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Abstract: In this article we are concerned with a collection of multiple 

linear regressions that enable the researcher to gain an impression of the 

entire conditional distribution of a response variable given a set of 

explanatory variables. More specifically, we investigate the advantage of 

using a new method to estimate a bunch of non-crossing quantile 

regressions hyperplanes. The main tool is a weighting system of the data 

elements that aims to reduce the effect of contamination of the sampled 

population on the estimated parameters by diminishing the effect of 

outliers. The performances of the new estimators are evaluated on a 

number of data sets. We had considerable success with avoiding 

intersections and in the same time improving the global fitting of 

conditional quantile regressions. We conjecture that in other situations 

(e.g., data with high level of skewness, non-constant variances, unusual 

and imputed data) the method of weighted non-crossing quantiles will lead 

to estimators with good robustness properties. 
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Introduction 

Methodology and Estimation 

A typical investigation in statistical analysis consists 

of the linear regression of one response variable on one 

or more predictor variables, all of which are observed on 

a sample of entities. The rational is that by establishing a 

linear relationship between them, knowledge of the value 

of predictor variable enables an approximate value to be 

predicted for the response variable. However, a richer 

and more precise understanding can be achieved through 

quantile regression analysis, which allows us to examine 

and compare different levels of response given the 

variation in the independent variables by considering 

simultaneously the conditional quantile functions for a 

properly chosen set of quantiles. 

Let Qp (Y|x) = inf{Pr(Y≤y|x)≥p} indicate the p-th 

conditional quantile (0<p<1) of a real valued random 

variable Y given a vector of m covariates x. In short, y is 

defined as the smallest real value such that the 

probability of obtaining smaller values of Y is at least p. 

The quantiles are the values that divide the total 

probability into parts. Values of interest are themedian 

which divides the distribution of Y|x into halves (p = 0.5), 

the three quartiles which divide the distribution into four 

equal parts (p = 0.25 h, h = 1,2,3), deciles (p = 0.1 h, h = 

1,⋅⋅⋅, 9) and so on. Quantiles could be considered also at 

irregularly spaced over the (0,1) interval of probabilities. 

Conditional quantile functions offer simple and flexible 

models for the stochastic component of a regression and 

enables us to obtain reasonable estimates in the presence of 

a broad range of departures from Gaussianity (Parzen, 

1979; Gilchrist, 2006). 

For a random sample of observations y = (y1, y2,..., yn) of 

Y, a linear regression model may be specified as: 

 

( ) ( )
,

1,2,..., 0,1
t

i i p i
y p e for i n pβ= + = ∈x  (1) 

 

with xi = (xi,1,xi,2,⋅⋅⋅, xim), i = 1,2,..., n, being a sequence 

of m×1 vectors of known covariates and n>m. For each 

p, the magnitude and the sign of the effect of a given 

regressor can be compared with the effect at the other 

quantiles. The vector β(p) ∈ R
m
 contains p-specific 

coefficients whose estimate should be obtained from 

sample data. The ( )ˆ , 1,2, ,
j
p j mβ = ⋯ can be interpreted as 

the trade-off 
( )|

p

j

Q Y

x

∂

∂
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 between a marginal change in 
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the p-th conditional quantile of the response variable and 

a marginal change in the value of the j-th covariate, 

when all of the other covariates are held constant. If β(p) 

is a constant β for each p, the model reduces to the 

standard conditional expectation model t

i i
y β= x  with 

constant variance errors  σ(e). 

Denote X = (x1,x2,⋅⋅⋅, xn) the n×m known design matrix 

with columns xi, i = 1,2,⋅⋅⋅, m. We assume that the 

covariates include an intercept term; therefore, the first 

column of X consist entirely of ones and that X has rank m. 

In addition, let S
m
 ⊂ R

m
 the compact domain of the 

covariates over which the model holds; this means that, for 

each experimental condition x, an observation y is available 

according to the model (1). We assume further that y and X 

are observed with no error and that different observations 

are independent. Moreover, we assume that e1,e2,⋅⋅⋅, en are 

independent random errors with quantile function Qp(e). 

The quantile function is left unspecified; we only require 

the verification of the following constraint: 

 

( )
,

0
p p i i

Q e =x  (2) 

 

which implies that the conditional p-th quantile of ei is 

null for each i. It follows that the p-th conditional 

quantile of y|xi is given by: 

 

( ) ( )

( ) ( )

,

,

|

.

t

p i i p i p i i

t t

p i i p p i i i

Q y Q p e

Q p Q e p

β

β β

 = + 

   = + =   

x x x

x x x x

 (3) 

 

Not that ( ) ( ) ( )t t t

p i i i p i i
Q p Q p pβ β β   = =   x x x x x  by 

the definition of the conditional expectation. It is worth 

noting that there is no assumption on identical 

distributions and that model (1) allows the errors to 

change as a function of X and, thus, various form of 

and local noise rates can be accomodated. 

