∂   
= =   

∂ − −   − −
 ∂ 

l

µ

µ l

δ δα

δ δ

δ δα

δ δ

µ

µ µ

µ µ

µ µ

µ µ

 

 
giving: 
 

( )
( ) ( )( )

( )
1 2

, , 1,2
∂

+ − − = − =
∂

i

i i

l i
α

µ δ δ
δ δ

µ µ
µ µ  

 
and the vector τ

−1
(µ) can be expressed as: 

 

( )
( )

( )

( )( )
( )

( )( )
( )

1

1

111

2

1

2

2

.

−

−

−

− 
 ∂ − +
 ∂ 
 = = 

−  
 ∂ − +
 ∂ 

l

l

α

τ
µ

δδ
τ

δ α

τ
µ

δ

µ

µ

µµ

µ

µ

µ

 (6) 

Now the main theorem can be stated. 

 
Theorem 2: Let Y ∼ ED (µ, Σ) be a bivariate EDM 

generated by the measure ν with support S⊆(0,∞)×(0,∞). 
Suppose that ν is regularly varying at zero or infinity 
with the same index on both variables. Given (3) and if 
l(x, y) satisfies: 
 

( ) ( )( )
( )

1 2

0( )

,1
lim 0, 1,2
→ ∞

∂ − −
= =

∂c

i

l c c
i

c c

δ δ

δ

µ µ

µ
 (7) 

 

( ) ( ) ( )

12

11 11 222

11 22

12

11 22 22

12 0

1

   0, 0
1

1
0, , ,

+

→ ∞

 
 
 ∈ = > >
 
 
 

≥ →Γ

ℝ

d

ac

for all and with and

than ED c
c

λ

λ λ λ
λ λ

λ

λ λ λ

λ

µ Σ

µ ∑ µ ∑

where, Γ is the bivariate Gamma defined previously and 
 

11

22

1
0

.
1

0

 
 
 =
 
 
 

a

αλ

αλ

∑  

 
The theorem will be proved for ν regularly varying at 

zero (L slowly varying in infinity); the proof for ν regularly 
varying at infinity is similar. 

Proof: Let Z = (Z1, Z2)
T
 ∼ED∗(θ, Λ) be the bivariate 

additive EDM generated by ν, constructed as described 
above with MGF: 
 

( )

( ) ( ) ( )

( )

1 2 12
1 1 2 1 2 2 1 1 2 2

1 2 12
1 2

, , ,

; , .

+ + + +

∗

+ +
+

     
     =

 
 

s s s s

e e e

M

e

λ λ λ
κ θ θ κ θ θ κ θ θ

λ λ λ
κ θ θ

θ Λs  

 
Replacing by ( 5) we obtain: 
 

( )

( )

( )

( )

( )

( )

( )

11 22

1 2

12

1 2

1 2

1 1 2 1 2 2

1 2 1 2

1 1 2 2

1 2

; , 1 1

, ,

, ,

,

,

− −

∗
   

= + +   
   

   − − − − −
×   

− − − −      

 − − − −
× 

− −  

s s
M

L s L s

L L

L s s

L

αλ αλ

λ λ

λ

θ θ

θ θ θ θ

θ θ θ θ

θ θ

θ θ

θ Λs

 

 
and given the scale transformation 

( ) 1 2

1 2

11 22

, ,

 
= =  

 

T

T Z Z
Y Y

λ λ
Y  and MGFs properties, the MGF 

for the perturbed reproductive model ( )
1

,ED c
c

Σµ  results, 

for µi>0 fix, i = 1,2 and c small enough to ensure that 

cµ∈Ω: 
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( )
( )

( )

( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )

( ) ( )

11

22

1

2

1 1

11 1

2

22 2

1

1 2

11

1 2

2

1 2

22

1 2

1 2

1 2

11

1
; , 1

1

,

,

,

,

,

−

−

−

  
= +       

 
× +  
 

  
− −  

  ×
 − −
 
  

  
− − −  

  ×
 − −
 
  

− − − −

×

αλ

αλ

λ

λ

τ
λ δ

λ δ

δ δ
λ

δ δ

δ δ
λ

δ δ

δ δ
λ

s
M c

c c c

s

c c

s
L c c

c

L c c

s
L c c

c

L c c

s s
L c c

c

s µ Λ
µ

µ

µ µ

µ µ

µ µ

µ µ

µ µ

( ) ( )( )

