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Abstract: In this work, we assess the power and size of eight normality 

tests underthe assumption that errors follow a GARCH (1, 1) process by 

using MonteCarlo simulations. Four results stand out. First, the presence 

of a GARCH(1, 1) process increases the probability of making type I 

error. Second, Pearsonnormality test is recommended if it is assumed that 

errors follow a GARCH(1, 1) process. Third, statistical power varies 

depending on the type of heteroscedasticity and distribution considered. 

Fourth, normality tests have lowstatistical power and size (less than or 

equal to the nominal level) for smalland homoscedastic samples.  
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Introduction 

Autoregressive conditional heteroscedasticity 
(ARCH) models that describe heteroscedastic behavior in 
time series errors were introduced by Engle (1982) more 
than 36 years ago. Four years later Bollerslev (1986) 
generalized the ARCH model by introducing the 
generalized autoregressive conditionally heteroscedastic 
(GARCH) models.  

Nowadays, GARCH models are widely used and, in 

some contexts, have a better fit than an ARCH model 

(Enders, 2003). GARCH models have proven very 

useful for modeling financial time series behavior it 

solves Ordinary Least Squares (OLS) estimator’s 

inefficiency caused by heteroscedastic errors. This result 

makes possible to use standard errors, t and F statistics to 

make inferences (Green, 2012).  

It also provides a measure of volatility, on which 

financial decisions related to risk analysis and 

portfolio selection are based and can be useful in the 

analysis of changes in exchange and interest rates 

(Bollerslev et al., 1992).  
GARCH models can be estimated by the method of 

Maximum Likelihood (ML), which assumes that the 
errors follow a normal distribution. This assumption is 
essential for some estimation methods, such as ML, but it is 
also necessary to make an inference from small samples 
and for constructing prediction intervals of any sample size. 

If innovations of GARCH models are expected to 
follow a distribution different from the normal distribution, 
the literature suggests a Quasi-Maximum Likelihood 
(QML) method. However, Engle and Gonzalez-Rivera 

(1991) showed that estimators lose efficiency if the density 
function of the error term is not adequately specified.  

Other authors have arrived at similar conclusions. 

Bellini and Bottolo (2008), through Monte Carlo 

simulations, found that ML and QML estimators 

underestimated or overestimated volatilities depending 

on the misspecification assumed. That variability can 

often generate a spurious “IGARCH effect” when 

estimating under a weak stationary constraint. Similarly, 

Klar et al. (2012) stated that QML estimators associated 

with an incorrect specification of the error term might 

imply a loss of efficiency of the estimators, which could 

imply a wrong assessment of Value-at-Risk (VaR) and 

an inaccurate forecast of priced options.  
Therefore, the normality assumption is crucial for a 

practitioner when estimating GARCH models. However, 
little is known about the statistical power and size of 
normality formal tests under the presence of errors that 
do not follow an independent and homoscedastic data 
generating processes. 

As far as the authors are aware, Vavra (2011) and 
Fiorentini et al. (2004) are the only approaches that have 
studied the performance of normality test under the 
presence of errors that follow a GARCH process. The 
first article evaluated three tests of normality (Jarque-
Bera (JB), the J test based on the generalized method of 
moments and a third based on quantiles) and their findings 
showed that the quantile test has a better performance than 
JB and that produces results consistent for all samples and 
distributions of the innovations studied. The second study 
found that the Jarque-Bera test (JB) can be safely applied 
to a broadclass of GARCH models -M; however, it did not 
examine the GARCH (1, 1) models.  
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This study aims to contribute to this scarce literature 

by investigating how errors following a GARCH (1, 1) 

processes affect the statistical power and size of eight 

normality tests by holding out a Monte Carlo study. 

These tests are Shapiro-Wilk (SP), Jarque-Bera (JB), 

D’Agostino-Pearson, (K), Pearson (PCHI), Shapiro-

Francia(SF) anderson-Darling(WCM), Lilliefors (LKS) 

and Cramér-von Mises (CM).  

Given the literature, we have several hypotheses 

about the effect that heteroscedastic errors are going to 

have on statistical power and size of the normality test: 

(i) statistical power will improve as the sample size 

grows, (ii) the behavior of the statistical power will vary 

among the distributions choose in the Monte Carlo 

study, those that are similar to a normal distribution 

(such t Student) will have better statistical power and 

(iii) in small sample Shapiro – Wilk will be the most 

powerful test.  

The remainder of the paper is structured as follows. 

In the next section, we describe the method and the data 

generating process. In section three, we present our 

findings from the Monte Carlo simulations. The paper 

continues with a discussion of the results in section four. 

At last, the conclusions and contributions of this study.  