The first thing you need to understand is that there 

are two classes of optimization problems: Function 

minimization and mathematical programming. Both 

seek an optimum and both involve constraints, but 

mathematical programming begins with the constraints. 

It emphasizes solving the constraints and then looks for 

the best solution. 

A quantile regression estimate of the parameters 

( )ˆ pβ  is defined as those values of the parameters that 

minimize the asymmetrical loss function: 

 

( )

( ) ( ) ( )
| |

, ,

min 1 .
m

t t

i i i i

t t

i i i i
R

i y i y

p y p y
β

β β

β

β β
∈

≥ <

  
= − + − 

  
∑ ∑

x x

Q y x

x x
 (4) 

The minimizing β̂  determine a m dimensional 

hyperplane given by ( )ˆt

i
pβx  that best fits the n 

observations. All points above the best interpolating 

hyperplane contribute with weight p to the estimates of 

the parameters; all observations below the hyperplane 

contribute with weigh (1−p). 

The intuition behind the seminal article of Koenker 

and Bassett (1978) is quite simple. There is a complete 

equivalence between the computation of a quantile in 

terms of the order statistics y(i), i = 1,⋅⋅⋅, n and the 

minimization of an asymmetrical loss function which, in 

turn, can be reformulated as the minimization of a linear 

function subject to linear constraints: 

 

( )
( )

( )
; ,

min 1
m n

t t t

n n n
p R R

p p u

p

β

β
∈ ∈

 
 

 −   
 
 

r s

r

r u s 0 s  (5) 

 

subject to: 

 

( )

, ,

, ,

, , ,

, ,

n n n n

n n n n

n
n n n n n n

n

n n n n n

pβ

 − −       −     ≥                

I I X y
r

I I X y
s

0I 0 0

00 I 0

 (6) 

 

where: 

un = The (n×1) vector of ones 

In,n = The identity matrix of order n 

0n,n = The (n×n) matrix of zeros 

0n = The (n×1) vector of zeros 

 

The linearity of the objective function and constraints 

implies that the solution has to lie in one of the vertices 

of the polyhedron defined in (5). The advent of modern 

linear programming techniques in the later 1940s lead to 

fast and efficient algorithm. In fact, it may be the 

computational complexity of least absolute regression, 

as well as the analytical intractability in a statistical 

setting, that forced this approach to take the back seat 

to least squares in multiple linear regression Seneta and 

Steiger (1984). Here we will not go deep into the 

computational aspects of quantile regression, but just 

recall that the availability of efficient linear 

programming algorithms (Koenker and D’Orey, 1987; 

1994). For large data sets the interior point algorithm 

written by Portnoy (1991) is recommended. 

Buchinsky (1998) notes that the m×1 vector of first-

order conditions for solving the problem in (4) is given by: 

 

( ) ( )1

1

1 1
, 0

2 2

n

t

i i i

i

Un p n p sgn yβ β−

=

 
= − + − ≈ 

 
∑ x x  (7) 
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where, the sgn(.) (signum) function takes the values 

−1,0,+1 according to whether its argument is negative, 

zero or positive. The approximation symbol in (7) 

emphasizes the fact that since Un(β, p) is discontinuous 

function of β(p), it may not have an exact solution. 

However, for n → ∞ the expression on the left hand side 

of (7) converges to zero. 
Let M = (r1,r2,⋅⋅⋅, rm) be a subset of m distinct integers 

from 1,2,⋅⋅⋅, n determining a combination of rows of the 
design matrix such that X(M) has rank m. According to 
Koenker and Bassett (1978) (Theorem 3.1) the solutions 
to (4) have the form: 
 

( ) ( )

( ){ }

( ){ }

1

max , ,

min , ,

n M M

n M M

M M

p

p

β

β

−

  

= − =

= − − =

X y

r y X 0 r 0

s y X 0 s 0

 (8) 

 

where, 0n and 0M are vectors of n and M zeros, 

respectively. B is not empty. Moreover, if the quantile 

function of the error term is continuous, then the system 

(4) has a unique solution ( )ˆ pβ  provided that: 

 

( )

( )( ){ } ( )
1

1

ˆ0.5 1 .
t t t

k i i k

i r

p

sgn yi p p M pβ
−

∉

−

 < − − − <
 ∑u x x X u

 (9) 

 

The residuals of the estimated quantile regression 

have an interesting structure. Koenker and Bassett 

(1978) (Theorem 3.4) show that: 

 

1
n n

p
n n

− +

≤ ≤ −  (10) 