12

22

1 2

.
,

  
  

  
 − −
 
  

λ

λ

δ δ

c

L c cµ µ

 

Let us denote by hi(s; c, µ, Λ) the expressions with 

exponent λi (i = 1,2) and by h12(s; c, µ, Λ) the one with 

exponent λ12 so the MGF can be written as follows: 
 

( )
( )

11

1 1

11 1

1
; , 1

−

−
  

= +       

s
M c

c c c

αλ

τ
λ δ

µ Λ
µ

s  

( )

( )

( )

( )

22

1

2

12

2

22 2

1

2

12

1

; , ,

; , ,

; , , .

−

 
× +  
 

×

×

×

s

c c

h c

h c

h c

αλ

λ

λ

λ

λ δ µ

µ Λ

µ Λ

µ Λ

s

s

s

 (8) 

 
The following equalities will be proved: 
 

( )
0

, 1,2,
→

= − =
i

c

i

limc c
α

δ
µ

µ   (9a) 

 

( )
0

; , , 1, 1,2,
→

= =
i

c

limh s c iµ Λ
  (9b) 

 

( )12
0

; , , 1.
→

=
c

limh cs µ Λ
  (9c) 

 
To prove (9a) note that from (6) and given condition 

(7), we have that: 
 

( )
( )( )

( )

1
0 0

.

1
−

→ →

−
= = −

∂ −
+

∂

i
c c

i

i

i

limc c lim
µl c

µ
c c

α α
δ

τ

δ

µ

µ

µ

 

 
Before proving (9b) and in order to simplify the notation 

we define ( ) ( ) ( )( )1 2 1 2
, ,= =

ɶ ɶ ɶ
T T

T
c cθ θ δ δθ µ µ where δi(cµ), i 

= 1,2 are strictly increasing functions, as is shown  in 

Appendix B. 

Now, to obtain ( )1
0

; , , ,
→c

limh c µ Λs
we apply (4), in 

such a way that h1(s; c, µ, Λ), with τ
−1
(cµ) in terms of 

ɶθ can be expressed as: 
 

( )
( )( )
( )

ɶ ( ) ɶ( )
ɶ ɶ( )

( )

1 1 2

1

1 2

1 2
1

1 2

1 ,
; , ,

,

1 , ,
exp

,

− + −
=

− −

− + −   
=  

− −   
∫

ɶ ɶ

ɶ

ɶ ɶ

n

m

L z
h c

L

d z a t t
dt

td

θ θ

θ θ

θ θ

θ θ

θ Λs

 (10) 

 

where, ( ) { }( )1 2 1 1 2
, , 1 , ,m n zθ θ θ θ= − − = − + −

ɶ ɶ ɶ ɶ
being ⋅ any 

norm and 
1

1

1 1

.

s

z

cλ θ
=

ɶ  

Taking into account that  

( ) 1 1

1
0

1

1 1 0
c

s µ
lim z

λα→

+ = − > because s1<0 and given the 

conditions required for bivariate Karamata 

representation, it can be deduced that: 
 

( )( )
( )
1 1 2

0

0
01 2

 1 ,
 1.

 ,c

d z d
lim

dd

θ θ

θ θ→

− + −

= =

− −

ɶ ɶ

ɶ ɶ  (11) 

 
We also have that: 
 

( ) ( )
1 1

, ,   ,
m t n

a t t sup a t t and that
t m≤ ≤

≤ ≤  
 
and then: 
 

( )
( ) ( )

, 1
, .

 

n

m t n
m

a t t
dt sup a t t n m

t m≤ ≤

≤ −∫  

 

For type 1 norm defined as ( )
1

,x y x y= + we have that: 
 

( )

1 1 2 1 2

1 1

1    

 1 1

− = + + − −

= + −

ɶ ɶ ɶ ɶ

ɶ

n m z

z

θ θ θ θ

θ
 

 
and: 
 

( )
( ) ( )1 1

1 2

, 1
, 1 1 .

