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Introduction

Burr (1942) introduced another new system of
frequency curves, analogously to the Pearson systemof
densities, that includes twelve types of Cumulative
Distribution Function (CDFs) which yield avariety of
density shapes, this system is obtained by considering
CDFs satisfying a differentialequation which has a
solution, given by:

G(x)= {1 + exp[— JY(x)dx]}_l,

where, Y(x) is chosen such that G(x) is a CDF on the real
line and has twelve choices which madeby Burr, resulted
in twelve models which might be useful for modeling
data, the principal aim inchoosing one of these forms of
distributions is to facilitate the mathematical analysis to
which itis subjected, while attaining a reasonable
approximation. A special attention has been devoted
toone of these forms denoted by type XII whose CDF,
G(x); is given as:

Gw(x)=1—(x“+1)—,3,

both « and f are shape parameters, location and scale
parameters can easily be introduced tomake (1) a four-
parameter distribution. The corresponding Probability
Density Function (PDF) isgiven by:

1

gup(@)=apx (v +1) "
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Abstract: In this study, a new Burr XII distribution is defined and studied.
Various structural mathematical properties of the proposed model are
investigated. The maximum likelihood method is used to estimate the
model parameters. We assess the performance of the MLEs of the new
distribution with respect to sample size n. The assessment was based on a
simulation study. The new distribution is applied for modeling two real
data sets to prove empirically its flexibility. The new Burr XII model can
be viewed as a suitable model for fitting the right skewed and unimodal
data. The new model provides adequate fits as compared to other Burr XII
models by means of two applications.

Keywords: Burr XII Distribution, Burr-Hatke Distribution, Simulation,
Moments, Maximum Likelihood Method

The Burr XII Distribution (BXIID) originally
proposed by Burr (1942), it has many applicationsin
different areas. Coming early, Tadikamalla (1980)
studied the BXIID and its related models.Some
important extensions of the BXIID can be cited by Shao
(2004), Zimmer et al. (1998), Soliman (2005), Wu et al.
(2007), Silva et al. (2008), Silva et al. (2010a; 2010b),
Cordeiro et al. (2018), Afify et al. (2018), Altun et al.
(2018a; 2018b) and Yousof ef al. (2018a; 2018b). (for
more details about the BXIID see Burr (1942), (1968)
and (1973), Burr and Cislak (1968), Hatke (1949) and
Rodriguez (1977)). In this study, we propose a new
BXII distributions, called the Burr-Hatke
Exponentiated BXII Distribution (BHEBXII) by means
of Burr-Hatke differential equation. In statistical
literature, the so-called Burr-Hatke differential equation
can be given asfollows:

d
EF=g(t,F)F(1—F)| )

(F,) =F(x0 ),10 eﬂ()’

where, F' = F(?) is the Cumulative Distribution Function
(CDF) of a continuous random variable7 and g(¢,F) is an
arbitrary positive function for any 7oeR. Equation (1) is
considered bymany authors as a system of CDF(s)
generator or simply a system of frequency curves. Using
(1), Maniu and Voda (2008) introduced and studied the
Burr-Hatke Distribution (BHD) with CDF and
Probability Density Function (PDF) given by:

F(t;@) =1- (t + 1)71 exp(—t@) |(r>0,6>0)’
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and:
f(l‘;@) = (z + 1)_2 eXp(—ZQ)I:H(f + 1) + 1] |(r>0./~)>0)’

respectively. Following Yousof ef al. (2018) and replacing t
by {-log[G,..., ()]} where G, , , (x) =[1- Gyay)] and:

Gyop(x)= {1 _ (x” . 1),ﬂi|b

is the CDF of the EBXIID. The CDF of the Burr-Hatke
EBXII distribution (BHEBXIID) isdefined by:

E‘i,b,a,/? (X)

= 1—{1—{1—(;&' + 1)”]1)}9[1— log{l— {1 ~(x+ 1)"}}7, @

The PDF corresponding to (2) is given by:
o =ape (o) ]
x(l— log{]_[l_(xa . l)ﬂ]b}Jz
o et

x{&[l—log{l—[l—(x“ +1)"?]b}]+1}.