 

where n
−

,n
+
 indicate, respectively, the number of 

negative and positive residuals. If the solution of (4) is 

unique then all inequalities are strict. Furthermore, if the 

quantile function of the error terms is continuous then 

there are exactly m residuals with value zero. To clarify 

this point, consider the formulation of (1) with m = 1 

(intercept-only model). The resulting value of ( )ˆ pβ  (a 

scalar in this case) that minimizes (4) occurs only when 

( )ˆ pβ  is equal to the p-th quantile of the y. By definition, 

a percentage p of observed values is less than the fitted 

values and a percentage (1−p) of the observed values 

greater than that of the fitted values. 
For n → ∞, we could estimate an increasing number 

of quantile regressions; in practice, there may be at most 
3n distinct regression solutions for p unequally spaced 
on the interval [0,1] (Koenker and D’Orey, 1987). The 
common practice is that quantile regression is designed 
to be used in groups rather than singly where the number 
of elements in a group may increase as the sample size 

increases. In finite samples, Portnoy (1991) shows that 
the number of distinct quantile regressions is O(nlogn). 
This opportunity is particularly useful when the 
regressors have a different impact on different regions of 
the design space. For example, pairs of extreme 
conditional quantiles map out a conditional prediction 
interval within which one expects a specified fraction of 
individual points to lie. Also, for unimodal distributions, 
the analysis of kurtosis focuses on how the covariates 
affect both the tails and the central parts of the conditional 
distribution. There will have to be a thorough 
understanding of the research situations in which quantile 
regression will be used in order both to understand its 
own limitations and to exploit its full potential. 

Inference and asymptotic theory of quantile regression 

is not discussed in this paper because of the availability of 

a vast literature on the subject. The survey in Koenker 

(2005)[Ch.3 and Ch. 4] is particularly effective in this 

sense. We shall therefore confine ourselves to highlighting 

a few issues about de estimated error terms. 

Crossing Quantile Regressions 

Quantile regression estimates are robust in presence 

of observations that are far in the direction of the 

response variable (note that this does not apply to 

outliers of covariates). This is an attractive property, at 

least in part attributable to “ordinal” nature of the 

quantiles, which slows down the leverage from outlying 

observations. At the other side of the coin, there is the 

potential drawback that quantile regression estimates are 

not guaranteed to be unique for the given p. When a 

regression model is assessed, the two main 

characteristics that need to be considered are robustness 

and sensitivity. Robustness is a valuable characteristic 

because quantile regression does not change greatly 

when data are changed slightly. However, since 

robustness is achieved at the cost of a loss in precision, it 

can become a problem if the gap between percentages p 

are too narrow. Sensitivity is important, but it probably 

reduces the reliability of estimation when substantially 

similar observations are mapped onto very distant 

conditional values of the response. 

Robustness and sensitivity are antithetical 

requirements because robust procedures give greater 

stability against random changes in data, whereas more 

sensitive procedures offer a richer source of information 

regarding the dependence structure. A balanced solution 

may be the analysis of the conditional quantile function 

for an appropriate set of percentages 0<p1<p2<⋅⋅⋅<pk<1 

and the estimation of the parameters separately for each 

quantile. However, when several conditional quantiles 

are treated, it is not unusual that the estimated 

parameters generate non parallel hyperplanes. 

Quantile regression hyperplanes in R
m
 are defined by 

the real coefficients βj(p), j = 1,⋅⋅⋅, m where the set: 
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( ) ( )
1

0 .

m
m

j j j

j

R p x y with pβ β
=

  
∈ − = ≠ 

  
∑x 0  (11) 

 

Note that two hyperplanes equations in R
m
 form the same 

hyperplane if and only if they differ by a multiplicative 

factor not equal to zero. In general, a violation of the 

monotonicity condition occurs if for two quantiles p1, p2 

and a (m×1) vector x we have: 

 

( ) ( )1 2 1 2
, .

t t m

p p for p p Rβ β= ≠ ∈x x x  (12) 

 

If the vectors β(p1) and β(p2) are linearly 

independent, then we have two independent linear 

equations in m unknowns. After solving the first 

equation for xr, this value can be substituted into the 

second equation, which can be solved for xr,s 6 = r. At 

this point there are (m−2) free unknowns. Any two non 

parallel hyperplanes intersect in one hyperplane of 

dimension (n−2). When k, the number of quantiles, 

increases and a limited amount of data is available, the 

phenomenon of crossing becomes much more likely. 

To illustrate, consider the quantile regression model 

(1) with m = 2. In this case we have xi = (1,xi) and: 

 

( ) ( ) ( )0 1
1,2, , .

p i i i
Q y p p x for i nβ β= + = ⋯x  (13) 

 

If the support of xi is the entire real line, then either 

β1(p) is a constant independent of p or two or more 

conditional quantile regressions overlap for some value 

of xi. This simply implies that y|xi is higher at a lower 

quantile and vice versa. For example, a given point (y,x) 

might result simultaneously below p1 = 0.20, but above 

p2 = 0.25 leading to an invalid y|x distribution. He (1997) 

observes that crossing quantiles hyperplanes reflects a 

paucity of data in the region concerned (a sort of 

misspecification of the covariate effects). In this sense, 

Koenker and Geling (2001) suggest introducing 

additional covariates to avoid crossing. For example, we 

can vary the specification of the model for each quantile 

by adding and subtracting a positive covariate: 

 

( ) ( ) ( )

( )

0 1

2
exp 1,2, , .

