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Abstract: A new distribution, called odds generalized exponential-power 

Lomax distribution is suggested for modeling lifetime data. Some 

structural properties of the new distribution including; quantiles, Rényi 

entropy, moments and distribution of order statistics are provided. The 

model parameters of the new distribution are estimated by the maximum 

likelihood method. Finally, applications to two real data sets are analyzed 

to illustrate the importance of the new distribution compared with some 

known distributions. 
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Introduction  

The  Lomax or  Pareto  II distribution  was 

introduced  originally  for  modeling  business  failure  

data by Lomax  (1954).  Moreover  it  has  been  widely  

applied  in  a  variety  of  contexts such as; income and 

wealth inequality, size of cities, actuarial science, 

medical and biological sciences.  Hassan and Al-Ghamdi 

(2009) mentioned  that  it  can be applied  in  reliability  

modeling  and  life  testing. In the literature, some 

extensions of the Lomax distribution are available such 

as Marshall-Olkin extended-Lomax (Ghitany et al., 

2007; Gupta et al., 2010), the exponentiated Lomax 

(Abdul-Moniem, 2012), beta-Lomax, Kumaraswamy-

Lomax and McDonald-Lomax (Lemonte and Cordeiro, 

2013) and gamma-Lomax (Cordeiro et al., 2013),  the 

transmuted exponentiated Lomax (Ashour and Eltehiwy, 

2013), the extended Poisson-Lomax (Al-Zahrani, 2015), 

exponential Lomax (El-Bassiouny et al., 2015), Weibull 

Lomax (Tahir et al., 2015a) and  exponentiated Weibull-

Lomax (Hassan and Abd-Allah, 2018).   

Rady et al. (2016) proposed one of these extensions 

of the Lomax distribution and referred to as a Power 

Lomax (PL) distribution with three-parameter α, β and γ. 

The probability density function (pdf) and cumulative 

distribution function (cdf) of PL distribution are given, 

respectively by: 
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where, α and β are shape parameters and γ is a scale 

parameter.  

In recent years, there has been a great interest among 

statisticians and applied researchers in constructing 

flexible distribution to facilitate better modeling of 

lifetime data in various situations. Several methods have 

been developed for generating new family of lifetime 

distributions. The T-X family is one of the generalized 

family of distributions which was proposed by Alzaatreh 

et al. (2013) with the following cdf: 

 

( ) ( )
( ( ))

0

,

W G x

F x r t dt= ∫   (3) 

 

where, the random variable T called the transformer has 

pdf r (t) defined on [a, b]-∞≤a<b≤∞ and W(G(x)) be a 

function of G(x).  

As a result, many new distributions have come up 
and studied. Tahir et al. (2015b) proposed a new class of 
distributions called the odd generalized exponential 
(OGE) family and study each of the OGE- Weibull 

distribution, the OGE-Fréchet distribution and the OGE-
normal distribution. These models are flexible because 
of the hazard shapes: increasing, decreasing, bathtub and 
upside subset of down bathtub. Rosaiah et al. (2016) 
proposed a new lifetime model, called the odd 
generalized exponential log logistic distribution and 

Hassan et al. (2018) suggested a new distribution, called 
odds generalized exponential-inverse Weibull 
distribution for modeling lifetime data. 

Silva et al. (2017) proposed a new generator of 

continuous distributions with one extra positive 

parameter called the odd Lindley-G family. They 

discussed estimation of the model parameters by 
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maximum likelihood and provided an application to a 

real data set. Haq and Elgarhy (2018) proposed a new 

generator from Frѐchet random variable that is known as 

the odd Frѐchet-G (OFr-G) family of distributions and 

the maximum likelihood equations are derived for OFr-G 

family parameters. Also, Hosseini et al. (2018) introduced 

the generalized odd gamma-G distribution. In particular, G 

has been considered as the uniform distribution and some 

statistical properties have been calculated. 