The Reliability Function (RF) and Hazard Rate
Function (HRF) of new BH-G family are given by:

0-1

thb,a,ﬁ(x)
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={1—{1—( “+1) ‘} } (l—log{l—{l—(x“+l) "] }] ,
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and:

s (et )T

X {9(1—105;{1—[1—()# +1)"’]b}]+1} |
{1-[1-(;& + 1)"’}17}(1-1041-[1-(;(“ + 1)"’}17}}

Figure 1 displays some plots of the new density for
some parameter values. Plots of the HRF of thenew model
for selected parameter values are given in Fig. 2, where the
HREF can be decreasing, increasing and unimodal.

We are motivated to introduce the BHEBXIID
because it exhibits the decreasing, increasing and
unimodal HRF as illustrated in Fig. 2. It is shown in
Subsection 2.2 that the BHEBXIID can be viewed as a
linear mixture of the BXII densities as illustrated in
Equations (6) and (7). It can be viewed as a suitable
model for fitting the unimodal and right skewed data as
illustrated in Section 4. The BHEBXIID provide
adequate fits as compared to other BXIIDs by means of
two applications with small values for AIC, BIC, CAIC
and HQIC. The proposed BHEBXIID is much better
than the BXIID, Marshall. Olkin Burr XII (MOBXIID),
TL Burr XII, Kumaraswamy Burr XII (KwBXIID), beta
Burr XII (BBXIID), Beta Exponentiated Burr XII
(BEBXIID), Five parameter beta Burr XII (FBBXIID),
Five parameter Kumaraswamy Burr XII(FKwBXIID)
and Zografos-Balakrishnan Burr XII (ZBBXIID) in
modeling the breaking stress and the taxes revenue data.

The rest of the paper is outlined as follows. In section 2,
we derive some statistical properties for the new model.
Maximum likelihood estimation of the model parameters is
addressed in section 3. Section 5 provides the simulation
results. Two applications to real data sets to illustrate the
importance of the new model are provided in section 5.
Finally, we offer some concluding remarks in section 6.
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Fig. 1: Plots of the BHEBXII PDF
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Properties
Asymptotics

Let a = inf{x|Fy; ,4(x) > 0} the asymptotics of CDF,
PDF and HRF as x—a are given by:

a - ’
Fypup (x)~ [1 - (x + l) ] |(x_,(,),
Sopaap(3) ~ baBx! (x" + 1)_/]_1 [1 (v 1)_11}1771 lesa)
and:
hH.b-fX-/f (x) ~ baﬂxa_l (x’x + 1)7[;71 [1 - (x“ + 1)% ]bil |(X4>a) :

The asymptotics of CDF, PDF and HRF as x—o are

given by:
it T} |
ofi-{1-( 1) ]

Sy (x)~ bafpx™! (xa . 1)—ﬁ—1
e T T
(ol T

(1 + mog{l [ +1)]” }b Jl -

1=F 0 (x)~~

and:
o ()~ beps (5 1)
=) T =P T
fmfette Ty
(l+m°g{l‘[“(X“ + 1)"']}] .

The effect of the parameters on tails of distribution
can be evaluated by means of above equations.

