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Introduction

Early works about ¢ -difference calculus or quantum
calculus initially read in Jackson (1908; 1910). The
difference equations are widely used in mathematical
physical problems, sampling theory of signal analysis,
dynamical system and quantum models and heat and
wave equations. Recently, some researchers have noticed
their attention to discrimination research of the fractional
g-difference calculus, we refer readers to (Agarwal ef al.,
2014; Liang and Zhang, 2012; Al-Yami, 2016;
Stankovic et al., 2009). For a long time, in many areas
the fractional differential equations are very popular. For
example, engineers and scientists have developed new
methods that include fractional equations; we refer to
(Hilfer, 1999; Podlubny, 1999). Since the beginning of
the last decade, the fractional g-differential equations
have become an important mathematical tool.

The pantograph equations have been widely studied
(Balachandran et al., 2013; Liu and Li, 2004) and
references therein)since they can be utilized to depict
many phenomena that arise in electro dynamics,
probability, quantum mechanics, dynamical systems and
number theory. Recently, fractional pantograph
differential equations have been considered by many
researchers. One of the motivating topics in this area is
the research of the existence of solutions by fixed point
theorems, we refer to (Balachandran ez al., 2013).

The Ulam stability of functional equation, which was
Ulam founded for a speech to a conference at the
University of Wisconsin in 1940, is one of the important
subjects in the mathematical analysis area. The finding
of Ulam stability plays a vital role in regard to this
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the existence of solutions.

Abstract: This paper deals with some existence and Ulam-Hyers-g-
Mittag-Leffler stability results for g-fractional order pantograph
equation. An application is made of a Darbo's fixed point theorem for
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subject. For detailed study on the progress of Ulam type
(U-H) stability, readers refer to (Andras and Kolumban,
2013; Jung, 2004; Muniyappan and Rajan, 2015) and the
references therein. The credit of solving this problem
partially goes to Hyers. To study U-H stability of
fractional differential equations, different researchers
studied their works with different methods, see (Ibrahim,
2012; Wang et al., 2011; Wang and Zhou, 2012; Wang and
Zhang, 2014). Koca (2015) proved local asymptotics
stability of g-fractional nonlinear dynamics systems.
Inspired by the above discussion, we initiate the
existence and U-H-g-Mittag-Leffler stability for g-
fractional pantograph equations.

Consider the following system represented by the g-
fractional order pantograph equation with nonlocal
condition of the form:

“Dix(t)=F(tx(t).x(A)).t e =[0.T]

1
£(0)+ £(x)=1, M

where, “D; is the Caputo fractional g-derivative, ge
©,1). Let 0 <a< 1, 0 < A < 1 and
F: /7 xqIxX->%g:8(/.X)>X are given

continuous functions.
Observing that system (1) is equivalent to the
following nonlinear integral equation:

x(t)=x0 —g(x)

| - @
oy D) ()
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Let # (4 %) be the Banach space of continuous
function x(¢) with x(f) € Xfort € 7 and |[x|| 2 (/4 %) =
max,€ / ||x(®)||.

In passing, we note that the application of nonlinear
condition x(0) + g(x) = x, in physical problems yeilds better
effect than the initial condition x(0) = x, (Bashir and
Sivasundaram, 2008).

The outline of the paper is as follows. In section 2,
we give some basic definitions and results con-cerning
the fractional g-calculus. In section 3, we present our
main results by fixed point theorems. Stability analysis is
discussed in section 4.

Prerequisites

For detailed study on g-fractional calculus, one can
refer to (Al-Yami, 2016; Stankovic ef al., 2009).
Let g € (0, 1) and define:

T4+ laeR

[, -

The g-analogue of the Pochhammer symbol was
presented as follow:

(a:q),=1(a:q), = H::}(l—aqk),a e Rne Nu{w»}

In general, if « eR thereafter:

(as0), =TT (1-aa' W (azq), 22

(ag":q),
The g-gamma function is defined by:
r,(x)=(¢:9)_,(1-q) “.xeR{0.-1.-2...}.0< g <1

and satisfies I'y(x + 1) = [x],[,(x).
The g-derivative of a function F(x) is here defined by:

and:

, F(x) ifn=
Dif(x)= {DD” 'F(x) ifneN

The g-integral of a function F defined in the interval
[0, T is provided by:

J:F(t)dqt = x(l—q)i:;F(xq”)q",O < ‘q‘ <1, xe [O,b]

now, it can be defined an operator /7, as follows:

([;JF)(X)=F(X) and (]q"F)(x)=

1(I7'F)(x). neN

We can point the basic formula which will be used
at a later time:

Dyi*(s/t:q), ==[a], " (as/1:q),.,

where, (D, denotes the g-derivative with respect to
variable s.