Materials and Methods 

Following Alonso and Montenegro (2015), we test 

the behavior of eight of the most popular normality tests 

in the literature under the presence of heteroscedastic 

errors that follow a GARCH (1, 1) process. The test we 

study(fromnow on we will refer to them by the names in 

brackets) are: (i) Shapiro-Wilk (SP), (ii) Jarque-Bera (JB), 

(iii) D ’Agostino-Pearson, (K),(iv) Pearson (PCHI), (v) 

Shapiro -Francia (SF), (vi) Anderson-Darling (WCM),(vii) 

Lilliefors (LKS) and (viii) Cramér-von Mises (CM). We 

present the statistic for each test in Appendix 1. 

Following Bera & Ng (1993), it is possible to classify 
these eight normality tests into two categories: distance 
tests and goodness of fit tests. The distance tests are the 

CM, WCM and LKS. CM is an Empirical Distribution 
Function (EDF) test that compares the cumulative 
distribution function (CDF) of a normal distribution with 
the estimated distribution function from the sample data 
and evaluates how similar are they (Razali and Wah, 
2011). WCM, also an EDF test, uses the Cramérvon 

Mises statistic weighted with its accumulative 
distribution function so that the tails of the estimated 
distribution have more weight than the CM test. The 
LKS is a modification of the Kolmogorov-Smirnov (KS) 
test, while its statistic is determined in the same way as 
KS’s, the critical values are not the same; therefore, LF 

leads to different conclusions (Razali and Wah, 2011).  
On the other hand, the considered normality tests that 

belong to the goodness of fit tests category are JB, K, 

PCHI, SP and SF. JB and K are moment tests since the 

detection of non normality distribution come from 

evaluating two sample moments: skewness and kurtosis.  

The main difference between those two is the 

transformation made to the sample moments. Besides 

that, both tests compare their statistic with a critical 

value from a Chi-Square distribution with two degrees of 

freedom (Singh and Masuku, 2014). The PCHI test 

implies a statistic that is the sum of the ratio of the 

squared difference between the observed frequency of data 

of type i and its expected frequency (Mbah and Paothong, 

2014), weighted by its expected frequency. SP evaluates if a 

random sample comes from a normal distribution. It sums 

the square of the ordered sample values weighted by a 

constant, generated from the means, variance and 

covariances of the corresponding order statistics of the 

sample and divides the results by the sum of the square of 

the deviations (Mbah and Paothong, 2014). The SF is a 

similar test to the SP, but it is designed for large samples. 

In this Monte-Carlo experiment, we consider the 

effect on normality tests' power of: (i) the sample size, 

(ii) distribution and (iii) parameter values of a GARCH 

(1, 1) process. Especially, the experiment will consider: 

 

• Six sample sizes (T): 25, 50, 100, 200, 500, 1000 

and 3000 

• Six distributions of the error term: Standard Normal 

(N[0,1]), Student's t with three, five and 10 degrees 

of freedom, Laplace and Uniform. These last two 

tests come from the Generalized Error Distribution 

(GED) with one degree of freedom and 10 degrees 

of freedom, respectively 

• Three types of GARCH(1,1) process: (i) δ = 0.1 and 

β=0.8, (ii) β =0.4 and δ=0.4 and (iii) δ=0.8 and 

β=0.1. Three types of GARCH(1,1) process: (i) δ = 

0.1 and β=0.8, (ii) δ =0.4 and β =0.4 and (iii) δ =0.8 

and β =0.1. The results from these types of 

heteroscedastic error terms are compared with the 

results from a homoscedastic error term to measure 

how each type of heteroscedasticity affects the 

power and size of the normality tests 

 

The Monte Carlo experiment implies the following 

steps: 

1. Generate data for the vector yy×1 using the following 

data generating process: 

 

1 1 #
t t t
y x ε= + +  (1)  

 

where, �� corresponds to a non-stochastic variable 

generated a priori (and only once) from a uniform 

distribution between zero and one. The random 

vector ε� is a not auto correlated error term but is 

heteroscedastic and follows a GARCH (1,1) 

process: 
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= + +  (3) 

 
ht is the conditional variance of the error and vt is a 

white noise process. ω, δ and θ are constants
a
. For 

all cases, ω is set to 0.000001. 

