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Introduction 

Fractional differential equations have recently been 

applied in various areas of engineering, mathematics, 

physics and bio-engineering and other applied sciences 

(Hilfer, 2000; Tarasov, 2010). For some fundamental 

results in the theory of fractional calculus and fractional 

differential equations we refer the reader to the monographs 

(Abbas et al., 2012; 2015; Ahmad and Ntouyas, 2015; 

Kilbas et al., 2006; Thiramanus et al., 2014; Zhou, 2014). 

There has been a significant development in fractional 

differential and integral equations with delay in recent 

years; (Abbas et al., 2012; 2015; Ahmad et al., 2017; 

Samko et al., 1993) and the references therein. 

The measure of weak noncompactness is introduced by 

De Blasi (1977). The strong measure of noncompactness 
was considered in many papers; (Banas and Goebel, 1980; 
Akhmerov et al., 1992; Alvarez, 1985; Benchohra et al., 
2008; Guo et al., 1996; Reich, 1973; 1972) and the 
references therein. Benchohra et al. (2008; O'Regan, 
1999) the authors considered some existence results by 

applying the techniques of the measure of 
noncompactness. Recently, several researchers obtained 
other results by application of the technique of measure 
of weak noncompactness; (Abbas et al., 2015; 
Benchohra et al., 2011; 2012) and the references therein. 

In (Agarwal et al., 2016), the authors studied the 

existence and uniqueness of solutions for boundary value 

problems of Hadamard-type fractional functional 

differential equations and inclusions involving both 

retarded and advanced arguments. In (Abbas et al., 

2017), the authors discuss the existence of weak 

solutions for the following boundary value problem for 

implicit Pettis Hadamard fractional differential equation: 

 

( ) ( ) [ ]

( )( ) ( )( )( ) [ ]

( ) ( ) [ ]

1 1

; 1 , 1 ,

, , ; : 1, ,

; , .

H r H r

t

u t t t

D u t f t u D u t t I e

u t t t e e

φ α

ψ β

 = ∈ −


= ∈ =


= ∈ +

 (1) 

 

Motivated by the previous works, in this study, we 

discuss the existence of weak solutions for the following 

coupled system of Pettis-Hadamard fractional 

differential equations: 

 

( ) ( )( ) ( ) ( )( ) [ ]

( )( ) ( )( )( )
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( ) ( )( ) ( ) ( )( ) [ ]
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f t u v f t u v t I e
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φ φ α
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 = ∈ −
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
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
= ∈ =

 = ∈ +

 (2) 

 

where, α, β>0, ri ∈ (1, 2], fi: I × C[-α, β] × C[-α, β]→ E; 

i = 1.2 are given continuous functions, φi∈C[1-α, 1] with 

φi(1) = 0, ψi∈C[e, e + β] with ψi(e) = 0, E is a real (or 

complex) Banach space with norm ||⋅||E and dual E
*
, such 
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that E is the dual of a weakly compactly generated 

Banach space X, C[-α, β] is the space of continuous 

functions from [-α, β] to E and 
1

i
rH

D is the Pettis-

Hadamard fractional derivative of order ri; i = 1, 2. 

We denote by ut the element of C[-α, β] defined by: 
 

( ) ( ) [ ]; , .
t

u s u t s t α β= + ∈ −  

 
This paper initiates the study of coupled systems of 

Hadamard fractional differential equations under weak 

topologies. 

Preliminaries 

Let C(I) be the Banach space of all continuous functions 

w from I into E with the supremum (uniform) norm: 
 

( )|| || : || || .
t I E

w w t
∞ ∈
=  

 
As usual, we denote by AC(I) the space of absolutely 

continuous functions from I into E: Also, by C
2
([1-α, e + 

β], E) := C([1-α, e + β], E) × C([1-α, e + β], E), we 

denote the product Banach space with the norm: 
 

( )
[ ]( ) [ ]( ) [ ]( )2 1 , , 1 , ,1 , ,

|| , || || || || || .
C e E C e EC e E

u v u v
α β α βα β − + − +− +

= +  

 

Let (E, w) = (E, σ(E, E
*
)) be the Banach space E with 

its weak topology. 