p i i i

i

Q y p p x

p x for i n

β β

β

= +

 ± =  ⋯

x

 (14) 

 

This expression incorporates two quantile regressions 

which never cross one another and do not cross (13). In 

the multivariate case, crossing could be avoided if all 

quantile hyperplanes are parallel. For instance, Zhao 

(2000) first estimates the slope parameters by the least 

absolute deviation (p = 0.5). Common slopes guarantees 

that all the quantile hyperplanes will be parallel with no 

intersection. Second, the estimates of the intercept are 

obtained at different quantiles of the residuals 

determined in the first step. The combined estimates 

produce a consistent estimator of the theoretical 

regression quantile. Note that this is the only possible 

solution when the support of he covariates is R
m
. Tokdar 

and Kadane (2012) build a model of quantile regression 

monotonically increasing in p ∈ [0,1] obtained by 

reparametrizing the elements of β(p) as linear 

combinations of two monotonically increasing curves. 

Bassett and Koenker (1982) (Theorem 2.1) show that 

the estimated conditional quantile function at the 

centroid =x x  (the vector whose the i-th element 
i
x  is 

the average of xi) we have ( ) t

p i
Q y β= =x x , which is a 

monotone jump function of p on the interval [0,1]. 

Moreover, Qp(yi|x) must be monotonic in p in a 

neighborhood of =x x . Thus, incidence of crossing 

generally occur only in outlying regions of the observed 

covariate space S
m
. On the other hand, we should ignore 

points close to the boundary or lying outside S
m
 unless 

the data set include sufficient observation the extreme 

regions of the design space to allow a reliable 

computation of quantiles. Schnabel and Eilers (2013a) 

point out that, although in many cases crossing is only a 

visual annoyance, it may jeopardize further analysis, 

e.g., when studying conditional distributions at specific 

values of the independent variable. 

Convergence to the true conditional quantile 

functions renders legitimate the expectation that the 

crossing phenomenon will eventually disappear as the 

sample size n increases. Machado and Mata (2005) recall 

the theoretical results of Bassett and Koenker (1982) 

(Theorem 3.2) and Bassett and Koenker (1986) 

(Theorem 3.1), which show that the estimated 

parameters of the quantile regression are consistent for 

their population counterpart. The theory, therefore, 

predicts that the potential violations of monotonicity will 

be smaller the larger the sample size and the sparser the 

set of p ∈ [0,1]. This is not necessarily true for a general 

design matrix X and the estimated hyperplanes are not 

guaranteed to be parallel. On the other hand, because of 

the phenomenon known as the “course of 

dimensionality” (which is virtually omnipresent when 

analyzing data in high-dimensional spaces) even large 

datasets may become rarefied in certain regions to a 

degree which favors quantile crossings. 
Bondell et al. (2010) observe that quantile crossing is 

a well-known problem, but no simple and general solution 
currently exists. In order to circumvent this difficulty, 
many authors have looked for techniques which are 
capable of fitting the data appropriately and several 
attempts at this have been made since the late 1990s. The 
literature on avoid crossings can generally be divided into 
two major approaches: Semi-parametric techniques, where 
the underlying error quantile function does not assume any 
specific form and non-parametric methods where various 
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smoothing techniques (e.g., kernel fitting or polynomial 
spline fitting) are adapted to the error distribution. Two 
methods to prevent quantile inversions, one for each 
approach, were proposed by He (1997): The first, applied 
the Box-Cox power transformation to restrict regression 
quantiles (Heagerty and Pepe (1999). The second 
imposes certain restrictions on the space of possible 
solutions to conditional quantiles. The restricted 
regression quantile curves are easy to compute, but do 
not suffer from the problem of quantile reversal in 
certain areas of the design space. 

Yu and Jones (1998) study nonparametric regression 

quantile estimation by kernel weighted local linear 

fitting. Specifically, given the current quantile function, 

the next quantile function is estimated so that it does not 

cross with the existing quantile. The authors show that 

local linear conditional quantile estimation is feasible and 

practical. Results are at the least comparable with those 

produced by other approaches. Takeuchi and Furuhashi 

(2004) addressed the problem following a support vector 

machine approach. With the use of kernel-based estimator, 

a non-crossing conditional quantile estimator is derived in 

the form of a constrained maximization of a piecewise 

quadratic function Takeuchi et al. (2006). 

To deal with the potential lack of monotonicity in 

multiple quantile regressions, Melly (2005) developed a 

two-step procedure. In the first stage, the model 

( )t

i i
y pβ= x  is estimated along a grid of k different p-

values whose mesh is sufficiently dense (a mesh size of 

order ( )( )0.5
O n

ε− +

will work). In the second stage, 

quantiles of the sample of k * n estimates 

( )ˆ , 1, , ; 1, ,
t

i h
p h k i nβ = =⋯ …x  are computed by weighting 

each element by (ph − ph−1). The result is the estimation 

of the unconditional quantiles of y. 