Definition 2.1. (Al-Yami, 2016)

Let <0 and F be a function defined on [0, 7]. The
fractional g-integral of the Riemann-liouville type is

(1;F)(x)=F (x) and:

(I F)(x)=F

f(qt/xq) F(t)dt aeR,xe[0,7]

Definition 2.2. (Al-Yami, 2016)

The fractional g-derivative of the Caputo type of
order > 0 is defined by:

(g F)(x)= (1 DlIF) ()

where, [ ] is the smallest integer greater than or equal
to a.

Definition 2.3

The fractional g-derivative of the Riemann-Lioville
type of order > 0 is defined by D, f(x)=f(x) and:

(DyF)(x) = (D11 “1F) () > 0

Lemma 2.4. (Al-Yami, 2016)

Let x > 0 andaeR"/N.
equality holds:

Then, the following

(=]

O G

0 q

(17 DF)(x)=F (x)
Denition 2.5. (Hassan, 2016)
The g-Mittag-Leffler-function defined as:

o

MEE Z

oq

<(1-q)
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when g =1 we simply use e (z;q):=
Remark 2.6

The g-Mittag-Leffler function will tend to the
classical one when g — 1.

Theorem 2.7. (Darbo's Fixed Point Theorem
(Lakshmikantham, 1994),p.no.21)

Let K be a bounded, closed convex set of a Banach
space 4 Suppose that 7 and S are two mappings from K
to Xsatisfying:

ea,l(z;q)~

e Tx+SyeKforanyx,ye K
e Tis acontraction mapping
e Sis acompletely continuous on K

Then T + S has atleast a fixxed point on K.

Main Results

Let us list some hypotheses to prove our existence
results:

(Al) F: 7 x ¥x ¥— Zis continuous function
(A2) There exists a positive constant L > 0 such that:
‘F(t,x,u) - F(t,y,u)‘ < L(‘x - y‘ + ‘u - U‘)

forte fu,ux,yed
(A3) g: #(/4 ) — Zis continuous function and there
exists a constant b > 0, such that:

|2(x)- )

(A4) There exists a function i € Ll( ) such that:

‘F(t,x,y)‘ <u(t)forallte /" ,xyed

We are now ready to present our results. The existence
results are based on Darbo's fixed point theorem.

Theorem 3.1

Assume (A1), (43) with b < 1 and (44) hold. Then,
system (1) has at least one fixed point on 7.

Proof
Let P and Q the two operators defined on B, by:

(Px)(t) = l_j(;) J;(qs /t;q)ailF(s,x(s),x(is))dqs,
(0x)(t) = x, - g(x)

respectively. Note that if x, ye B,, where, B, .= {x € &

(s x| <}
Set G = max,c (5 2)|g(x)|, then Px + Qy € B,.

Indeed it is easy to check the inequality:

a-1
‘Px+@z‘ =|x, —g(y)+% J;(qs/t;q)ailF(s,x(s),x(/ls))dqs
< 7
‘x0‘+‘g ‘ r ( )
ﬂ(qs/tq . ( ).x(2s)) d,s
Sx0+G+rq(a) ‘[(qs/t;q)aildqs
SHXOHJFG"FmSV
Thus:
Px+QyeB,

By (A3), it is also clear that Q is a contraction
mapping. Produced from continuity of x, the operator
(Px)(¢) is continuous in accordance with (41). Also we
observe that:

(Px)(1) <

< ‘ !
L, (a+1)

iy Nl )5 (0)x) s

Then P is uniformly bounded on B.,.

Now let's prove that (Px)(f) is equicontinuous.