 

n

m t n
m

a t t
dt sup a t t z

t
θ

θ θ≤ ≤

≤ + −

+
∫ ɶ

ɶ ɶ  

 

Now, given that 
1 1 2

1 1

θ θ θ
≥

+ɶ ɶ ɶ : 

 
( )

( )
ɶ

ɶ ( )1
1

0
1

lim sup, 1
, 1 1 0,

0 

n

c

m

a t t
lim dt a t t z

c m t nt
θ

θ→

≤ + − =
→ ≤ ≤

∫  

 
hence: 
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( )
0

,
exp 1.

 

n

c

m

a t t
lim dt

t→

  
= 

  
∫  (12) 

 
Putting together both results (11) and (12) and 

replacing in (10): 
 

( )1
0

; , , 1.
→

=

c

limh c µ Λs  
 

Limits for h2 and h12 when c→0 can be obtained in a 

similar way, then taking limits in (8) we have that: 
 

( )
11 22

1 1 2

1 2
0

11 22

1
; , 1 1 ,

− −

−

→

    
= − −     

     c

s s
limM c

c

αλ αλ

τ µ µ
αλ αλ

µ Λs   

 
and this is the expression for the MGF of the bivariate 

dispersion model Γ (µ, Σ
α
) for independent variables, as 

was proved in (2). The matrix Σ
α
 takes the following form: 

 

11

22

1
0

.
1

0

 
 
 =
 
 
 

a

αλ

αλ

∑  

 
We present next an example of a bivariate EDM 

generated by a regularly varying measure that satisfies 

the conditions required by Theorem 2. 

Example 1. Let the bivariate EDM, ED(µ,Σ) be 

generated by the following measure, that is an extension 

of the measure presented by Letac (1992): 
 

( ) ( )( ) ( )1 2
2 2 2

1 2 1 2 1 2
, 1 1 , , .

y y
dy dy e e dy dy y yν

+
= − − ∈ℝ   (13) 

 
The CGF is: 
 

( ) ( )1 1 2 2

1 2 1 2
0 0

2 2

1 1 2 2

, log ,

2 2
log log .

2 2

∞ ∞
+

=

= +

+ +

∫ ∫
y y

k e dy dy
θ θ

θ θ

θ θ θ θ

v

 

 
In order to analyse if ν varies regularly we obtain the 

distribution function ( ) { }1 2 1 2
, (0, ] (0, ] .v y y y y= × ⋅v  

 

( ) ( ) ( )
1 2

1 2

2 2

1 2
0 0

2 2

1 2

, 1 1

1 1

2 2 2 2

y y
u s

y y

v y y e du e ds

e e
y y

= − −

   
= − − − −   

   

∫ ∫
 

 
and taking limits: 

 

( )

( )

( )

1 2
2 2

1 2 1 2

2 2
0 0

2

1 2

, 2 1 2 1
lim lim

, 2 1 2 1

,

ty ty

t t
t t

v ty ty e ty e ty

v t t e t e t

y y

→ →

− − − −
=

− − − −

=

 

then ( )
0

2,2v VR∈ and by Definition 2 the measure ν 

varies regularly. 

Given (3) we can affirm that the MGF is: 

 

( ) ( )

( ) ( ) ( )

1 2

2 2

1 1 2 2

2 2

1 2 1 2

,

2 2

2 2

, ,

M e

L

κ θ

ν
θ θ

θ θ θ θ

θ θ θ θ
− −

=

=

+ +

= − − − −

 

 

where, L∈VL
∞
 is: 

 

( )
( )( )

1 2

1 2

1 2

4
, .

2 2
L

θ θ
θ θ

θ θ
− − =

+ +  

 
Let us analyse conditions (7): 
 

( )

( )
1 2
, 1 1 2

1,2
2 2

∂ − −
= − = =

∂ + +
i i i i i

l
i

θ θ

θ θ θ θ θ  

 
and taking into account that: 

 

( )

( )

2
2

22

4 12
1,2

2 2
i

i

i i i i

k
i

θ

θ θ θ θ θ

+∂
= + =

∂ ∂ + +
, 

 
these second derivatives can be expressed in terms of 

mean values: 
 

( ) ( ) 2 2

1 2
, 1 1 1,2,

i i
i i i i

V µ µ µ i
θ θ

κ θ θ = = + − + =ɺɺ  
 
giving: 
 