Neocleous and Portnoy (2007) show that by choosing 

an appropriate grid of p-values and defining the quantile 

functions by linear interpolation between grid values, the 

resulting conditional quantile estimator is strictly 

monotonic with probability tending to one and is 

asymptotically equivalent to the usual regression quantile 

estimator. Dette and Volgushev (2008) proposed non-

crossing estimates of quantile curves using a simultaneous 

inversion and isotonization of an estimate of the 

conditional distribution function. They also demonstrated 

that the new estimates are asymptotically normal 

distributed and asymptotically first order equivalent to 

quantile estimates obtained by local constant or local 

linear smoothing of the conditional distribution function. 

Shim et al. (2009) propose a new non-crossing 

quantile regression method using doubly penalized 

kernel machine which uses heteroscedastic location-scale 

model as basic model and estimates both location and 

scale simultaneously by kernel function. Wu and Liu 

(2009) introduce a stepwise estimation scheme. With the 

current quantile regression function at a particular given 

level, constraints are added in the estimation procedure 

to ensure the next quantile regression function does not 

cross the current one. The procedure continues till 

quantile regression functions at all desired levels are 

obtained. One drawback of this algorithm is its 

dependence on the order that the quantiles are fitted.  

The point of departure of Chernozhukov et al. (2009; 

2010) is that if an original, potentially non-monotonic, 

estimate is available, then the rearrangement operation 

from variational analysis can be used to monotonize the 

original estimate of the quantile regression curve. In this 

sense, the authors propose monotone rearranging the 

original estimated curves, which is closer to the true 

quantile curve than the original curve in finite samples. 

However, the estimate of the conditional distribution 

function y|x is modified in a way which makes 

problematic to quantify effects of the covariates. 

Bondell et al. (2010) study a simple constrained 

version of quantile regression in which, to alleviate the 

crossing issue, it is proposed to give a different positive 

weight to each ( )t

i
pβx . The weight is unique to the p-th 

hyperplane but it is common to all the n observations. 

Liu and Wu (2011) employ simple constraints on the 

kernel coefficients which can guarantee the estimated 

conditional quantile functions never cross each other. 

This kernel formulation covers both linear and nonlinear 

models. Furthermore, the authors demonstrate how that 

through sharing strength among different quantiles, 

simultaneous noncrossing quantile regression can 

produce better estimation than individually estimated 

quantile functions. 
The basic idea of Schnabel and Eilers (2013a; 2013b) 

is to introduce a surface on a twodimensional domain. 
One axis is for the covariates, the other is for the 
probability p. The quantile curve for any probability is 
found by cutting the surface at that probability. 
Effectively, all possible quantile curves are estimated at 
the same time and the crossing problem disappears 
completely if the sheet is monotonically increasing with 
p for every covariate value. 

Rather than directly modeling the level of each 
individual quantile, begins with a single quantile (usually 
the median) and then add or subtract nonnegative functions 
(called quantile spacings) to it in order to find the other 
quantiles. His approach is analogous to methods for 
approximating intervals, where one models the midpoint 
and the range of the interval, rather than try to model the 
upper and lower bounds directly.  

Weighted Quantile Regressions 

Crossings of quantile regression hyperplanes is an 
undesirable inconsistency which undermines the 
theoretical integrity of the quantile regression method and 
limits its usefulness in applications where monotonicity is 
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a critical issue, such as prediction intervals for forecast. 
We therefore attempt to force proper ordering of the 
quantile curves to ensure that there is no crossings over 
some relevant region of covariate space. 

Non-Crossing Quantile Regressions 

If we apply the quantile function model (1) for p ∈ P 

= (0<p1<⋅⋅⋅, pk<1) then we need to estimate k sets of 

coefficients B = [β(p1), β(p2),⋅⋅⋅, β(pk)]. The 

corresponding k conditional quantile functions should 

verify, in a natural way, the monotonicity require-ments 

with respect to the percentage p: 

 

( ) ( ) ( )1 1

ˆ ˆ

0 2, ,

t t

h h h h

m

sgn p p sgn p p

h k S

β β
− −

 − − 

≥ = ∀ ∈…

x x

x

 (15) 

 

where, S
m
 is the convex hull of a set of the n observed x 

∈ R
m
. More specifically, S

m
 is the intersection of all 

convex sets containing the observations: 

 

1 1

0 , 1
b b

m

i i i i

i i

S iλ λ λ

= =

 
≡ ≥ ∀ = 
 
∑ ∑x  (16) 

 

An obvious method to obtain the matrix B is the 

execution of an estimation procedure for each of the k 

different conditional quantile regressions. In the absence 

of further restrictions, the estimators to be included in B 

would be obtained by solving the minimization problem 

(4) for each p ∈ P. As we have said in the previous 

section, crossings should never happen in theory because 

of the properties of the quantile regression estimators. 

The question remains however how to deal with 

overlapping hyperplanes when such cases do occur. 