Definition 2.1 

A Banach space X is called Weakly Compactly 

Generated (WCG, in short) if it contains a weakly 

compact set whose linear span is dense in X. 

Definition 2.2 

A function h: E → E is said to be weakly sequentially 

continuous if h takes each weakly convergent sequence in 

E to a weakly convergent sequence in E (i.e., for any (un) 

in E with un → u in (E, w) then h(un) → h(u) in (E, w)). 

Definition 2.3. 

Pettis (1938) the function u: I → E is said to be Pettis 

integrable on I if and only if there is an element uJ∈E 

corresponding to each J⊂I such that φ(uJ) = ∫J φ(u(s))ds 

for all φ ∈ E
*
, where the integral on the right hand side is 

assumed to exist in the sense of Lebesgue, (by definition, 

uJ = ∫J u(s)ds). 

Let P(I, E) be the space of all E-valued Pettis 

integrable functions on I and denote by L
1
(I, E), the 

Banach space of measurable and Bochner integrable 

functions u: I → E. Define the normed space P1(I, E) by: 

 

( ) ( ) ( ) ( ){ }1 *

1 , , : , ; ,P I E u P I E u L I E for every Eϕ ϕ= ∈ ∈ ∈  

with the norm: 

 

( )( )*

1
, || || 1 1

|| || | | ,
e

P E
u u x d x

ϕ ϕ
ϕ λ

∈ ≤
= ∫  

 

where, λ stands for a Lebesgue measure on I. 

The following result is due to Pettis (1938, Theorem 

3.4 and Corollary 3.41]). 

Proposition 2.4. 

Pettis (1938) if u∈P1(I, E) and h is a measurable and 

essentially bounded E-valued function, then uh∈P1(J, E). 

For all what follows, the sign "∫" denotes the Pettis 

integral. 

Let us recall some definitions and properties of 

Hadamard fractional integration and differentiation. We 

refer to (Hadamard, 1892; Kilbas et al., 2006) for a more 

detailed analysis. 

Definition 2.5. 

Hadamard (1892; Kilbas et al., 2006) The Hadamard 

fractional integral of order q>0 for a function g∈L1 (I, 

E), is defined as: 
 

( )( )
( )

( )
1

1
1

1
ln ,

q
x

H q
g sx

I g x ds
q s s

−

 
=  
Γ  

∫  

 

where, Γ(⋅) is the (Euler's) Gamma function defined by: 

 

( ) 1

0

; 0
t

t e dt
ξ

ξ ξ
∞

− −

Γ = >∫  

 

Provided the integral exists. 

Let g∈P1(I, E). For every ϕ ∈ E*
, we have: 

 

( )( ) ( )( )1 1 ; . . .
H q H q
I g t I g t for a e t Iϕ ϕ= ∈  

 

Analogously to the Riemann-Liouville fractional 

calculus, the Hadamard fractional derivative is defined in 

terms of the Hadamard fractional integral in the 

following way. Set: 
 

[ ], 1,
d

x n q
dx

δ = = +  

 
where, [q] is the integer part of q>0 and: 
 

( ) ( ){ }1
: : : .

n n

AC u I E u x AC I
δ

δ
−= →  ∈   

 
Definition 2.6. 

Hadamard (1892; Kilbas et al., 2006) the Hadamard 

fractional derivative of order q of a function n

w AC
δ

∈ is 

defined as: 
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( )( ) ( )( )

( )

( )

1 1

1

1

1
log .

H q n H n q

n n q

t

D w x I w x

h sd t
t ds

n q dt s s

δ −

− −

=

   
=    
Γ −    

 

 

Corollary 2.7. 

Kilbas et al. (2006) let q>0 and n = [q] +1. The 

equality D
α

h(t) = 0 is valid if and only if: 
 

( ) ( )1
log ,

q jn

j j
h t c t for each t I

−

=
= ∈  

 

where, 
j

c ∈R  (j = 1,…, n) are arbitrary constants. 

We need the following auxiliary Lemma: 

Lemma 2.8. 