2. Regress yt into xt and a constant by ordinary least 

squares method, which minimize the sum of the 

squares of the differences between yT×1 and those 

predicted (
1T

y
×

⌢

). In other words: 

 

{ }1 1 2 1 1 1 2 1
#

T

T T T T
Min y X y X

β
β β

× × × × × ×

   − −   
⌢

⌢ ⌢

 (4)  

 
1

2 1 1 1 1 1
( ) #T T

T T T T
X X X yβ −

× × × × ×
=

⌢

 (5) 

 

3. Obtain the error term: 

 

1 1 1 2 2 1

ˆˆ ˆ ( ) #
T T T T

y Xε β
× × × × ×
= −  (6) 

 

4. Apply normality tests to estimated residuals (
1T̂

ε
×

) 

and record if the null hypothesis is rejected 

(significance level of 0.05) or not
b
. 

5. Repeat 10,000 times steps one throw four. 

6. Calculate the observed size or power, depending on 

the case, as the proportions of rejections. 
 

Results 

Standard Normal Distribution 

When the error is homoscedastic, normality tests 

show a statistical size close to nominal (α = 0.05) for all 

sample sizes (Table 1). In small samples, CM test has the 

closest value to the nominal. For samples of size 1000, 

the best tests is WCM. An interesting result arises when 

considering a heteroscedastic error term. In general, the 

observed statistical size of the tests becomes distorted 

regardless of the values of δ and β. There are a few 

unexpected exceptions for small samples. For example, 

all tests continue to show a size close to the nominal 

(0.05) for an error term following a GARCH(1, 1) model 

with δ =0.1 and β = 0.8 and sample size 25 and 50. 

Moreover, for δ =0.4 and β = 0.4 only for sample size 25 

the statistical size of all eight tests is relatively close to 

0.05. In all other cases, the observed size is far from the 

theoretical (see Table 1). On the other hand, for the 

GARCH (1, 1) model with δ =0.1 and β = 0.8, JB has the 

lowest empirical size among the eight tests for samples 

of 25 and 50 observations; however, for large samples 

(500,1000 and 3000) JB presents the greatest distortion. 

For samples between 100 and 3000 observations, the 

PCHI presents the lowest statistical size compared to the 

other eight tests; despite that, as the number of 

observations growth statistical size also grows and 

becomes 0.103, twice the nominal. For the GARCH (1, 

1) model with δ =0.4 and β = 0.4 we obtain similar 

results. One important difference for samples of 

size1000 from the previous case is that all tests exhibit 

on average a probability of96.6% (disregarding the PCHI 

that has the smallest size) of making the mistake of 

rejecting the null hypothesis when it is true. Finally, all 

tests, except CM, present the greatest distortions under 

errors from a GARCH (1, 1) model with δ =0.8 and β = 

0.1, since for samples of 500 or more observations the 

probability of making type I error is of 100%. Power 

with Error Term from Student’s t- Distribution 

Tables 2, 3 and 4 present results for Student’s t 

distribution with three, five and 10 degrees of freedom, 

respectively. In general terms, the power of normality 

tests is about one when the sample size is 1000 or 3000; 

except the CM test that has the lowest power in those 

two samples sizes. However, the power decreases as we 

increase the number of degrees of freedom because the t-

distribution approaches a normal distribution. This 

phenomenon intensifies in samples of size 25 and 50, but 

it is almost imperceptible in large samples. For example, 

for the homoscedastic residuals, the SF test has the 

greatest power in the distribution with three degrees of 

freedom, for five degrees its power reduces to 0.239 and 

for the distribution with 10 degrees of freedom is 0.124. 

For heteroscedastic residuals, the power of the same test 

is 0.387, 0.199 and finally 0.096, respectively. On the 

other hand, the SF test has the highest empirical power 

for all samples considered when the error has a constant 

variance and follows a distribution with three degrees of 

freedom. The same applies to Student’s t-distribution 

with five degrees of freedom, excluding the sample of 25 

observations. Instead, for a Student’s t- distribution with 

10 degrees of freedom, JB shows the best power for 

samples of 100 to 3000 observations. The SF is the most 

powerful test under the three types of heteroscedasticity 

and for the three Student’s t-distributions considered. It 

is interesting to note in Table 3 and 4 that GARCH (1, 1) 

model with δ =0.4 and β = 0.4 and δ =0.8 have a positive 

effect on the test’s power when compare with the power 

obtained from applying the tests to the homoscedastic 

case. However, the above does not hold for the CM test 

when it is applied to samples of 1000 and 3000 

observations since the probability of rejecting a false 

hypothesis is significantly reduced. For example, it 

becomes 0% in the case of a distribution with 10 degrees 

of freedom and a sample of 3000 observations. 