( )1 2 2
,  

1 1 1,2.
i

i

l
µ i

θ θ

θ

∂ − −
+ − =

∂
 

 
Then, taking limits and applying L’ Hopital: 
 

( )

( )

2 2

1 2

0 0

1

2 2 22

0

, 1 11
lim lim

1
lim 1 2 0,

2

i

c c
i

i i
c

l c

c c

c c

θ θ µ

θ

µ µ

→ →

−

→

∂ − − + −
=

∂

= + =

ɶ ɶ

ɶ

 

 
for i=1,2, so conditions (7) are satisfied. Now, given (4) 

and according with Theorem 2, EDMs generated by (13) 

satisfy that when c→0: 
 

1
( , ) ( , )→

d

a a
ED c

c
Γµ ∑ µ ∑  

 
Γ being the bivariate Gamma distribution for 

independent variables with
11

22

1
0

2
.

1
0

2

 
 
 =
 
 
 

a

λ

λ

∑  
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Conclusion and Discussion 

The Gaussian distribution has been for a long time 

the main tool of most statistical analysis, although Fisher 

(1953) pointed out the importance of describing data in 

their natural habitat. Gaussian distribution is particularly 

relevant for small dispersion data, but it does not include 

the case of large dispersion. Jørgensen developed a 

theory for large dispersion models that covers infinite 

distributions that can be chosen as the most appropriate 

for each data set. 
While dealing with multivariate responses in the no-

normal case it is necessary to extend classical theory to 
flexible multivariate distribution families. Statistical 
literature provides a large variety of such families, but it 
is not easy to choose between them as pointed out by 
Letac (2007). With these considerations in mind, the 
search was reasonably based in the identification of 
multivariate distributions that keep some of the 
characteristics of the corresponding univariate 
distribution, being marginal and conditionally closed. 
This is not an easy task, Jørgensen (2013; Jørgensen and 
Martínez, 2013) presented a new class of MEDMs with 
the ideal number of parameters; they based the 
construction on an extension of the convolution method. 

On the other hand, studies about convergence of 

EDMs performed by Jørgensen et al. (1994) and  

Jørgensen et al. (2009) allowed these authors to 

conjecture that similar results could be proved for those 

MEDMs they defined in 2013. Contributions made by J. 

Karamata are relevant for this type of convergence, he 

extended to 
k

ℝ some Tauberian theorems for regular 

variation functions establishing that those functions 

behave asymptotically as their Laplace transforms. 

In this article we proved that bivariate EDMs 

generated by regularly varying measures, tend to a 

bivariate independent Gamma distribution when the 

mean parameter goes to some extreme in the parameter 

domain. This extension of Tauber type convergence to a 

Gamma model is done imposing no conditions on the 

asymptotic behaviour of the variance function in a 

similar way as the univariate theorem. 

Only measures of regular variation type with the 

same index for both variables have been considered, 

because models generated by measures with different 

index for each variable would imply the existence of 

bivariate models whose variance function has is different 

for each variable, this situation is hard to imagine. 

Recently, Hitz and Evans (2016) developed an 

extension of Karamata theorem to multivariate regular 

variation functions and their results are important in 

extreme value theory opening a new line of research of 

convergence properties of dispersion models for extremes, 

taking into account the parallelism between those models 

and EDMs developed in (Jørgensen et al., 2010). 
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Appendixes 

A. Proof of Proposition 1 

We will demonstrate the following equivalence:  

( )
( ) ( )

( )
1

, ,
1 1

v t s t s L t s
α β

α βΓ + Γ +
∼ when  

min( , ) ( , )
∞

→∞ ⇔ ∈ α βt s v VR where α, β ∈ℝ
+
. 

Proof. When min (t, s) → ∞ we can write: 

 

( )
( ) ( ) ( )1 1 ,

, .
v t s

L t s
t s
α β

α βΓ + Γ +
∼   (14) 

 

Also, given that L∈V L∞, 

 

( )

( )

( )min ,

,
lim 1.

,a b

L at bs

L a b→∞

=  

 

Replacing by (14), we obtain: 

 

( )

( )

( )min ,

,
lim ,

,a b

v at bs
t s

v a b

α β

→∞

=
 

 

meaning that ( , ) ( , )v t s VR α β
∞

∈ . 