Agarwal et al. (2016) let 1 < r≤2, φ ∈ C([1-α, 1], E) 

with φ(1) = 0, ψ∈C([e, e + β], E) with (e) = 0 and σ: I → 

E be a continuous function. The linear problem: 
 

( ) ( )

( ) ( ) [ ]

( ) ( ) [ ]

; ,

; 1 ,1 ,

, , ,

r

D u t t t I

u t t t

u t t t e e

σ

φ α

ψ β

 = ∈


= ∈ −


= ∈ +

 

 
has the following unique solution: 
 

( )

( ) [ ]

( )
( )

( ) [ ]

1

, 1 ,1 ,

, ,

, , ,

s
e

s

t if t

u t G t s ds if t I

t if t e e

σ

φ α

ψ β

 ∈ −


= − ∈


∈ +

 

 
where: 
 

( ) ( )

( ) ( )

( )

( ) ( )

1 1

1

1 1

log 1 log

, 1 log log ;1 ,

log 1 log ;1 .

r r

r

r r

t s

G t s r t s s t e

t s t s e

− −

−

− −

 −



= Γ − − ≤ ≤ ≤


− ≤ ≤ ≤

 (3) 

 

Definition 2.9. 

De Blasi (1977) let E be a Banach space, ΩE the 
bounded subsets of E and B1 the unit ball of E. The De 
Blasi measure of weak noncompactness is the map µ: 
ΩE→[0,∞) defined by µ(X) = inf{ε>0: There exists a 
weakly compact subset Ω of E: X⊂εB1 + Ω}. 

The De Blasi measure of weak noncompactness 

satisfies the following properties: 
 

• A⊂B ⇒ µ(A) ≤ µ(B) 

• µ(A) = 0 ⇔ A is weakly relatively compact 

• µ(A ∪ B) = max{µ(A), µ(B)} 

• ( )A
ω

µ = µ(A), ( Aω denotes the weak closure of A) 

• µ(A + B) ≤ µ(A) + µ(B) 

• µ(λA) = |λ| µ(A) 

• µ(conv(A)) = µ(A) 

• ( )| | h A
λ

µ λ
≤

∪  = hµ(A) 

 
The next result follows directly from the Hahn-

Banach theorem. 

Proposition 2.10 

Let E be a normed space and x0∈ E with x0 ≠ 0. Then, 

there exists φ∈E* 
with ||φ|| = 1 and φ(x0) = ||x0||. 

For a given set V of functions v: I → E let us denote by: 
 

( ) ( ){ }: ; ,V t v t v V t I= ∈ ∈  

 
and: 
 

( ) ( ){ }: , .V I v t v V t I= ∈ ∈  

 

Lemma 2.11. 

Guo et al. (1996) let H⊂C be a bounded and 

equicontinuous. Then the function t → µ(H(t)) is 

continuous on I and: 
 

( ) ( )( ) ,C t I
H H tµ µ

∈
=  

 
and: 
 

( )( ) ( )( ) ,

I I
u s ds H s dsµ µ≤∫ ∫  

 

where, H(t) = {u(t): u∈H}, t∈I and µC is the De Blasi 

measure of weak noncompactness defined on the 

bounded sets of C. 

For our purpose we will need the following fixed 

point theorem: 

Theorem 2.12. 

O'Regan (1998) let Q be a nonempty, closed, convex 

and equicontinuous subset of a metrizable locally convex 

vector space C(I) such that 0∈Q. Suppose T: Q→Q is 

weakly-sequentially continuous. If the implication: 
 

{ } ( )( )0 ,V conv T V V is relatively weakly compact= ∪ ⇒  (4) 

 

holds for every subset V⊂Q, then the operator T has a 

fixed point. 

Existence of Weak Solutions 

Definition 3.1. 