Moreover, β = 0.1 have a positive effect on the test’s 
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power when compare with the power obtained from 

applying the tests to the homoscedastic case. Power with 

Error Term from a Laplace Distribution Results for the 

Laplace distribution are similar to those of the Student’s 

t distribution. Tests show a statistical power close or 

equal to one for the homoscedastic and heteroscedastic 

residuals in samples of 500, 1000 and 3000 observations 

(see Table 5). For small sample sizes, all tests have 

relatively low power. That improves when errors come 

from GARCH(1,1) models with δ =0.4 and β = 0.4 and δ 

=0.8 and β = 0.1. Moreover, when δ =0.1 and β = 0.8 

empirical power for all tests is worse. SF has the biggest 

power for samples of size 25, 50 and 100 in both 

heteroscedastic and homoscedastic error. For those same 

cases, PCHI has the lowest power. 

Power with Error Term from a Uniform 

Distribution 

Results for this distribution are similar to those found 

with the Student’s t and Laplace distribution (see Table 6). 

All tests have power equal or close to one in large samples 

(500, 1000 and 3000 observations). The CM is the only 

test that shows a statistical power of 0% for a sample of 

3000 when the error has a constant variance over time or 

comes from GARCH(1,1) models with δ = 0.1 and β = 

0.8. For those two cases, the K test shows the best power 

in samples of 50 and 100 observations. For δ = β = 0.4 

the WCM presents the greatest power in samples of size 25, 

500, 1000 and 3000; however, only for the last two sample 

sizes, the statistical power is above 0.9. Finally, for from δ = 

0.8 and β = 0.1, SF is the test with the best power in 

samples of 50 and 100, as in the Laplace distribution and 

the power is greater than 0.9 in large samples. Furthermore, 

when δ=0.1 and β=0. 8 normality test’s statistical power 

increases slightly in samples of 25 observations, but it 

decreases in samples of 50 and 100 observations and for 

large samples, there is no distortion. 

When δ=β=0.4, statistical powered creases for all 

sample sizes (except 3000) in comparison with 

homoscedastic errors. Finally, when δ =0.8 and β = 0.1 

the statistical power improves in relation to the case 

when δ = β = 0.4. However, the power is still less than 

the one obtained when δ =0.1 and β = 0.8 and the 

homoscedastic case. 

 

Table 1: Statistical size of normality tests under errors following a standard normal distribution 

  Normality test 

  --------------------------------------------------------------------------------------------------------------- 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0,045 0,026 0,054 0,057 0,048 0,047 0,049 0,049 

 50 0,046 0,034 0,055 0,048 0,047 0,047 0,051 0,050 

 100 0,052 0,042 0,055 0,051 0,054 0,051 0,049 0,050 

 500 0,048 0,043 0,047 0,053 0,049 0,048 0,047 0,049 

 1000 0,051 0,049 0,049 0,051 0,054 0,050 0,049 0,052 

 3000 0,047 0,050 0,051 0,052 0,052 0,044 0,039 0,044 

δ=0.1 β=0.8 25 0,043 0,021 0,049 0,059 0,042 0,045 0,043 0,045 

 50 0,051 0,036 0,058 0,053 0,053 0,049 0,048 0,050 

 100 0,070 0,074 0,087 0,054 0,081 0,065 0,058 0,063 

 500 0,184 0,243 0,212 0,062 0,222 0,120 0,081 0,105 

 1000 0,308 0,378 0,342 0,067 0,352 0,188 0,108 0,160 

 3000 0,624 0,728 0,698 0,103 0,687 0,420 0,218 0,350 

δ=0.4 β=0.4 25 0,075 0,054 0,094 0,073 0,087 0,073 0,061 0,071 

 50 0,162 0,171 0,188 0,082 0,196 0,142 0,109 0,131 

 100 0,332 0,376 0,359 0,134 0,384 0,284 0,209 0,258 

 500 0,882 0,915 0,895 0,404 0,904 0,806 0,657 0,751 

 1000 0,988 0,994 0,992 0,665 0,992 0,972 0,894 0,928 

 3000 1 1 1 0,988 1 1 1 0,814 

δ=0.8 β=0.1 25 0,171 0,152 0,200 0,118 0,208 0,170 0,135 0,163 

 50 0,403 0,420 0,426 0,215 0,451 0,368 0,291 0,346 

 100 0,691 0,730 0,709 0,398 0,733 0,643 0,530 0,603 

 500 0,999 1 1 0,936 1 0,997 0,988 0,732 

 1000 1 1 1 0,998 1 1 1 0,358 

 3000 1 1 1 1 1 0,968 1 0 

Note: The closest statistical size to the theoretical size (0.05) for each sample and type of error is in bold. 
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Table 2: Statistical power of normality tests under errors following a t-distribution with 3 degrees of freedom 

  Normality Test 

  ----------------------------------------------------------------------------------------------------------------- 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0.373 0.363 0.419 0.202 0.424 0.348 0.266 0.323 