1

Useful Expansions

In this section, mixture representations for Equations (2)
and (3) are obtained. Consider the following expansions:

(1-2) = 21 @z @

264

and:
0 Zk—l
log(1- =—) ——. 5
og( z) |(z|<l) ;(k+1) (%)
Applying (4) for:

{1 - [1 ~(x+ 1)”}1)}9

in Equation (2) we get:

=(-1) ['ZJ

Now, applying (5) for 1-log{ 1-[1-(x*1)7]°} still in
Equation (2), we obtain:

1—log{l—|:1—(x“ +1)'qb}

where,b, = 1 and:

-1
for k=1b, = e

Then, Equation (2) can be written as:

a
where, ¢, = b—” and, for &> 1, we have:

0
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At the end, the CDF (2) can be written as:
dethl
k=0
- i k+1
=de+l{|:l—(x“ +1) ] } ,
k=0

where,d,, = 1-¢,,for &> 1 we have d, = -¢; and:

Mees={[1-60) T |

is the CDF of the EBXII. By differentiating (6), we
obtain the same mixture representation:

Hba/}

Q)

k+1

ff)ba/} zdl.ﬂﬂ'l.ﬂaﬁ(x)

where:

~p-1

bk +1)apx " (x* +1)

T (%) =
[1 ~(x 1)’ ]H {{1 ~(x+1)” T}k

is the PDF of the EBXII. Using (4) the last expression
can be rewritten as:

f(%b,a./f (x) = Z:(;d' ga,ﬁ(Hr) (x)’ (7)

where:

el PR
& p(1+r) (x)=ap(1+r)x l(x + l)

is the BXII density with parameters and f (1 + ) and:

1+b(k+1)]

r

d zdkﬂ

k=0

b(k )("

Equation (7) reveals that the BHEBXII density
function is a linear combination of the EBXIIdensity.
Thus, some structural properties of the new family such
as the ordinary and incompletemoments and generating
function can be immediately obtained from well-
established propertiesof the EBXIID.

Moments

The #™ ordinary moment of X is given by:
My = E(X) = [ ()

Then, we obtain:

265

=2 d A+ r)B(B(1+r)- ®

-1 -1
ha —,na +1) (n<a/f(l+))

Setting n =1, 2, 3 and 4 in (8), we have:

E( = gd, B+ B(B(+r)—aa 1)y
E(X*)=p = Z:;dr B(+r)B(B(1+r) =220 +1) |,
E(X)=u = gd, B(+r)B(B(1+r)=3a"3a +1) |y
and:
E(X*)= 4, =, B(1+r) B(B(1+r)-d4a 4a +1) lhaon
P

The last results can be computed numerically for
most parent distributions. The skewness andkurtosis
measures can be calculated from the ordinary moments
using well-known relationships.

Incomplete Moments

The »™ incomplete moment of X is defined by:

7,(0)= [ xSy p (x)ax

We can write from (7):

0

D d, A(1+r) B (14 ) =ne e +1) | ()

B(ab)=[(1+0) " e,
and:
B(piab)= [ (1+0)“" e

are the beta and the incomplete beta functions of the second
type respectively. Setting » = land 4 in (9), we have:

7, (t)= Zd B(1+r)B(t":

Bl+r)-a'a +1)|(
r=0

I<ap(1+r))°

which is the first incomplete moment.
Moment Generating Function

The Moment Generating Function (MGF) of X, say
My (f) = E[exp (£X)], can be obtained from (7) as:
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My (0)=d,M, (1),

where, M,(f) is the MGF of the BXIID with parameters
a, f(1 + r). However, Paranaiba ef al. (2011) provided a
simple representation for the MGF of the BXIID. In a
similar manner, weprovide another representation for the
MGF, say My (f), of the BXII(e, f) model. For < 0,
wecan write:

M(r)= aﬁfexp(yt)y“" (1 +y° )#H dy.