A coupled functions (u, v)∈C2
([1-α, e + β], E) is said 

to be a weak solution of the system (2) if (u, v) satisfies 

the equations ( )1

1

rH
D u (t) = f1(t, ut, vt) and ( )2

1

rH
D v (t) = 
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f2(t, ut, vt) on I and the conditions (u(t), v(t)) = (φ1(t), 
φ2(t)); φi(1) = 0; i = 1,2 on [1-α, 1] and (u(t), v(t)) = 

(ψ1(t), ψ2(t)); ψi(e) = 0; i = 1, 2 on [e, e + β]. 

Let us introduce the following hypotheses: 
 

(H1) For a.e. t∈I, the functions v→fi(t, u, ⋅) and v → 

fi(t,⋅, v); i = 1, 2 are weakly sequentially continuous 

(H2) For a.e. u, v∈C[1-α, e + β], the functions t → fi(t, 

u, v) are Pettis integrable a.e. on I 

(H3) There exist pi∈C(I, [0, ∞)) such that for all φ∈E*
: 

 

( )( )
( )

[ ] [ ], ,

|| ||
| , , |

1 || || || || || ||

i

i

t tC C

p t
f t u v

u v
α β α β

ϕ
ϕ

ϕ
− −

≤

+ + +

 

 

 for a.e. t∈I and each u, v∈C[1-α, e + β], 

(H4) For each bounded and measurable set B⊂C2
[1-α, e 

+ β] and for each t∈I, we have: 
 

( )( ) ( ) ( )

( )( ) ( ) ( )

1 1

2 2

, ,0 ,

0, , ,

f t B p t B and

f t B p t B

µ µ

µ µ

≤

≤

 

 
 where: 
 

( )( ) ( ) ( )( )( ) ( )1 1 1 2 1 2
, ,0 , , ,0 ; , ,f t B f t v t v t v v B= ∈  

 
 and: 
 

( )( ) ( ) ( )( )( ) ( ){ }2 2 1 2 1 2
0, , 0, , , ; , .f t B f t v t v t v v B= ∈  

 
Set: 

 

( )*
; 1,2.

i t I i
p p t i

∈
= =  

 
Now we are able to state and prove our main result 

throughout the following theorem. 

Theorem 3.2. 

Assume that (H1)-(H4) and the following condition 

hold: 
 

( ) ( )

* *

1 2

1 2

2 2
: 1,

1 1

p p
L

r r
= + <

Γ + Γ +

 (5) 

 
Then the coupled system (2) has at least one weak 

solution defined on [1-α, e +β]. 

Proof 

Define the operators N1, N2: C[1-α, e + β] → C[1-α, 

e + β] by: 
 

( )( )

( ) [ ]

( )
( )

( ) [ ]

1

1

, ,

11 1

1

; 1 ,1 ,

, ; ,

; , ,

s s
f s u v

e

s

t t

N u t G t s ds t I

t t e e

φ α

ψ β

 ∈ −



= − ∈


∈ +


 (6) 

and: 
 

( )( )

( ) [ ]

( )
( )

( ) [ ]

2

2

, ,

11 2

2

; 1 ,1 ,

, ; ,

; , ,

s s
f s u v

e

s

t t

N v t G t s ds t I

t t e e

φ α

ψ β

 ∈ −



= − ∈


∈ +


 (7) 

 
where: 
 

( )

( )

( ) ( )

( )

( ) ( )

1 1

1

1 1

,

log 1 log

1
log log ;1 , ; 1,2.

log 1 log ;1 ,

i i

i

i i

i

r r

r

i
r r

G t s

t s

t s s t e i
r

t s t s e

− −

−

− −

 −



= − − ≤ ≤ ≤ =
Γ 

− ≤ ≤ ≤


 

 
Consider the continuous operator N: C

2
[1-α, e + β] 

→ C
2
[1-α, e + β] defined by: 

 

( )( )( ) ( )( ) ( )( )( )

( ) ( )( ) [ ]

( )
( )

( )
( )

( ) ( ) [ ]

1 2

1 2

1 2

, , , ,

1 1 1 2

1 2

, ,

, ; 1 ,1 ,

, , , ; ,

, ; , .

s s s s
f s u v f s u v

e e

s s

N u v t N u t N v t

t t t

G t s ds G t s ds t I

t t t e e

φ φ α

ψ ψ β

=

 ∈ −

 = − − ∈ 
 
 ∈ +


 (8) 

 
First notice that, the functions φi and ψi; i = 1, 2 are 

continuous and the hypotheses imply that for all t∈I, the 

functions t G֏ (⋅, t) and ( )1
, ,s st f s u v֏  are Pettis 

integrable, over I. Thus, the operator N is well defined. 