 50 0.620 0.644 0.645 0.306 0.678 0.581 0.455 0.545 

 100 0.873 0.891 0.872 0.520 0.903 0.847 0.724 0.816 

 500 1 1 1 1 1 1 1 0.847 

 1000 1 1 1 1 1 1 1 0.336 

 3000 1 1 1 1 1 0.997 1 0 

δ=0.1 β=0.8 25 0.335 0.326 0.383 0.167 0.387 0.312 0.231 0.289 

 50 0.601 0.627 0.624 0.292 0.659 0.565 0.439 0.530 

 100 0.866 0.886 0.865 0.525 0.897 0.840 0.725 0.814 

 500 1 1 1 1 1 1 1 0.755 

 1000 1 1 1 1 1 1 1 0.202 

 3000 1 1 1 1 1 0.987 1 0 

δ=0.4 β=0.4 25 0.358 0.341 0.402 0.196 0.411 0.341 0.261 0.320 

 50 0.632 0.649 0.648 0.358 0.688 0.607 0.494 0.581 

 100 0.892 0.906 0.888 0.610 0.916 0.875 0.785 0.842 

 500 1 1 1 1 1 1 1 0.557 

 1000 1 1 1 1 1 1 1 0.058 

 3000 1 1 1 1 1 0.961 1 0 

δ=0.8 β=0.1 25 0.402 0.379 0.436 0.240 0.453 0.391 0.311 0.373 

 50 0.686 0.700 0.698 0.431 0.738 0.671 0.563 0.645 

 100 0.923 0.933 0.918 0.706 0.942 0.914 0.846 0.868 

 500 1 1 1 1 1 1 1 0.328 

 1000 1 1 1 1 1 1 1 0.328 

 3000 1 1 1 1 1 0.999 1 0.008 

Note: The highest statistical power for each sample and type of error is in bold. 

 

Table 3: Statistical power of normality tests under errors following a t-distribution with 5 degrees of freedom 

  Normality Test 

  ------------------------------------------------------------------------------------------------------------------ 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0.199 0.188 0.242 0.104 0.239 0.176 0.122 0.156 

 50 0.341 0.379 0.387 0.121 0.400 0.289 0.195 0.256 

 100 0.548 0.617 0.587 0.179 0.620 0.466 0.321 0.417 

 500 0.993 0.995 0.993 0.578 0.995 0.979 0.898 0.966 

 1000 1 1 1 0.896 1 1 0.997 0.997 

 3000 1 1 1 1 1 1 1 0.774 

δ=0.1 β=0.8 25 0.164 0.158 0.205 0.095 0.199 0.145 0.108 0.133 

 50 0.310 0.344 0.357 0.118 0.371 0.270 0.190 0.240 

 100 0.558 0.616 0.586 0.208 0.624 0.494 0.356 0.449 

 500 0.996 0.996 0.995 0.729 0.997 0.990 0.944 0.972 

 1000 1 1 1 0.966 1 1 0.999 0.958 

 3000 1 1 1 1 1 1 1 0.219 

δ=0.4 β=0.4 25 0.202 0.188 0.238 0.120 0.241 0.195 0.147 0.180 

 50 0.418 0.443 0.453 0.197 0.479 0.385 0.293 0.359 

 100 0.701 0.739 0.711 0.368 0.755 0.659 0.535 0.627 

 500 1 1 1 0.938 1 0.999 0.992 0.881 

 1000 1 1 1 0.9983 1 1 1 0.573 

 3000 1 1 1 1 1 0.994 1 0.0002 

δ=0.8 β=0.1 25 0.290 0.267 0.325 0.173 0.338 0.279 0.223 0.268 

 50 0.558 0.576 0.579 0.315 0.613 0.537 0.439 0.509 

 100 0.840 0.858 0.837 0.563 0.871 0.816 0.723 0.774 

 500 1 1 1 0.993 1 1 1 0.547 

 1000 1 1 1 1 1 0.999 1 0.086 

 3000 1 1 1 1 1 0.930 1 0 

Note: The highest statistical power for each sample and type of error is in bold 
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Table 4: Statistical power of normality tests under errors following a t-distribution with 10 degrees of freedom 

  Normality Test 

  -------------------------------------------------------------------------------------------------------------- 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0.105 0.089 0.131 0.076 0.124 0.091 0.070 0.084 