Next, we require the Meijer G-function defined by:

[m.n] al,...,ap
Clpal [’“' By ]

q
1 Hm (b +t)H:':ll"(1—a/+t)
"o LH, N ( +t)H’;=m+ll"(l—b/—t)

where, i =+/-1 is the complex unit and L denotes an
integration path (Gradshteyn and Ryzhik, 2000). The
Meijer G-function contains as particular cases many
integrals with elementary and special functions
(Prudnikov et al., 1986). We now assume that o = m/p,
where m and f are positive integers. This condition is not
restrictive since every positive real number can
beapproximated by a rational number. We have the
following result, which holds for m and #kpositive
integers, 1>-1 and p> 0 (Prudnikov et al., 1992):

I[p’”’ ﬂ>”j ly= rexp(—px)x“(ux'"”)u dx
= G[ﬁ Bm] [(mmpm) | A(ma—,u),A(ﬂ,u + 1)]

[B+m.p] A(ﬂ,O)

x[(zﬁ)”%' pwlr(—u)}l ( ﬁ“m‘”;}

A7.0)=C 1, (C+1) /7. (C+T)/ T

where:

We can write (for < 0):

M(1)= mI(—t,Z— l,%,—ﬁ— 1].

Hence, the MGF of X can be expressed as:
™M m
M ()=m>d,| I B(L+r) B(1+r) ||
= -[B(1+7)+1]

Moment of Residual Life and Reversed Residual
Life
The n™ moment of the residual life, denoted by:

m, (t) = E[(X - t)ni| |(X>t7n:1727, )

The n™ moment of the residual life of X is given by:

r(x t) dFwa/?(x)

1-F(t)

m, (1) =

Then, we can write:

nt"

F(t Zzﬂr(n—z+1 )

i=0 r

B(t; (1+7)=na™ na” +1).

Another interesting function is the Mean Residual
Life (MRL) function or the life expectation atage x
defined by m(¥) = E[(X-0)]|¢x1n-1), Which represents the
expected additional life length for a unit which is alive at
age x. The MRL of the WBXII distribution can be
obtained by settingz = 1 in the last equation. The n™
moment of the reversed residual life, say:

M, (Z) = E|:(Z - X)n] |(Xst7t>07n:1,2, )

Then, M,(f) is defined by:
1 n
M, (t) = m J;(Z - x) dFH.h.a./l(x)'

The #n™ moment of the reversed residual life of X:

zzﬂ(n d B(1+r)

10)0

( ;ﬂ(1+r —no” na” +1).

The Mean Inactivity Time (MIT) or Mean Waiting
Time (MWT), also called the mean reversedresidual life
function, say M;(f) = E[(#-X)]|x < represents the waiting
time elapsed since thefailure of an item on condition that
this failure had occurred in (0,x). The MIT of X can
beobtained by setting » = 1 in the above equation.

Order Statistics

Order statistics make their appearance in many areas
of statistical theory and practice. Suppose Xi.,, Xz.,---»
X, is a random sample from any BHEBXIID. Let X,

266
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denote the i

expressed as:

orderstatistic. The PDF of X, can be

70 = g S ey ("

We use the result 0.314 of Gradshteyn and Ryzhik
(2000) for a power series raised to a positiveinteger »
(for n> 1):

0 ” ©

i _ i
Qau | =2
i=0 i=0

where the coefficients ¢, ;|(=1,2,...) are determined from
the recurrence Equation (with ¢, o = aj ):

c,. (za{,) I:m(n+l)—z:| Coiem®

We can demonstrate that the density function of the
i™ order statistic of any BHEBXIID can beexpressed as:

0

Z a, A”h+k+la/3( ) z;d:ga,ﬁ(l+r)(x)’

h.k=0 r=

£l (x) (10)

where:

Ty (x) = b+ k+Dapx (x+1)

[1 (x4 1)"’}1771 {[1 ~(x*+1)” ]b}

denotes the EBXII density function with parameter (4 +
Zb

k+1):
1)

n!(h+l)(i—l)!dh < (=) friw
(h+k+1)  S(n—-i-j)jr

h+k

0

b(h+k+1)—

r

d

Ay =

and d, is given in subsection 3.2 and the quantities f},;.
1.4 can be determined with £, o =d;" " and recursively
for k>1:

S = ( u) Z[’" /"”) k:|d Srsittm

m=.