Let L = (L1,L2,⋅⋅⋅, Lm) and U = (U1,U2,⋅⋅⋅, Um) be, 

respectively, the vector of minimum and the vector of 

maximum elements observed for each covariate (with 

the exclusion of the first columns consisting entirely of 

ones). To simplify the evaluation of constraints (15), 

we can transform the covariates so that they range into 

the iinterval [0,1]: 

  

,
2, ,

, ; 1,2, , .

1 1

i j j

j j

x L
for j m

vi j i nU L

for j

 −
=

= =−


=

⋯
⋯  (17) 

 

The domain of interest is now reduced from S
m
 to D 

= {v|v ∈ [0,1]
m
}. The linear transformation (17) can 

easily be inverted after the estimation, while retaining 

the properties of the quantile regression estimators. In 

fact, if ( )pβɶ  is the vector of estimated parameters 

associated with p ∈ P under (17), then:  

( )

( )

( )
( )

2

2, , ;

.

j j

j j

m j j

j

j j

p
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p
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β

β
β

β
=


 =

−
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−  

−   
∑

ɶ

⋯

ɶ

ɶ
ɶ

 (18) 

 
Hence a quantile regression estimate of the unknown 

parameters is given by: 
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∑

∑

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

v

Q y v
v

 (19) 

 

where vi = (vi,1,⋅⋅⋅, vi,m). The linear programming theory 

assures that feasible solutions to (19) occur at the 

vertices of D, i.e., integers M ⊂ (1,⋅⋅⋅, n) corresponding 

to observations for which: ( ) ( ) ( )
1

p M Mβ
−

=   
ɶ V y , 

where V is the matrix whose rows are v1,⋅⋅⋅, vn. For 

simplicity of manipulation, it is convenient to redefine 

the k solution vectors of (19) for p ∈ P as follows: 
 

( ) ( )

( ) ( ) ( )
1 1

1
2, , .

j j j

p p

p p p j k

γ β

γ β β
−

=

= − =

ɶ

ɶ ɶ ⋯

 (20) 

 
The restrictions described in (15) are equivalent to: 

 

( ) 0 2, , .
t

i h
p D h kγ ≥ ∀ ∈ = ⋯v v  (21) 

 

This condition, according to Bondell et al. (2010), 

is both necessary and sufficient to prevent overlapping 

hyperplanes. The merit of this approach is that the 

question of quantile crossings is now reduced to a 

linear programming problem, which can be solved via 

standard software. 

Non-Crossing Weighted Quantile Regressions 

One unrealistic assumption underlying the quantile 

regression model is that each point of the p-th regression 

quantile hyperplane provides equally reliable and valid 

information about the deterministic part of the response 

variable. We argue that quantile regression crossings are 

due, at least in part, to the fact that all observations are 

considered on the same footing although the data might 

not justify this. Furthermore, we claim that the use of 

residuals from quantile regression can be of help to avoid 

such shortcomings. Amerise (2016) for a good review. 

Consistent with this premise, we believe that a way to 

avoid intersections between estimated hyperplanes (over 

the design space) is to put more emphasis on observations 

which are more coherent with the model (1) and give less 

importance to observations thought to be cause of 
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irregularities. Therefore, to deal with the crossing issue, 

we propose to estimate the quantiles under the non-

crossing restrictions (15) by adjusting fit of h-th quantile 

regression to the following objective function: 
 

( )

( ) ( )
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 (22) 

 
where, the weighting system w verifies the conditions. 
 

( )
, ,

, , 0

0, lim 0 1, , .
i n i n

w w for i n
β

ω

→

> = > =
ɶ

…

Q y v
 (23) 

 
The magnitude of wi;n quantifies the suitability of 

the information contained in the i-th observation 

relatively to the k regression hyperplanes fitted to the n 

data points. Strictly positive weights are strongly 

recommended by Koenker (2013)[p. 17] since a null 

weight is ambiguous. Moreover, the system of weights 

tends to the equal weighting scheme when hyperplane do 

no cross. Note that the weighted version of the objective 

function (22) can be solved by applying the unweighted 

algorithm to the responses and design vectors defined by 

ri,h = wi,n yi,zi = wi,nvi i = 1,2,⋅⋅⋅, n. Therefore, problem 

(22) can be reformulated as: 
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In practice, the computation of non-crossing 

weighted quantile regression can be efficiently 

accomplished by exploiting the same software developed 

for Bondell et al. (2010). Our approach presupposes that 

the weights are fixed and known in advance. For 

example, they can hold information about the reliability 

of imputed values or values derived from previous 

experience or source known to be polluted by errors. In 

practice, however, this assumption rarely holds so 

estimated weights must be used instead. There are many 

ways to estimate w. We base our choice on the idea 

that the weight for each observation should be 

inversely related to the size of the corresponding 

disturbance ˆyi yi−  yi where yi is the i-th value of the 

response in a sample of n points and ŷi  is some 

estimate of yi|xi obtained with an unconstrained 

quantile regression hyperplane. 