 50 0.151 0.170 0.184 0.063 0.186 0.118 0.084 0.104 

 100 0.225 0.283 0.268 0.070 0.278 0.157 0.107 0.136 

 500 0.652 0.743 0.692 0.123 0.713 0.478 0.275 0.408 

 1000 0.900 0.944 0.923 0.198 0.926 0.781 0.498 0.703 

 3000 1 1 1 0.605 1 0.997 0.950 0.993 

δ=0.1 β=0.8 25 0.082 0.063 0.100 0.072 0.096 0.074 0.061 0.070 

 50 0.138 0.156 0.172 0.066 0.171 0.109 0.081 0.100 

 100 0.254 0.309 0.289 0.087 0.311 0.200 0.132 0.176 

 500 0.809 0.863 0.827 0.225 0.849 0.700 0.486 0.640 

 1000 0.972 0.984 0.977 0.428 0.980 0.939 0.785 0.909 

 3000 1 1 1 0.931 1 1 0.998 0.998 

δ=0.4 β=0.4 25 0.127 0.107 0.148 0.083 0.151 0.117 0.092 0.110 

 50 0.273 0.291 0.303 0.122 0.323 0.245 0.183 0.226 

 100 0.512 0.558 0.532 0.220 0.566 0.458 0.344 0.425 

 500 1 1 1 0.710 1 1 0.915 0.926 

 1000 1 1 1 1 1 1 1 0.888 

 3000 1 1 1 1 1 1 1 0 

δ=0.8 β=0.1 25 0.223 0.203 0.253 0.135 0.263 0.217 0.171 0.211 

 50 0.478 0.495 0.498 0.258 0.530 0.449 0.357 0.425 

 100 0.760 0.793 0.769 0.469 0.801 0.727 0.621 0.688 

 500 1 1 1 0.975 1 1 0.997 0.662 

 1000 1 1 1 1 1 1 1 0.220 

 3000 1 1 1 1 1 0.953 1 0 

Note: The highest statistical power for each sample and type of error is in bold 

 

Table 5: Statistical power of normality tests under errors following a Laplace distribution 

  Normality Test 

  ----------------------------------------------------------------------------------------------------------------- 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0.268 0.250 0.315 0.151 0.334 0.268 0.207 0.264 

 50 0.482 0.487 0.486 0.237 0.561 0.497 0.386 0.49 

 100 0.775 0.764 0.718 0.432 0.828 0.803 0.677 0.795 

 500 1 1 1 0.993 1 1 1 1 

 1000 1 1 1 1 1 1 1 0.948 

 3000 1 1 1 1 1 1 1 0 

δ=0.1 25 0.227 0.202 0.264 0.135 0.286 0.232 0.178 0.224 

β=0.8 50 0.458 0.456 0.452 0.231 0.534 0.477 0.374 0.469 

 100 0.785 0.770 0.726 0.461 0.831 0.81 0.691 0.808 

 500 1 1 1 0.998 1 1 1 0.986 

 1000 1 1 1 1 1 1 1 0.66 

 3000 1 1 1 1 1 1 1 0 

δ=0.4 25 0.286 0.250 0.313 0.177 0.346 0.293 0.233 0.284 

β=0.4 50 0.567 0.561 0.558 0.326 0.635 0.596 0.48 0.578 

 100 0.871 0.857 0.8256 0.621 0.902 0.887 0.808 0.881 

 500 1 1 1 1 1 1 1 0.744 

 1000 1 1 1 1 1 1 1 0.096 

 3000 1 1 1 1 1 0.995 1 0 

δ=0.8 25 0.373 0.344 0.402 0.232 0.437 0.378 0.311 0.368 

β=0.1 50 0.687 0.678 0.677 0.45 0.739 0.695 0.595 0.685 

 100 0.935 0.929 0.91 0.767 0.951 0.945 0.894 0.919 

 500 1 1 1 1 1 1 1 0.317 

 1000 1 1 1 1 1 1 1 0.003 

 3000 1 1 1 1 1 0.915 1 0 

Note: The highest statistical power for each sample and type of error is in bold 
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Table 6: Statistical power of normality tests under errors following a Uniform distribution 

  Normality Test 

  ---------------------------------------------------------------------------------------------------------------- 