Using (10) we have:

E(xy,)= gd:ﬁ(n r)B(ﬂ(H r)-

9 4
o a * 1) l(q<0</f(l+’)) '

267

Estimation

Several approaches for parameter estimation were
proposed in the literature but the maximum likelihood
method is the most commonly employed. The
Maximum Likelihood Estimators (MLEs) enjoy
desirable properties and can be used for constructing
confidence intervals and regions and in test statistics.
The normal approximation for these estimators in large
samples can beeasily handled either analytically or
numerically. So, we consider the estimation of the
unknownparameters of this model from complete
samples only by maximum likelihood. Let xi,...,x, be a
random sample from the BHEBXII distribution with
parameters 6,b, o and . Let Y =(6,b, «, ,6’)Tbe the 4x1
parameter vector. For determining the MLE of Y, we
have the log-likelihood function:

(=((Y)=nloghb+nloga+nlog B

—I)Z;:logx, —(ﬂ+l)glog(x,“ +1)
—Zglog(l—log{l—[l—(xf 4 1)"’]b }]
+ilog{9£1-1og{1-[1-(x7 +1)"’]bB +1}

+(b-1)§10g[1-(x7 +1)° ] +(6- 121og{ [ ~(x+1)” T}

LX)

T
j are available if needed. Set-ting

The components of the score vector,
ol

(a0 ar a0 o
or

20" ab" 0" o
the nonlinear system of equations Ly= L, = L, = Lg =0
and solving them simultaneously yields the MLE

"y

Simulation Study

We simulate the new model by taking »=20, 50,
150, 300, 500 and 1000. For each sample size,
weevaluate the ML Estimations (MLEs) of the
parameters using the optim function of the R
software.Then, we repeat this process 1000 times and
compute the Averages of the Estimates (AEs) and
Mean Squared Errors (MSEs). Table 1 gives all
simulation results. The values in Table 1 indicatethat
the MSEs of é.b.4 and/}decay toward zero when n

increases for all settings off,b,andf as expected under
first-under asymptotic theory. The AEs of the
parameters tend to be closerto the true parameter values
when n increases. This fact supports that the asymptotic
normaldistribution provides an adequate approximation
to the finite sample distribution of the MLEs.
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Table 1: The AEs and MSEs based on 1000 simulations

Parameters 20 50 150 300 500 1000
0=1.5 1.514567 1.520876 1.512251 1.501886 1.506182 1.499782
(0.3521752) (0.1441626) (0.0442235) (0.0195935) (0.012842) (0.0059777)
o=0.6 0.616176 0.606417 0.600229 0.599789 0.601936 0.599593
(0.0151023) (0.004884) (0.0015242) (0.0007819) (0.0004321) (0.0002444)
b=0.9 0.927605 0.911668 0.900743 0.902986 0.900571 0.901248
(0.0255461) (0.0097934) (0.003195) (0.0016938) (0.0008961) (0.0004464)
£=0.8 0.825944 0.825254 0.80551 0.801926 0.80257 0.800766
(0.0787816) (0.0305656) (0.003195) (0.0038182) (0.0022859) (0.0010038)
0= 2.021285 2.028191 2.000062 2.003788 1.992041 1.999274
(0.5457159) (0.2184421) (0.0639926) (0.0639926) (0.0178037) (0.0093023)
o=0.7 0.718024 0.703211 0.698492 0.701874 0.700009 0.700604
(0.018831) (0.0058359) (0.0018581) (0.0009923) (0.0005863) (0.0002953)
b=1.1 0.42716924 1.104061 1.103025 1.101393 1.099822 1.100314
(0.0301518) (0.0113167) (0.003931) (0.0018997) (0.0012092) (0.0005613)
£=0.9 0.92589 0.908232 0.905625 0.903091 0.898238 0.901076
(0.0711364) (0.0245606) (0.0075746) (0.0037931) (0.0019012) (0.0010895)
0=25 2.549126 2.549466 2.498054 2.50238 2.485818 2.503147
(1.0390537) (0.4208019) (0.1289025) (0.0711908) (0.0396652) (0.01908)
o=0.9 0.92072 0.90809 0.89835 0.903032 0.900493 0.900111
(0.0195577) (0.0070849) (0.0021345) (0.0011709) (0.0006917) (0.0003626)
b=14 1.431182 1.411168 1.405789 1.401176 1.404374 1.400468
(0.0428515) (0.0167855) (0.0049324) (0.0027645) (0.001501) (0.0007583)
p=1.5 1.54377 1.531398 1.516941 1.500401 1.503514 1.500571
(0.153552) (0.059333) (0.017966) (0.009102) (0.0054631) (0.002784)
Applications the HRF is constant if the 777 plot is graphically