The main motivation of this study is to introduce a 

more flexible model with increasing, decreasing, 

constant and reversed- J shaped hazard rate and at the 

same time provide consistently better fits than other well 

known-distributions. We provide and study a new form 

for Power Lomax distribution with three parameters. We 

call the new distribution; the odds generalized 

exponential-Power Lomax (OGE-PL) distribution, which 

is a particular case of T-X family of distributions. The 

rest of the paper contains the following sections. The 

new distribution is provided in Section 2. Some 

statistical properties are given in Section 3. Then, in 

Section 4, maximum likelihood estimators are obtained. 

An application of the OGE-PL model to real data set is 

presented in Section 5. At the end, concluding remarks 

are addressed in Section 6.  

The OGE-PL Distribution  

In this section, the pdf, cdf, reliabilty function, hazard 

rate function (hrf), reversed-hazard rate function and 

cumulative hazard rate function of OGE-PL distribution are 

derived. Expansions for its pdf and cdf are also provided. 

We obtain the OGE-PL distribution by considering 

the exponential distribution as transformer in cdf (3); 

also, taking; 
( )

( ( )) ,
( )

G x
W G x

G x
=  the odds ratio of Power 

Lomax distribution defined in (2) and ( ) 1 ( )G x G x= −  as 

follows: 
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Hence, the cdf of OGE-PL distribution is as follows: 
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The corresponding pdf is obtained as follows: 
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Plots of the pdf of OGE-PL distribution for some 

selected parameter values are displayed in Fig. 1. As 

seems from this figure, the pdf of OGE-PL distribution 

can be symmetric, unimodel and right skewed according 

to the selected values of parameters. 
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Fig. 1: Plots of the pdf of OGE-PL distribution for selected values of the parameters 
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Useful Expansions for OGE-PL Distribution  

Firstly, an expansion for pdf is derived. The power 

series for the exponential function in pdf (5) can be 

written as follows: 
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where, ξ = (α, β, γ). Then, by inserting expansion (6) in 

pdf (5), we have: 
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By using the generalized binomial expansion, then: 
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Inserting (8) in (7), the OGE-PL density function can 

be expressed as follows: 
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So, the expansion form of pdf is as follows: 
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Again, by using the binomial expansion for the last 

term in (9), we have the final expansion form of pdf as 

follows: 
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( ; ( 1), , )g x kα β γ− is the pdf of PL distribution defined in 

(1) with parameters a (k-1), β and γ. 

 Reliability Analysis  
This subsection gives expressions for the reliability 

function, hazard function, reversed hazard function and 

cumulative hazard rate function for the proposed model.  

The reliability function and hrf of the OGE-PL 

distribution are respectively given by: 
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Figure 2 gives the plots of the hrf of OGE-PL 

distribution for some selected parameter values. Figure 2  

indicates that OGE-PL hrfs can be increasing, decreasing 

and constant. This fact implies that the OGE-PL can be 

very useful for fitting data sets with various shapes.
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Fig. 2: Plots of hrf of OGE-PL distribution for selected values of the parameters 
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The reversed-hazard rate function of the OGE-PL 

distribution is as follows: 
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Additionaly, the cumulative hazard rate function of 

the OGE-PL is given by: 
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Some Mathematical Properties  

 In this section, some mathematical properties of the 

OGE-PL distribution including, quantiles, moments, 

incomplete moments, order statistics and Rényi entropy 

measure are derived. 

Quantiles of the OGE-PL Distribution  

The quantile function of the OGE-PL is given by: 
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where, q is a uniform (0,1) distribution. We can generate 

random numbers from our model by using (11) and 

special cases can be obtained using (11) such as the 

second quartile (median), when q = 0.5: 
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and the Inter-Quantile Range (IQR) which defined as the 

difference between the third quartile and the first quartile 

can be expressed as: 
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Moments  

The rth moment of OGE-PL is defined as: 
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Then, the rth moment of OGE-PL is derived as 

follows: 
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In particular, the mean and variance of the OGE-PL 

distribution are given respectively by: 
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and: 
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The skewness (g1) of the OGE-PL distribution is 

given by: 
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The kurtosis (g2) of the OGE-PL is given by: 
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Furthermore, the moment generating function of 