Garch (1,1) Model Sample (S) SP JB K PCHI SF WCM LKS CM 

Homoscedastic 25 0.149 0.001 0.150 0.103 0.057 0.138 0.085 0.121 

 50 0.456 0.000 0.587 0.161 0.232 0.384 0.192 0.311 

 100 0.911 0.271 0.971 0.365 0.763 0.817 0.466 0.696 

 500 1 1 1 1 1 1 1 1 

 1000 1 1 1 1 1 1 1 1 

 3000 1 1 1 1 1 1 1 0 

δ=0.1 25 0.154 0.001 0.151 0.105 0.066 0.148 0.097 0.133 

β=0.8 50 0.404 0.000 0.547 0.166 0.209 0.360 0.186 0.303 

 100 0.822 0.185 0.927 0.344 0.636 0.740 0.429 0.639 

 500 1 1 1 0.998 1 1 0.999 1 

 1000 1 1 1 1 1 1 1 1 

 3000 1 1 1 1 1 1 0.024 δ=0.4  

β=0.4 25 0.098 0.004 0.089 0.097 0.049 0.103 0.084 0.101 

 50 0.155 0.009 0.216 0.109 0.082 0.169 0.121 0.160 

 100 0.280 0.043 0.360 0.180 0.192 0.314 0.215 0.294 

 500 0.806 0.483 0.582 0.617 0.796 0.865 0.701 0.820 

 1000 0.973 0.585 0.635 0.897 0.973 0.989 0.918 0.974 

 3000 1 0.671 0.686 1 1 1 1 1 

δ=0.8 25 0.101 0.057 0.104 0.097 0.102 0.111 0.094 0.110 

β=0.1 50 0.232 0.217 0.248 0.139 0.252 0.220 0.172 0.204 

 100 0.442 0.457 0.455 0.241 0.477 0.393 0.303 0.354 

 500 0.962 0.962 0.956 0.733 0.969 0.920 0.810 0.753 

 1000 0.999 0.999 0.999 0.954 0.999 0.997 0.974 0.738 

 3000 1 1 1 1 1 0.988 1 0.200 

Note: The highest statistical power for each sample and type of error is in bold 

 

Discussion  

Concerning the hypothesis presented in the 

introduction, results show that almost all of what we 

have stated occur with the data. First, the statistical 

power improves as the sample size grows. For samples 

between 500 and 3000 observations, any test can be used 

because they exhibit good power; while in small samples 

is preferable to use Shapiro-Francia because it has the 

highest power when compared to the other tests.  

Second, the behavior of the statistical power varied 

among the distributions chosein the Monte Carlo study. 

The power of the tests increases or decrease depending 

on the type of heteroscedasticity and distribution 

considered. This effect is greater in medium- size 

samples (50, 100 and 500 observations). Contrary of 

what we thought, the statistical power of the normality 

test under a Student’s t distribution was not the least 

affected by the types of heteroscedasticity considered; it 

was under the Laplace distribution that normality tests 

were not substantially affected. 

Besides that, the power of all test was low for small 

samples. This result has also been found in other studies 

where the error term does not meet all the assumptions. 

For example, Alonso and Montenegro (2015) evaluated 

normality tests in the presence of errors that follow an 

AR (1) process. Results showed that the effect of 

autocorrelation on the power of the tests is asymmetrical, 

the statistical is distorted inthe presence of strong 

autocorrelation and all tests have a similar power, which 

tends to be low for small samples.  

Third, not always the Shapiro –Wilk test was the 

most powerful test in small samples. Instead, Shapiro -

Francia has a better power in a small sample. Similar 

results have been found in simulations about the 

performance of the normality test under other conditions. 

Razali and Wah (2011) studied the power of four 

normality tests (Shapiro and Wilk (1965), Kolmogorov 

(1933), Lilliefors (1967) and Anderson and arling 

(1952)) for symmetric and asymmetric distributions and 

15 different sample sizes. They concluded that Shapiro-

Wilk is the most powerful test, followed by Anderson-

Darling, Lilliefors and finally Kolmogorov-Smirnov. 

The two last tests required a sample size close to 2000 

observations to obtain a power likethe Shapiro-Wilk test. 

Mbah and Paothong (2014) compared the 

performance of the Shapiro-Francia test with other eight 

normality test by studying the distribution of their p-

values. They found that Shapiro-Francia is the best test 

for detecting deviations from normality from the eight 

tests analyzed. The Monte Carlo simulation set up 

consisted of 12 sample sizes and eight distributions 

for the error term (not correlated and homoscedastic), 

some of them were the standard normal distribution, 

uniform, Laplace and Student-t distribution with 

different degrees of freedom.  
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Future research will include other normality tests, 

such as QH*, which was proposed by Chen and Shapiro 

(1995). This test had had a better performance than other 

normality tests based on regression under a diverse 

combination of symmetric, asymmetric, contaminated 

and balanced distributions and samples size of 20, 50 

and 100 observations (Seier, 2002). Also, it will involve 

developing and proposing those statistics for each 

normality test, under each variation of GARCH (1,1) 

model and distribution analyzed, to capture the 

characteristics the sample must have to have a theoretical 

size of 0.05 while maximizing the power of the test.  

Conclusion  

This paper has presented a Monte Carlo study that 

describes how the power and size of eight normality test 

behave under three variations of GARCH (1, 1) models 

for different sample sizes and distributions. Three 

important results are obtained from these simulations. 