In this section, we provide two applications to real data
sets to illustrate the importance andpotentiality of the
BHEBXIID. For these data, we compare the BHEBXIID,
with beta BurrXIl (BXIID), Marshall-Olkin BurrXII
(MOBXIID), Topp Leone Burr XII (TLBXIID), Ku-
maraswamy BurrXIl (KwBXIID), BBXIID, beta
exponentiated BurrXIl (BEBXIID), Five parameter beta
BurrXII (FBBXIID), Five parameter Kumaraswamy
BurrXIl (FKwBXIID) and Zografos-Balakrishnan
BurrXII (ZBBXIID) (see the PDFs in Appendix A).

Data Set I: Breaking stress data. This data set consists
of 100 observations of breaking stress of carbon fibres
(in Gba) given by Nichols and Padgett (2006). Data Set
II: Taxes revenue data.The actual taxes revenue data (in
1000 million Egyptian pounds).This data set were used
by Nassar and Nada (2011) and Yousof et al. (2015) (see
the data sets in Appendix B).

The Total Time Test (TTT) plot due to Aarset (1987)
is an important graphical approach to verify whether the
data can be applied to a specific distribution or not.
According to Aarset (1987), theempirical version of the
TTT plot is given by plotting:

T(r/n){gy,n +("‘V)yrn}/§ym

against r/n, where r = 1,....n and y;, (i = 1,...,n) are the
order statistics of the sample. Aarset (1987) showed that

268

presented as a straightdiagonal, the HRF is increasing (or
decreasing) if the 77T plot is concave (or convex). The
HRFis U-shaped (bathtub) if the 77T plot is firstly
convex and then concave, if not, the HRF is unimodal.
The TTT plots the three real data sets is presented in Fig. 3
and 4. This plotindicates that the empirical HRFs of the
two data sets are increasing.

In order to compare the fitted models, we consider
the following goodness-of-fit statistics: The Akaike
Information Criterion (AIC), Bayesian Information
Criterion (BIC), Hannan-Quinn Information Criterion
(HQIC), Consistent Akaike Information Criterion
(CAIC), where:

a1c =2 ~¢(¥)+ k],
BIC = 2[—f(Y) + %klog(n)},
1OIC = 2{~¢(¥)  klog(n) log(n) ]}
and:
CarC =2[~((¥)+kn/ (n-k-1)].

where, k is the number of parameters, n is the sample
size, —2( (Y) is the maximized log-likelihood. Generally,