OGE-PL is obtained through the following relation as 

follows: 
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Incomplete Moments 

The main application of the first incomplete moment 

refers to the Bonferroni and Lorenz curves. These curves 
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are very useful in economics, reliability, demography, 

insurance and medicine. The incomplete moments, say 

ϕ
s
(t), is given by: 
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the incomplete beta function. In particular, the first 

incomplete moment of the OGE-PL distribution can be 

obtained by putting s = 1 in (12), as follows: 
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Additionally, the mean deviations of X about the 

mean µ and about the median m can be calculated by the 

following relations: 
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where, ϕ1(.) is the first incomplete moment of the OGE-

PL distribution which can be obtained from (13). By 

using (13) then: 
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Rényi Entropy 

The entropy is a measure of the uncertainty variation. 

So, the Rényi entropy of a random variable X with 

density function ( ; ),  ( , , , )f x α β γ λΨ Ψ =  is defined as: 
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Substituting ( ; )f xρ Ψ  in (14), then  we obtain: 
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Applying the binomial and exponential expansions in 

(15), then we have: 
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Therefore, the Rényi entropy of OGE-PL distribution 

is given by: 
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Order Statistics 

Let
 1: 2: :

...

n n n n
X X X< < < denote the order statistics for 

a random sample
1 2
, ,...,

n
X X X  from OGE-PL distribution 

with cdf (4) and pdf (5). The pdf of r
th
 order statistics is 

defined by: 
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By using binomial expansion in (16) 
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Inserting cdf (4) and pdf (5) in previous equation, we 

have: 
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Hence, the pdf of r
th
  order statistics will be as 

follows: 
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In particular, the pdf of the smallest order statistics is 

obtained by substituting r = 1 in (17) as follows: 
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Also, the pdf of largest order statistics is obtained by 

substituting r = n in (17) as follows: 

 

( )
1 ( 1) 1 11

1

:

0

1
( 1) 1 .

x
i

n

i

n n

i

n x
f x n x e

i

α
β

α λβ
γ

βαβλ

γ γ

   − − + + − −   
 −  

=

−   
= − +  

   
∑  

 

Parameter Estimation  

In this section, the estimators of unknown parameters 

of the OGE-PL model are obtained based on maximum 

likelihood (ML) method. Let X1, X2,….,Xn, be observed 

values from the OGE-PL distribution. The total log-

likelihood function, denoted by lnL, for the parameters λ, 

α, β and γ for a complete sample is as follows: 
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The partial derivatives of the log-likelihood function 

with respect to λ, α, β and γ components of the score 

vector ( , , , )T
L
U U U U Uλ α β γ=  can be obtained as follows: 
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Then the maximum likelihood estimates (MLEs) of 

the parameters, denoted by ˆ,λ ˆˆ ,α β  and γ̂  are obtained 

by setting Uλ, Uα, Uβ and Uγ to be zero and solving them 

numerically. It is clear that, there is no closed solution for 

the above non-linear equations, so an extensive numerical 

solution will be applied via iterative technique.   

Data Analysis 

In this section, two real data sets are analyzed to 

illustrate the flexibility of OGE-PL  distribution 

compared with some other models, namely, exponential 

(E), extended Poisson-Lomax (Ext.PL), Exponential 

Lomax (Exp Lomax), transmuted exponentiated Lomax 

(TE-Lomax), McDonald Lomax (McLomax), 

exponentiated Lomax Poisson (ELP), exponentiated 

Lomax (EL) and Lomax (L) distributions. 

The first data set is taken from Lee and Wang (2003) 

referred to remission times (in months) of a random 

sample of 128 bladder cancer patients given as follows:  

 

 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 

2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 

7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 

9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 

14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 

32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 

2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 

4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 

5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 

8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 

2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 

12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.  