First, the probability of making type I error, especially in 

samples of size 500, 1000 and 3000, increased under the 

presence of heteroscedastic error terms. Our results imply 

that Pearson’s test (1900) is a suitable choice for samples 

of size 25, 50 and 100. For larger samples, our results 

suggest being cautious and complement the validation of 

normality assumption with other tools since using any of 

the eight tests studied could lead to wrong conclusions.  
Second, in the homoscedastic case, we should apply 

the Cramér-von Mises. In the presence of GARCH (1, 1) 
the Pearson (1900) test should be use. Third, the 
normality tests have low statistical power and size (less 
than or equal to the nominal employee (α = 0.05)), in 
small and homoscedastic samples.  

Fourth, the recommendation of our experimental 
work to the scientific community is to use other tools 
besides the normality tests for making an inference 
from small samples and for constructing prediction 
intervals of any sample size. Nonparametric approaches 
should be considered. 

Future research should focus on designing 
appropriate normality tests when the error term follows a 
GARCH (1,1). An idea that is worth evaluating is the 
statistics proposed by Jarque and Bera (1980). Jarque 
and Bera (1980), unlike Jarque and Bera (1987), 
proposed a test for normality accounting for 
heteroscedasticity and serially correlation. This statistic 
has not been adapted for the problems addressed in this 
paper. For simplicity, practitioners use Jarque and Bera 
(1987) test that is a simplified version of the Jarque and 
Bera (1980) that does not account for heteroscedasticity 
and autocorrelation. The Jarque and Bera (1980) test 
needs that the researcher specifies the form of the 
covariance matrix of the error term and is not 
implemented in commercial software. This may be a 
good starting point to design a better test of normality 
under GARCH (1,1) behavior.  
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Appendix 1: Statistical for the eight considered tests. 

Using a sample of Xi random selected elements, lets 

define the following statistics and quantities: 

 

• s: sample’s standard deviation 

• S: sample’s skewness 

• K: sample’s kurtosis 

 

The Jarque-Bera (JB) statistical is defined as: 

 

( )
2

2
3

#
6 24

KS
JB n

 −
 = +
 
 

 (7)  

 

And D ’Agostino-Pearson (DA) is: 

 
2 2
( ) ( )#DA Z S Z K= +  (8)  

where, Z
2
 (·) is the squared standard normal distribution. 

For the following normality tests, lets define the next 

vectors and matrices: 
 

• X: vector of dimensions (1×� )containing the order 

statistic of the sample (��(� )) 

• �
2
�: The covariance matrix of the vector of all (�(�)) 

• c: vector of expected values of the n order statistics 

from a normal standard distribution 

• �: vector of dimensions (1×� ) such that: 
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• b: vector of dimensions (1×� ) such that: 
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Then the Shapiro-Wilk (SP) statistic is defined as: 
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And the Shapiro-Francia (SF):  
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Let’s define the following variables: 

 

• k: number of classes in the sample 

• Oi: observed frequency of the ith bin 

• Ei: expectation calculated as Ei=n(F(Xu)−F(Xl)) 

where Xu and Xl are the lower and upper bounds 

of the ith bin, respectively and n is the sample 

size 
 

Then, the Pearson (PCHI) is:  
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Finally, let’s the define the following function and 

statistic: 
 

• Z: normal density function with mean and variance 

unknown for i = 1, 2, ···, n 

• KS: Kolmogorov-Smirnov statistic which is defined 

as �S ={��+,��
−
}, where ��

+
=[(� /� )−�� ] and 

( 1)
[ ]

i

i
KS z

n

−

− − , with 1≤� ≤� . 
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Then Anderson-Darling (WCM) is defined as:  
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And the Cramér-von Mises (CM) is: 
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At last, Lilliefors (LKS) is defined as:  
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a
� and θ are two parameters that increase the conditional 

volatility, but they do it in different ways. The larger is �, the 

greater the response of ht to new information; if � is large, then 

a shock of vt affects εt and ℎ�+1 then after the shock effect 

would be observed pronounced in the variance of the next 

period. In contrast, the greater is θ the conditional variance 

show a persistent autoregressive process and correspond to 

more permanent peaks. To guarantee variance convergence, 

non-negative variance and stationary �+� must be <1 and for a 

non-negative variance ��) must be > 0, �≤0 and �≤0. 
b
For all eight normality tests considered, the null hypothesis is 

that the sample comes from a normal distribution and the 

alternative is that it originates from a non-normal distribution. 

The null hypothesis is rejected if the p-value associated with the 

test statistics is lesser than 0.05, which the significance level. 