In the following we denote ||w||C[1-α,e+β] by ||w||C. 

Let R>0 be such that R = R1 + R2, with: 
 

( ) [ ] [ ]

*

1 ,1 ,

2
,|| || ,|| || ; 1,2,

1

i

i i iC C e e

i

p
R i

r
α β

φ ψ
− +

  
> = 

Γ +  

 

 
and consider the closed, convex and equicontinuous 
subset Q of C2[1-α, e + β] defined by: 
 

( ) [ ] ( )
[ ]

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

1 ,

2 1

11 1 2 1 1 2 1

21 2 2 2 1

, 1 , : || , ||

,|| ||

.
| , , | , ||

|| | , , |

C e

E

e

e

E

u v C e u v

R u t u t

Q ds
p G t s G t s and v t v t

s

ds
p G t s G t s

s

α β
α β

− +

∗

∗

 ∈ − +
 
 ≤ −
  

=  ≤ − − 
 
 ≤ −
  

 

 
We shall show that the operator N satisfies all the 

assumptions of Theorem 2.12. The proof will be given in 
several steps. 

Step 1. N maps Q into itself. 

Let (u, v)∈Q; t∈I and assume that (N(u, v))(t) ≠ (0,0). 
Then there exists φi ∈ E

*
; i = 1, 2 such that for each t∈I, 

we have: 
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( )( )( ) ( )( )( ) ( )( )( )( )1 1 2 2
|| , || , .

E
N u v t N u t N v tϕ ϕ=  

 
Thus: 

 

( )( ) ( ) ( )1 1 1 1 1
|| || , , , .e

E s s

ds
N u t G t s f s u v

s
ϕ

 
=  

 
 

 

If t∈[1-α, 1], then: 
 

( )( ) [ ]1 1 11 ,1
|| || || || ,

E
N u t R

α
φ

−

≤ ≤  

 

also, if t∈[e, e + β], then: 
 

( )( ) [ ]1 1 1,
|| || || || .

E e e
N u t R

β
ψ

+
≤ ≤  

 

For each t∈I and any i = 1, 2, we have: 
 

( )
( )

( ) ( ) ( )

( )
( )

( )

1 11
1

1 1 1

1
2 2

1
1

| , | log log log

log .

i ii

i

i

i i

r rre t eds t ds e ds

i s s s s sr

re e

sr r

G t s t

dss

− −−

Γ

−

Γ Γ +

 ≤ +
  

≤ =
 (9) 

 

Thus, for each t∈I, we have: 
 

( )( ) ( )
( )( )

( )

1

1 1
1

*

1

1

1

| , , |
|| || | , |

2

1

,

e s s

E

f s u v
N u t G t s ds

s

p

r

R

ϕ

≤

≤

Γ +

≤

∫

 

 

Hence, for each t∈[1-α, e + β], we have: 
 

( )( )1 1
|| || .

E
N u t R≤  

 

Also, for each t∈[1-α, e + β], we obtain: 
 

( )( )2 2
|| || .

E
N v t R≤  

 

Therefore, for each t∈[1-α, e + β] and all (u, v)∈Q, 

we get: 
 

( )( )( 1 2
|| , || .

E
N u v t R R R≤ + =  

 

Next, let t1, t2∈I such that t1<t2 and let (u, v)∈Q, with: 
 

( )( )( ) ( )( )( ) ( )2 1
, , 0,0 .N u v t N u v t− ≠  

 

Then there exists φi∈E
*
, i = 1, 2 with ||φ1|| = 1 such that: 

 

( )( ) ( )( ) ( )( ) ( )( )( )1 2 1 1 1 1 2 1 1
|| || ,

E
N u t N u t N u t N u tϕ− = −  

and: 
 

( )( ) ( )( ) ( )( ) ( )( )( )2 2 2 1 2 2 2 2 1
|| || .