Let Ĉ  the (n×k) matrix with columns given by the n 

estimated residuals of the noncrossing quantile 

regression associated with ph,h = 1,⋅⋅⋅, k. This implies that 

the unweighted estimators of Bondell et al. (2010) are 

taken as a benchmark against which to compare 

weighted non-crossing quantile regressions. 

Furthermore, let ( )1
ˆ ˆ ˆ, ,

k
µ µ µ= ⋯ represent the (k×1) vector 

of averages and Σ̂  the (k×k) matrix of variance-

covariances of the k columns of Ĉ . It must be observed 

tha 1

,1
ˆ ˆ

n

j i ji
n cµ
−

=

= ∑  is different from zero, unless, the 

distribution of conditional residuals is symmetrical. In order 

to quantify the potential impact on parameter estimation of 

î
c  (the i-th row of Ĉ ) we use the Mahalanobis distance 

between 
î
c  and the null vector (the ideal perfect fit): 

 
1ˆˆ ˆ 1, , .

i i i
d i n

−

= Σ = ⋯c c  (25) 

 

with ( ) ( )( )1

, , ,1
ˆ ˆ ˆ ˆ ˆ1

n

h h i h h i h hi
n c cσ µ µ

−

′ ′ ′=
= − − −∑ . Naturally, 

there is a range of possibilities for converting distances 

into weights. An exponential transformation is especially 

appealing to us because of its simplicity and flexibility: 
 

{ }exp , , .
i i

w d i i nτ= − = ⋯  (26) 

 

where τ ≥ 0 is a finite-dimensional parameter that may 

be varied to modify the influence of the distances. 

Increasing values of t make the observation which is at 

distance one from the null vector progressively less 

relevant. For a given τ>0, weights decrease as distances 

from the null vector increases. Form another point of 

view, if we consider the resemblance between (26) and 

the density function of an exponential random variables, 

then t can be thought to be the inverse of the expected 

uncertainty of the observations. 

Constant τ can be chosen arbitrarily in principle. 

Based on empirical experience with real as well as 

simulated data we suggest applying the optimize function 

for onedimensional optimization offered in Base-R. The 

method used is a combination of golden section search 

and successive parabolic interpolation which searches a 

specified interval from lower to upper for a minimum of a 

function. A solution can be considered feasible if and only 

if ( ) ( ), , , ,β β
∗

≤ ɶQ r z Q r z  where β
*
 is the non-crossing 

weighted quantile estimate of the unknown parameters. 

For what concerns large sample properties of non-

crossing weighted quantile regressions, consider a set of 

percentages p1<p2<⋅⋅⋅,<pk such that ph ∈ [ε,1 − ε] for 

h = 1,⋅⋅⋅, k and 0<ε<0.5 and assume: 
 

C.1 The matrix n
−1

X
t
X is positive definite 

C.2 The conditional densities fyi|x are differentiable with 

respect to yi for every x and each i = 1,⋅⋅⋅, n 

C.3 For D a bounded domain and 0<ε<1, there exist 

constants a>0, b,c<∞ such that: 
 

( ) ( );
yi yi yi yi

a f Q p b f Q p c   ′≤ ≤ ≤
   x x x x
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 uniformly for x ∈ D, ε ≤ p ≤ (1−ε) and uniformly in 

i = 1,⋅⋅⋅, n. 

 

Under the above conditions, Bondell et al. (2010) 

prove that the estimator obtained via (22) is 

asymptotically equivalent to the typical quantile 

regression estimator, regardless of the choice of a 

weighting systems wi,h, i = 1, ⋅⋅⋅, n, h = 1,⋅⋅⋅, k. 

Furthermore, in another theorem, the authors show that 

inference for the n -consistent constrained quantile 

regression can be achieved by using the known 

asymptotic results for classical quantile regression. 

Experimental Results 

The examples and experiments presented here look 
for evidence that incorporation of a weighting systems 
into the core of the non-crossing quantile regression 
procedure can lead to an alternative and (at least on 
specific occasions) better mechanism for fitting 
multivariate data. In this section, we use three examples 
to compare three different algorithms: Unconstrained, 
Unweighted Non-Crossing (UNC), Weighted Non-
Crossing (WNC) for the quantile regression and thereby 
show the advantage of our new algorithm for the WNC. 

Iriarte-D´ıaz (2002) discusses the relationship between 
maximum relative running speed (body length/second) and 
body mass (kg) concerning n = 142 species of terrestrial 
mammals, in order to evaluate whether the relative 
locomotor performance shows a differential scaling 
depending on the range of mass analyzed. Overall, 
maximum relative running speed was found to decrease 
with increasing body mass. Figure 1 illustrates the results of 
application of the three different techniques considered in 
the present paper for p ∈ P(0.50 : 0.95, by 0.05). 