the smaller these statistics are, the better the fit.
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Table 2: MLEs and standard errors, confidence interval (in parentheses) for the data set |
Model a b a B 6
BXIID - - 5.941 0.187 -
- - (1.279) (0.044) -
- - (3.43,8.45) (0.10,0.27) -
MOBXIID - - 1.192 4.834 838.73
- - (0.952) (4.896) (229.34)
- - (0, 3.06) (0, 14.43) (389.22,1288.24)
TLBXIID - - 1.350 1.061 13.728
- - (0.378) (0.384) (8.400)
- - (0.61, 2.09) (0.31,1.81) (0, 30.19)
KwBXIID 48.103 79.516 0.351 2.730 -
(19.348) (58.186) (0.098) (1.077) -
(10.18,86.03) (0,193.56) (0.16,0.54) (0.62,4.84) -
BBXIID 359.683 260.097 0.175 1.123 -
(57.941) (132.213) (0.013) (0.243) -
(246.1,473.2) (0.96,519.2) (0.14,0.20) (0.65,1.6) -
BEBXIID 0.381 11.949 0.937 33.402 1.705
(0.078) (4.635) (0.267) (6.287) (0.478)
(0.23,0.53) (2.86,21) (0.41,1.5) (21,45) (0.8,2.6)
FBBXII 0.421 0.834 6.111 1.674 3.450
(0.011) (0.943) (2.314) (0.226) (1.957)
(0.4,0.44) 0.2.7) (1.57,10.7) (1.23,2.1) 0,7)
FKwB-XII 0.542 4.223 5.313 0.411 4.152
(0.137) (1.882) (2.318) (0.497) (1.995)
(0.3, 0.8) (0.53,7.9) (0.9,9) 0,1.7) (0.2,8)
ZBB-XII 123.101 - 0.368 139.247 -
(243.011) - (0.343) (318.546) -
(0, 599.40) - (0, 1.04) (0, 763.59) -
BHEBXIID - 33.23 0.369 2.122 193.71
- (0.000) (0.069) (0.505) (13.36)
- - (0,0.505) (0,3.8) (166.15, 219,8)

Based on the values in Table 2-5 the BHEBXIID
provides adequate fits as compared to BXIID,
MOBXIID, TLBXIID, KwBXIID, BBXIID,
BEBXIID, FBBXIID, FKwBXIID and ZBBXIID in

application with small values for AIC, BIC, CAIC and
HQIC. From our findings it is seen that in the
applications cases considered here the proposed
BHEBXIID turned out to be the best model in terms
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of different selection criteria. Moreover, from the
plots of estimated PDF against the observed
histograms reveals that the new distribution provides
closest fit to all the data sets. It may be mentioned that

the new distribution has even outperformed the four
and five parameter extensions considered the two
applications. It is therefore is a useful contribution to
the existing set of extended BXIID.

Table 3: AIC, BIC, CAIC and HQIC values for the data set |

Model AIC BIC CAIC HQIC
BXIID 382.94 388.15 383.06 385.05
MOBXIID 305.78 313.61 306.03 308.96
TLBXIID 323.52 331.35 323.77 326.70
KwBXIID 303.76 314.20 304.18 308.00
BBXIID 305.64 316.06 306.06 309.85
BEBXIID 305.82 318.84 306.46 311.09
FBBXII 304.26 317.31 304.89 309.56
FKwB-XII 305.50 318.55 306.14 310.80
ZBB-XII 302.96 310.78 303.21 306.13
BHEBXIID 292.58 303.00 293.004 296.80
Table 4: MLEs and standard errors, confidence interval (in parentheses) for the data set I1
Model a b a B 0
BXIID - - 5.615 0.072 -

- - (15.048) (0.194) -

- - (0,35.11) (0,0.45) -
MOBXIID - - 8.017 0.419 70.359

- - (22.083) (0.312) (63.831)

- - (51.29) (0, 1.03) (0, 195.47)
TLBXIID - - 91.320 0.012 141.073

- - (15.071) (0.002) (70.028)

- - (61.78,120.86) (0.008, 0.02) (3.82,278.33)
KwBXIID 18.130 6.857 10.694 0.081 -

(3.689) (1.035) (1.166) (0.012) -

(10.89,25.36) (4.83.8.89) (8.41,12.98) (0.06,0.10) -
BBXIID 26.725 9.756 27.364 0.020 -

(9.465) (2.781) (12.351) (0.007) -

(8.17,45.27) (4.31,15.21) (3.16,51.57) (0.006,0.03) -
BEBXIID 2.924 2911 3.270 12.486 0.371

(0.564) (0.549) (1.251) (6.938) (0.788)