E
N v t N v t N v t N v tϕ− = −  

 
Thus: 

 

( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )

1 2 1 1 1 1 2 1 1

1 1 1 2 1 1 1

|| ||

, , , , ,

E

e

s s

N u t N u t N u t N u t

ds
G t s G t s f s u v

s

ϕ

ϕ

− = −

 
≤ − 

 

 

 
This gives: 

 

( )( ) ( )( ) ( )

( ) ( )

( ) ( )

1 2 1 1 1 1 2

1 1 1

11 1 2 1 1

|| || | ,

, || , , |

| , , | .

e

E

s s

e

N u t N u t G t s

ds
G t s f s u v

s

ds
p G t s G t s

s

∗

− =

−

≤ −

 

 
Also, we can obtain: 

 

( )( ) ( )( ) ( )

( ) ( )

( ) ( )

2 2 2 1 1 2 2

2 1 2

21 2 2 2 1

|| || | ,

, || , , |

| , , | .

e

E

s s

e

N v t N v t G t s

ds
G t s f s u v

s

ds
p G t s G t s

s

∗

− =

−

≤ −

 

 

Hence N(Q)⊂Q. 

Step 2. N is weakly-sequentially continuous. 

Let (un, vn) be a sequence in Q and let (un(t), 

vn(t))→(u(t), v(t)) in (E, ω) × (E, ω) for each t∈[1-α, e + 

β]. Fix t∈[1−α, e + β], since the functions fi; i = 1, 2 

satisfy the assumption (H1), we have fi(t, unt, vnt) 

converge weakly uniformly to fi(t, ut, vt). Hence the 

Lebesgue dominated convergence theorem for Pettis 

integral implies (N(un, vn))(t) converges weakly 

uniformly to (N(u, v))(t) in (E, ω) × (E, ω), for each 

t∈[1−α, e + β]. Thus, N(un, vn) → N(u, v). Hence, N: Q 

→ Q is weakly-sequentially continuous. 

Step 3. The implication (4) holds. 

Let V be a subset of Q such that V conv= (N(V) ∪{(0, 

0)}). Obviously: 
 

( ) ( )( ) ( ){ } [ ]0,0 , 1 , .V t conv NV t for all t eα β⊂ ∪ ∈ − +  

 
Further, as V is bounded and equicontinuous, by 

Lemma 3 in (Bugajewski and Szua, 1993), the function t 

→ µ(V (t)) is continuous on [1-α, e + β]. 

It is clear that for any t∈[1-α, 1] ∪ [e, e + β], the set 

V is weakly relatively compact. Next, from (H3), (H4), 

Lemma 2.11 and the properties of the measure µ, for any 

t∈I, we have: 
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( )( ) ( )( ) ( ){ }( )
( )( )( )

( )( ) ( )( )) ( ){ }( )

( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( ){ }( )

( ) ( ) ( )( )( ) ( ){ }( )

( ) ( ) ( )( )( ) ( ){ }( )

( ) ( ) ( ) ( )( ) ( ){ }( )

( )

1 1 2 2 1 2

1 1 1 2 2 2 1 2 1 2
1

1 1 1 2 1 2
1

2 2 1 2 1 2
1

1 1 1 2 1 2
1

2

0,0

, ; ,

, , , , , , , ; ,

| , | , , ,0 ; ,

| , | 0, , , ; ,

| , | , ; ,

| , |

e

e

e

e

V t NV t

NV t

N v t N v t v v V

ds
G t s f s v s v s G t s f s v s v s v v V

s

ds
G t s f s v s v s v v V

s

ds
G t s f s v s v s v v V

s

ds
G t s p s v s v s v v V

s

G t s

µ µ

µ

µ

µ

µ

µ

µ

≤ ∪

≤

= ∈

≤ ∈

≤ ∈

+ ∈

≤ ∈

+

∫

∫

∫

∫

( ) ( ) ( )( ) ( ){ }( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )
( )( )

( )( )