B. Properties of i
θɶ , i = 1,2 

To prove that i
θɶ , i = 1,2 are strictly increasing 

functions, we will compute their derivatives: 

 

( )
( ) ( )

1 2 1 2

1 2

, ( ) ( ) .
∂ ∂

= +
∂ ∂

i i i

d
cµ cµ c µ c µ

dc cµ cµ
δ δ δµ µ   (15) 
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The Jacobian matrix is: 
 

( ) ( )

( ) ( )

( )

1 1

1 21 1

2 2 2

1 2

( ) ( )

( )
 ,

( ) ( ) ( )

−

∂ ∂ 
 ∂ ∂   = =   ∂ ∂ 
 
∂ ∂  

c c

cµ cµc
J J c

c c c

cµ cµ

δ δ

δ
τ

δ δ δ

µ µ

µ
µ

µ µ µ
 

 

and it is known that Jτ
−1
(cµ) = ( )( )

1−

ɶJτ θ , then: 
 

( )
( )
( )

( )

( )

( )
( )

( )

( )

1

121 11

2 212

122 2

1 112

1

−

−

 
 =
  

 −
 =

∆  − 

µ

τ

µ

µ

µ

V cV c

J c

V cV c

V cV c

V cV c

µ

µ

µ

µ

µ

 

 

where, ∆ = V1(cµ1) V2(cµ2) - ( )2

12
V cµ . 

Then: 

 

( ) ( ) ( )( )1 2 2 1 12 2

1
= −
∆

d
c V c V c

dc
δ µ µ µµ µ  

 

and: 
 

( ) ( ) ( )( )2 1 1 2 12 2

1
.= −

∆

d
c V c V c

dc
δ µ µ µµµ  

 

Both expressions are always positive. Then we have that 

δi(cµ) are strictly increasing functions. Then 0c→
 

implies 
1 2

 andθ θ→−∞ → −∞
ɶ ɶ for µ1 and µ2 fixed. 

C. Reparametrization of Kibble and Moran 

bivariate Gamma Variance Function 

The mean and the variance function corresponding to 

Kibble and Moran bivariate gamma distribution are 

given by the gradient and the Hessian of κ (θ): 
 

( ) 2

11 2

1
,

 
= =  

−  
ɺµ

θ
κ

θρ θ θ
θ   (16) 

 

giving 
2 1

1 2

1 2 1 2

and .µ µ
θ θ

ρ θ θ ρ θ θ
= =

− −
 Also: 

 

( )
( )

2

2

2 2

11 2

1
( )   

 
= =  

−  
ɺɺV

θ ρ
κ

ρ θρ θ θ
θµ   (17) 

 

gives the correlation coefficient 
1 2

.
ρ

φ
θ θ

=  

From (16) we can re parametrize the diagonal 

elements in (17) as 
2[ ( )] , 1,2.

ii i
V µ µ i= = The elements off 

the diagonal are: 

( )
1 2 1 22

1 21 2

[ ( )] .= = =
−

ij
V µ µ µ µ

ρ ρ
φ

θ θρ θ θ
µ

 

 

Now the variance function can be re-written in terms 

of mean value parameters: 

 
2

1 1 2

2

1 2 1

( ) .
 

=  
 

µ µ µ
V

µ µ µ

φ

φ
µ  

 

We need to express φ in terms of µ1, µ2 and ρ. We 

first clear up θ1 and θ2: 

 

( ) ( )

( ) ( )

2

1 1

1 2 1 1

1

2 2

1 2 2 2

1 1

1 1

1 1
.

1 1

µ

µ

θ
θ

ρ θ θ φ θ φ µ

θ
θ

ρ θ θ φ θ φ µ

= = ⇒ =

− − −

= = ⇒ =

− − −

 

 

giving: 

 

2

1 2 1 2 1 2

1 2

2
ρ

φ ρµ µ φ ρµ µ φ ρµ µ
θ θ

= = − +  

 

and after some algebraic manipulations, we obtain the 

second order equation: 

 
2

1 2 1 2 1 2
( 1) 0.− + + =ρ ϕ ρ φ ρµ µ µ µ µ µ

 

 

We choose the solution that gives a correlation 

coefficient < 1: 

 

( )1 2

1 2

1
1 4 1 1 .

2
φ ρ µ µ

ρ µ µ
= − + −  
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