Lett, &, € J, t, < t; and x € B,. Using the fact F is
bounded on the compact set 7 x B, (thus maXy e«
Br|F(t’ X, )’)|3: CO < oo)

We will get:

‘(Px)(z‘1 ) - (Px)(t2 )‘

a-1
t J" (qS/tl ;q)’HF(s,x(s),x(/is))dqs

_|Tu(@)?
- trx—l

_l—:(a) J'» (st / fzQ‘]),X_IF(S,X(S),x(ﬂs))dqs

i J:' (qs /t, ;q) _I‘F(s,x(s),x(/is))‘ d,s

1 o
Sl"q(a) +£( qs/tz,q 4 1(‘15/[12‘7)LH)

‘F S, X s),x(/ls))‘dqs

c, tf'-lj;‘(qs/tl;q)ail d,s

ST
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which is autonomous of x and head for zero as ¢, — 1,
— 0 consequently P is equicontinuous. Thus, P is
relatively compact on B,. By the Arzela-Ascoli theorem,
P is compact. We now conclude the result of the theorem
based on the Darbo's fixed point. Thus, the problem (1)
has at least one fixed point on 7

Stability Analysis

In this section, we define some basic concepts of U-
H-g-Mittag-Leffler stability. We adopt some ideas in
(Otrocol and Ilea, 2013).

Definition 4.1

The Equation (1) is U-H-g-Mittag-Leffler stable with
respect to e(t”;q) if there exists C_ such that for each €

> 0 and for each solution z € #(/ 2) of the inequality:

cD;xz(t)—F(t,z,(t),z(/it))‘ggea(ta;q)’ e £

There exists a solution x € #(4 2) of Equation
(1) with:

[2(6) = (o)

<Ceafe,x( “;q), te /

where, e (t%;q) is the g-Mittag-Leffler function.
Remark 4.2

A functionz € #( 4 2) is a solution of the inequality:

“Dyz(t)=

F(ez(1).2(20))| 2 ee, (12q). 1€ ~

if and only if there exists a function h € = (4 2)
such that:

Lo |a(t)|see, (). te ~
2. "D;xz(t)=F(t,z(t),z(/lt))+h(t),

te 7

Lemma 4.3

Ifafunctionz € #( /4 %) is a solution of the inequality:
|“Di=() - Ft.2)(0).200)| S ee, (1:q).  te

then:

A5+ 8) -y

J:(t —qs)(UH) F(s,z(s),z(is))dqs

<ee,(t*:q)

67

Proof
The proof directly follows from Remark 4.2, we have:

z(t) -z, + g(z)—ﬁ L(z—qs)(a_l) F(s,z(s),z(/is))dqs

J;(t - qs)(afl) e, (s“;q)dqs

.E(t_ “ l)z ka+l) q

“T, (@)

*T.(a)

o

€
T (a)§r (ka+l
o (&4 o

£( qs(xl) Aads

o0 tVHX
;rq(}’la’+l)

=ee, (t"’;q)

Denition 4.4. (Otrocol and Illea, 2013)

Let (% d) be a metric space. An A: ¥— Z’is a Picard
operator if there exists x' € 2 such that (i) F, = x" where
Fy={x e 2: A(x) = x} is the fixed point set of A, (if) the
sequence (A4"(xo)),en CONverges to x forallx, e &

Lemma 4.5. (abstract Gronwall lemma (Otrocol and
Ilea, 2013))

Let (%, d,<) be an ordered metric space and 4: 4 —> &
be an increasing Picards operator (FA = {xA}) . Then, for x
€ & x< A(x) implies x > x,.

Lemma 4.6. (Henry-Gronwall inequality (Hyers et al.,
1998))

Let y,w: [0, T) — [0,0) be continuous function where
T < . If w is nondecreasing and there are constants k >
0and 0 < @ < 1 such that:

YOl w(t)+k[(1-qs) " y(s)d,s.  re[0.T)
then:

c (kT ()
w(t)+ £ gwu

—qs)(m_l) w(s) |d,s, ZGI:O,T)

Remark 4.7

By the hypothesis of Lemma 4.6, let w(r) be a
nondecresing function on [0, 7). Then we have y(r) <
w(t)e (kT ()% q).
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We are now in a position to state and prove our
stability results for problem (1). The arguments are
based on the Banach contraction principle with respect to
Chebyshev norm.