 

The MLEs for OGE-PL, Ext.PL, Exp Lomax, 

McLomax, TE-Lomax, L and EL models are given in 

Table 1. Also, to compare the distribution models, we 

consider criteria like; Akaike information criterion (AIC), 

the Correct Akaike Information Criterion (CAIC), Bayesian 

Information Criterion (BIC) and Hannan-Quinn information 

criterion (HQIC). However, the better distribution 

corresponds to the smaller values of AIC, BIC, CAIC, 

HQIC criteria. These criteria are provided in Table 2.  

It is clear from Table 2 that the OGE-PL distribution 

provides a better fit than the other competitive models. It 

has the smallest AIC, CAIC, BIC and HQIC values 

among those considered here.  
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Table 1: MLEs of the model parameters for the 128 remission times (in months) of bladder cancer patient's data 

Distribution α̂  β̂  γ̂  λ̂  θ̂  â  b̂  ĉ  

OGE-PL 0.136 1.453 25.382 10.941  − − − 

Ext.PL 0.239 8.04×103 59.838 −  − − − 

Exp Lomax 1.0644 0.08 0.006 −  − − − 

McLomax 0.8085 11.2929 − −  1.506 4.1886 2.1046 

TE-Lomax 1.714  0.054 0.244 3.339 − − − 

EL 131.499 197.476 0.756 −  − − − 

L 13.938 − 121.023 −  − − − 

 

Table 2: The statistics AIC, CAIC, BIC and HQIC for the 128 remission times (in months) of bladder cancer patients data 

Distribution AIC BIC CAIC HQIC 

OGE-PL 827.458 838.866 827.783 832.093 

Ext.PL 833.670 842.220 833.860 837.140 

Exp Lomax 835.956 844.512 836.150 839.432 

McLomax 829.820 844.090 830.140 835.620 

TE-Lomax 828.868 840.276 829.130 833.505 

EL 894.416 902.972 894.609 897.892 

L 831.670 837.370 831.800 833.980 

 
Table 3: The MLEs of the model parameters and the statistics AIC, BIC, CAIC and HQIC for failure times of 84 Aircraft 

Windshield data 

Distribution Estimates AIC BIC CAIC HQIC 

OGE-PL a = 4.752 261.448 271.172 261.955 265.357 

 β = 0.888 

 γ = 1.618 

 λ = 0.01 

ELP a = 2.666 273.832 283.602 274.332 277.741 

 β = 0.005 

 γ = 17.628 

 λ = 49.961 

McLomax a = 2.792 280.048 292.261 280.807 282.002 

 b = 13.802 

 c = 3.907 

 α = 2.230 

 β  = 0.113 

EL α = 4.325 313.950 321.278 314.246 316.882 

 β  = 3.184 

 γ = 0.329 

L α = 28.329 336.398 341.283 336.544 338.352 

 γ = 0.014 

E λ = 0.389 328.501 330.932 328.549 329.478 

 
As a second example, the data set recently studied by 

Ramos et al. (2013) will be considered. It consists of the 
failure times of 84 Aircraft Windshield (the unit for 
measurement is 1000 hours) is given as follows: 
 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 

0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 

1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 

1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 

1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 

1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 

1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 

1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 

1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376, 4.663.  

 

The required numerical evaluations are carried out 

using the package of Mathcad software. The MLEs for 

OGE-PL, ELP, EL, McLomax, L and E models and 

the values of the AIC, BIC, CAIC and HQIC are listed 

in Table 3. 

It is clear from Table 3 that the proposed OGE-PL 

distribution fits to this data is better than the other 

models according to the AIC, BIC, CAIC and HQIC. 
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Conclusion  

In this article, we propose a new model, called the odds 

generalized exponential-Power Lomax distribution based 

on T-X family presented by Alzaatreh et al. (2013). Some 

statistical properties of current distribution have been 

derived and discussed. The estimation of the model 

parameters is approached by maximum likelihood method. 

We fit the OGE-PL distribution to two real life data sets as 

two examples, the OGE-PL distribution provides 

consistently a better fit than some other known models.  
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