2 1 2 1 2
1

1 1 2 2
1 1

* *

1 1 2 2
1 1

* *

1 2

1 2

, ; ,

| , | | , |

| , | | , |

2 2

1 1

.

e

e e

e e

t I

t I

t I

ds
p s v s v s v v V

s

ds ds
G t s p s V s G t s p s V s

s s

ds ds
p G t s p G t s V t

s s

p p
V t

r r

L V t

µ

µ µ

µ

µ

µ

∈

∈

∈

∈

≤ +

 
≤ + 
 

 
 ≤ +
 Γ + Γ + 

=

∫

∫ ∫

∫ ∫

 

 
Thus: 

 

( )( ) ( )( ).t I t I
V t L V tµ µ

∈ ∈
≤  

 

Hence, the inequality (5) implies that t∈Iµ(V (t)) = 0. 

This shows µ(V (t)) = 0; for each t∈I. Then from 

Theorem 2 in (Mitchell and Smith, 1977), we conclude 

that the set V is weakly relatively compact in C
2
[1-α, e + 

β]. Therefore, Theorem 2.12 implies that N has a fixed 

point which is a solution of the coupled system (2). 

An Example 

Let: 
 

( ){ }1

1 2 1
, ,..., ,... , | |

n n n
E l u u u u u

∞

=
= = = < ∞  

 
be the Banach space with the norm: 
 

1
|| || | | .

E n n
u u

∞

=
=  

 
Consider the following coupled system of Hadamard 

fractional differential equations of the form: 
 

( ) ( )( ) ( ) [ ]

( )( ) ( )( )( ) ( ) ( )( ) [ ]

( ) ( )( ) ( ) [ ]

3 3

2 2

1

1 1

, 1 ,0 ; 2,1

, , , , , , ; 1, ,

, 1 ln ,0 ; ,2 ,

t

H H

n n n t t n t t

u t v t e t

D u t D v t f t u v g t u v t e

u t v t t t e e

− = − ∈ −



= ∈

 = − + ∈


 (10) 

 

where: 

( )

[ ] [ ]

( ) [ ]
2

7

5

3, 3,

, ,

1
; 1, ,

1 || || || ||

n t t

nt

C e C e

f t u v

ct
e u t t e

u v e

−

+

− −

 
= + ∈ 

+ +  

 

 
and: 
 

( )
[ ] [ ]

[ ]
2 6

3, 3,

, , ; 1, ,
1 || || || ||

n t t

C e C e

ct e
g t u v t e

u v

−

− −

= ∈
+ +

 

 
with: 

 

( ) ( )
4

1 2 1 2

1
, ,..., ,... , , ,..., ,... , : .

24 2
n n

e
u u u u v v v v and c

 
= = = Γ 

 
 

 

Set: 
 

( ) ( )1 2 1 2, ,..., ,... , , ,..., ,... .
n n

f f f f g g g g= =  

 

Clearly, the functions f and g are continuous. 

For each u, v∈E and t∈[1, e], we have: 
 

( )
[ ] [ ]

2

7

5

3, 3,

1
|| , , || ,

1 || || || ||
t t E t

C e C e

ct
f t u v e

u v e

−

+

− −

 
≤ + 

+ +  
 

 
and: 
 

( )
[ ] [ ]

2 6

3, 3,

|| , , || .
1 || || || ||

t t E

C e C e

ct e
g t u v

u v

−

− −

≤

+ +

 



Saϊd Abbas et al. / Journal of Mathematics and Statistics 2018, 14 (1): 56.63 

DOI: 10.3844/jmssp.2018.56.63 

 

62 

Hence, the hypothesis (H3) is satisfied with 
* * 4

1 2
p p ce−= = . 

We shall show that condition (5) holds. Indeed: 
 

( ) ( ) ( )
1 2

4 5

21 2

2 2 1
1.

21 1

p p c

er r

∗ ∗

+ = = <
ΓΓ + Γ +

 

 
Simple computations show that all conditions of 

Theorem 3.2 are satisfied. It follows that the coupled 

system (10) has at least one solution on [-2, 2e]. 
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