(1.82,4.03) (1.83,3.99) (0.82,5.72) (0,26.08) (0, 1.92)
FBBXIID 30.441 0.584 1.089 5.166 7.862

(91.745) (1.064) (1.021) (8.268) (15.036)

(0, 210.26) 0, 2.67) (0, 3.09) (0,21.37) (0,37.33)
FKwBXIID 12.878 1.225 1.665 1.411 3.732

(3.442) (0.131) (0.034) (0.088) (1.172)

(6.13,19.62) (0.97,1.48) (1.56,1.73) (1.24,1.58) (1.43,6.03)
BHEBXIID - 34.842 9.84 0.13033 2.27

- (28.8) (22.29) (0.29) (2.177)

- (0, 89.78) (0, 52.92) (0,0.7) (0, 6.57)
Table 5: AIC, BIC, CAIC and HQIC values for the data set 11
Model AIC BIC CAIC HQIC
BXIID 518.46 522.62 518.67 520.080
MOBXIID 387.22 389.38 387.66 389.680
TLBXIID 385.94 392.18 386.38 388.400
KwBXIID 385.58 393.90 386.32 388.860
BBXIID 385.56 394.10 386.30 389.100
BEBXIID 387.04 397.42 388.17 391.090
FBBXIID 386.74 397.14 387.87 390.840
FKwB-XIID 386.96 397.36 388.09 391.060
BHEBXIID 384.82 393.13 385.56 388.059
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Conclusion

In this article, a new four parameter Burr-Hatke
Exponentiated Burr XII Distribution (BHEBXIID) is
defined and studied. Several structural mathematical
properties of the proposed model areinvestigated. The
Maximum Likelihood (ML) method is used to estimate
the model parameters.We assess the performance of the
MLE:s of the new distribution with respect to sample size
n.The assessment was based on a simulation study. The
new distribution is applied for modelingtwo real data sets
to prove its flexibility empirically. It is shown that the new
lifetime model canbe viewed as a simple linear mixture of
the Burr XII density. It can be viewed as a suitable model
for fitting the unimodal and the right skewed data sets. The
new model provides appropriate fitsas compared to other
extensions of the Burr XII models by means of two real
data applicationswith small values for AIC, BIC, CAIC and
HQIC. Plots for the Estimated PDFs, P-P, TTT andKaplan-
Meier Survival are provided for the two real data sets.
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In this appendix we provide the densities used in the applications:
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The parameters of the above densities are all positive real numbers and x> 0.
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Appendix B
Data Set 1

{0.98, 5.56, 5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77, 2.76, 1.73, 2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 3.70, 2.74,
2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40, 3.15, 2.67,3.31, 2.81, 2.56,2.17, 4.91, 1.59, 1.18, 2.48, 2.03,
1.69, 2.43, 3.39, 3.56, 2.83, 3.68, 2.00, 3.51, 0.85, 1.61, 3.28, 2.95,2.81, 3.15, 1.92, 1.84, 1.22,2.17, 1.61, 2.12, 3.09,
2.97,4.20,2.35, 141, 1.59, 1.12, 1.69, 2.79, 1.89,1.87, 3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70, 2.88, 2.96, 2.55,
2.59,2.97,1.57,2.17,4.38,2.03,2.82,2.53,3.31,2.38, 1.36, 0.81, 1.17, 1.84, 1.80, 2.05, 3.65}.

Data Set I1

{5.9,20.4,149,16.2,17.2,7.8,6.1,9.2,10.2,9.6, 13.3, 8.5,21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7,39.2, 35.7, 15.7, 9.7, 10,
4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 354, 14.3, 8.5, 10.6, 19.1, 20.5,7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3,
11.2,6.1,84,11,11.6,11.9,5.2,6.8,8.9, 7.1, 10.8}.
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