Theorem 4.8
Assume that hypotheses (A1)-(A3) are fulfilled. If:

T, (a+1)

47" ®

b<l and L<
2

Then the Equation (1) has a unique solution.
Proof
The operator P: #( 4 @) > #( /4 2):
(Px)(1) = x - g(x)
%(x) J;(t - qs)(a_l) F(s,x(s),x()us))dqs

MT?
Choose r> 2[x0 +G +l"q(0:+1)] and let max,. ,

[F(z, 0, 0)] =

Then we can show that PB, c B,.

So let x € B, and set G = maX,c = (; »/g(x)|. Then
we get:

‘Px(t)‘
er—l

r,(a)

[1(as/t:a), , F(s.x(s).x(45))1d,5

—-g(x)+ J;(qs 18:q) F(s x(s).x is))

r (a)

< ‘xo‘ +G +m J;(qs /z‘;q)uH

<‘xo‘+G+

(max| F (5.x(5).x(25)) = F(5.0.0] + max | F(,0,0)] ) d, s

<lu|+G+- ('a) [(as/t:q), , L[Jx(s) +|x(2s)Ja,s

J;(qs/tq)al s

Mal

MTo

[, (a+1)

2Lrt""
T, ()
2LT"

T, (a+1)

S‘x{,‘+G+ £(qs/t;q)a lclqs+

M o
r (a+1)

S‘x{,‘+G+

+G+(2Lr+M)

<l
Olle(r.x)

( s

By the choice of L and . Now take x, y € Z (4 2).
Then we get:

68

|(Px)(2) = (Py) (1))
<|g(x)-2(»)
L.,

F(s,x(s),x(/is))
—F(s,y(s),y(ls)) !

+

Sﬂx—ﬂ
-y(s)|

max‘x(s)
se_# ds
+ma§g‘x(/1s)—y(/1s)‘ !

.E(qs /tq), L

2L‘x y‘l

r, (@)
2L‘x—y‘T
T, (a+1)

Sﬂx—ﬂ

L(qs/t q),.,d,s

Sb‘x—y‘+

s

Thus:

2LT”
o+ 1) H Hz(/ 0 bLT,a,q Hx_sz'(/m

H(Px) - (Py) ) SOy iraq Hx - yH%-(/,, )

2LT*
T, (a+1)

parameters of the problem and since 7,4 < 1, the result
follows in view of the contraction mapping principle due
to Chebyshev norm.

Theorem 4.9

If the hypotheses (A1)-(A3) and (3) are satisfied.
Then, the Equation (1) is U-H-g-Mittag-Leffler stable.

Proof

where, Q,, ., - [b+ Jdepends only on the

Let € >0 and let z €
satisfies the inequality:

F(t,z(t),z(/lt

7 (/4% be a function which

“

cDZZ(t)— ))‘ <ce, (t“;q),forany te j

and let x € Z (/4 %) be the unique solution of the
following g-fractional order pantograph equation:

CD;'x(t) = F(t,x(t),x

2(0)+g(z)=

(it)), te 7.0<a<l,

So:
x(1)=x,—g(x

)y B (o9

By applying Lemma 4.3, we get:
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t)—xo +g(z )
s z(s), z(/ls)) See,t:9)
For each t € % we have:
|2(1) = x(1)
(Z)-xo+g( )
J:(t gs) (a s z(s). z(ls))
+\g —g(Z)
(a ) s, z(s) z(is))
L( ) [ F(s.x(s).x(4s) )]d ] ©)

<ee, (z ;q)+ ‘g(z)— g(x)‘
1 -1
e
‘F(s,z(s),z(ls))—F(s,x(s) x(

<ee, (1";q)+b|z (1) - x(x)‘

ls))qus

ﬁa)J;(t—qs)m)[\z(s)—x(s)\+\z(is)_x(4s)‘]dqs ©6)

Foru e #(/ ) we consider the operator 4: Z( % %)
— 7(/ 2 defined by:

(Au)(t) =ee, (t“;q)+ bu(t)

_E(t - qs)(a_l)
+ J;(t - qs)(afl)

Next, we verify that 4 is a Picard operator.
Forallt € 4 it follows (A2):

u(s)d,s
e s
u(s)dqs

L

(Au)(r) - (4v)(7)|
< b‘u(t —U(l‘)‘

{ )I(qs/tq (s) o(s)|+u(4s) U(ls)}dqs]

2LT

('(J7X)+ l—q (0!+1) H“_
2LT” )

| b+ —— q

( +Fq(0:+1)]u )

=y g u =07 (7.2)

SbH“ _UH UH/( .9)

Thus, 4 is a contraction via the Chebyshev norm ||||
on 7 (/4 %) dueto (3).

69

Applying the Banach contraction principle to A4,
we derive that A4 is a Picard operator and F, = {u'}.
Then fort € 7

u'(t)=ee, (t’x;q) +bu' (1)
L[ f=a9) " (s)d,s

r,(a) +J;(t—qs)(wl)u*(/1 d.s

It remains to verify that the solution " is increasing.
Indeed, for 0 < # < b < b and denote

m:min,_, [u (s)+ (ﬂs)] e R, , we have:

w'(t)-u(s)
=f[e,x(tf;q)—ea(tl"’;q):|+b[u*(t2)—u*(tl ):|
Fh L) (ema) ]
[u*(s)+u*(/1s):|d s

)_[ t, — (’x ) u )+u*(/1s)]dqs
Se[e‘a (t2 ;q)—ea (tl ;q)]+b[u*(z‘2)—u*(z‘1 )]

pletenl e

d.s

-1 4

+

mL

(a) *
- f[ed (zz ;q)—e,x (ll ;Q)J*' b[”*(lz)_”*(ll )]

+ mL
T, (a+1)

_[ qs/zz,q

(&5 -1)>0

. * .. .
Then, we obtain # is increasing:

u' < ee, (t“;q)+bu* + T

2L (a-1) =
@ L(t—qs) Vu (s)d,s
Using Lemma 4.6 and Remark 4, we get:

ce.(r":q)

u (t (l—b)

(al

+ u'(s)d,
(1- b rq

u (t)SCeafed( ;q)
1 e, (%T“;q) .

where, C = .
“ 1-b
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In particular, if u = |z — x|, from (6), u < Au and
applying the Lemma 4.5 we obtain u < u', where 4 is a
picard and increasing operator. As a result, we know:

‘z(z) —x(t)‘ < Ceafea (z“;q)

Thus, the Equation (1) is U-H-g-Mittag-Leffler stable.
Remark 4.10

Theorem 3.1 and 4.9 can easily be extended to the
generalized g-fractional multi-pantograph of the form:

Dyx(1)= F(tx(t),x(41).....x). 0<g>1e[0.T]
x(0)+ g(x) =X,

where, “D; is the Caputo g-fractional derivative, o €

(0, ).
Now we give an example to illustrate our results.

An Example

Consider the nonlinear g-fractional pantograph
problem given by:

o 11 1 (1
qu(t)=g+ﬁx(t)ﬁx[5j,te[0,l],

x(0)+ X" ax(t)=0.0<t <t, <o <t, <1

O]

where, € (0, 1), g € (0, 1), @; >0, i =0,1,2,....m are
positive constants with:

m
Sa <
i=1

W | =

Set:
1 1 1 )
F(t,u,0) =7+—u+ﬁu,t e[O,l],u,ueEK

5 10

and:

g(x)= z’m:la,x(ll ) .

Let w,u,u,0€ & and ¢ € [0, 1]. Then we have:
_ 1 _ _
‘F(t,u,u)—F(t,u,u)‘SE(‘u—uH‘U—UD

On the other hand, we have:

<3 alu-7
i=1
1 _

< g‘u(t)—u (t)‘

Denote: a=1,L=i,q=landb=l .
10 2 3

o

Thus:

T, (a+1
1< 5@ k(s 2n—02
2 q

T, (a+1) _ 0957935
2
Equation (7) follows the inequality:

where, =0.4789675 .

CD:zo)—F(r»x(z),x(zr))sfe,{f*l‘;;]

Now all assumptions in Theorem 3.1 and 4.9 are
satisfied, the problem (7) has a unique solution and the
Equation (7) is U-H-g-Mittag-Leftler stable with:

[2()=x(1) <C, ee, [”1‘;3
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