From graph B, it is apparent that the computation 
method of non-crossing quantiles proposed by 
Bondell et al. (2010) avoids the intersections which 

are present in graph A, at least within the design 
domain delimited by the vertical lines. Our version 
with weights inversely related to the residuals of the 
quantile regressions (graph C) generates regression lines 
which not only bypass crossings, but also gather near the 
center of the observed points. It must be noted, in fact, 
that there is an entity which does not match the general 
impression: 100 corresponding to the heteromyid 
rodent (Dipodomys merriami). The bias attributable to 
the presence of this outlyier can be noticed looking at 
the highest two lines in graph A) and B. In the former 
there are crossings clearly due to the carry-over effect 
from the isolated point. In the latter, the problem of the 
crossing is solved, but the outlier shares the line with 
other regular entities. In graph C the influence of the 
outlier has been entirely removed. The accumulation of 
lines around the center is presumably due the fact that 
the relationship between maximum running speed and 
body mass is curvilinear rather than linear. 

To assess the difference in efficacy between different 
methods of estimation, we evaluate the behavior of the 
absolute errors affecting the various regression models. In 
particular, Table (1) compares the mean, the maximum 
and the minimum sum of absolute errors associated with 
the k = 10 quantile regression hyperplanes. The findings in 
Table (1) reveal that our weighted version of the non-
crossing regression quantiles attains a better performance 
than the standard procedure with respect the abso-lute 
residuals. The unweighted non-crossing technique does 
not improve, from a fitting point of view, upon 
unconstrained quantile regressions. 

As the secnd example, we analyze the data set sbp 

included in the package multcomp of R for the 

percentages (0.10, 0.25, 0.50, 0.75, 0.90). The data set 

refers to systolic blood pressure (in mmHg), age (in years) 

and gender of n = 69 people. In Fig. 2 it is shown that, in 

absence of outliers in the data and non-crossing lines, the 

three estimation methods behave similarly. 
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Fig. 1: Relationship between body mass and maximal relative running speed 
 

  

  
 

Fig. 2: Relationship between age and systolic blood pressure 
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Table 1: Fitting results of various estimation methods 

 Unconstrained QR Non-crossing QR Weighted Nc QR 

Mean absolute error 0.5055 0.5076 0.3961 

Max absolute error 0.8103 0.8219 0.5479 

Min absolute error 0.3417 0.3417 0.3547 

 
Table 2: Fitting results of various estimation methods 

 Unconstrained QR  Non-crossing QR  Weighted Nc QR 

 -------------------------------------------- ---------------------------------------------- ------------------------------------------- 

n mean max min mean max min mean max min 

120 4.7315 8.7818 2.9386 4.7131 8.3829 3.0049 3.6227 4.0412 3.3151 

240 4.9565 9.3220 3.1068 4.9492 9.0667 3.1371 3.6846 4.3434 3.3514 

360 4.9352 9.2070 3.1061 4.9285 9.1144 3.1196 3.8306 4.7738 3.3754 

480 4.9422 9.2880 3.1007 4.9831 9.7505 3.1093 3.7369 4.4471 3.3318 

 

The well-known Housing Data Set which is 

available online at 

http://lib.stat.cmu.edu/datasets/boston_corrected.txt is 

considered for the third example. The data comprises n = 

506 observations for 14 non-constant predictor variables 

and one response variable, Corrected Median Value of 

owner-occupied homes (CMEDV). For simplicity, we 

excluded the categorical variable RAD and the Charles 

River dummy variable (because there are too few on one 

status) and considered m = 11 predictor variables. 
We select virtual random samples without repetition 

of n ∈ (120, 240, 360, 480) observations from the total 
data set. The results are reported in Table 2 where each 
entry is an average across L = 100 experiments of the 
same type. The weighted non-crossing quantile 
regressions yield average absolute errors systemically 
better than those of the other methods. It appears that, 
the adjustments caused by the unweighted restrictions on 
the intersection of hyperplanes of the ordinary estimates 
have resulted in relatively minor modifications to the 
extremes quantile regressions. The adjustments are more 
substantial for weighted non-crossing regressions and 
these seem to be concentrated in the central and higher 
percentages where the most pronounced reduction of 
residual reductions is observed. 

The quality of the fitting expressed by the columns of 

Table 2 does not improve with increased sample size. 

Discussion and Conclusion 

Conditional quantile functions ofer simple and 

flexible models for the stochastic component of a 

regression and enable us to obtain reasonable estimates 

in the presence of a broad range of departures from 

Gaussianity (Parzen, 1979; Gilchrist, 2006). However, 

the interpretability of QR estimates deteriorates when 

conditional quantile functions cross or overlap. 

Our aim in this paper is to introduce a new methods 

of estimation for the parameters of quantile regressions 

that avoids the problem of crossing quantile curves. 

Based upon the work Bondell et al. (2010), a weight 

is attached to each observation inversely related to the 

estimated disturbances associated with the unweighted 

quantile regressions. We are convinced that the in 

sequence of disturbances corresponding to a given 

observation decreases exponentially with the 

Mahalanobis distance from their centroid. This scheme 

can be particularly effective when the intersection of 

hyperplanes is most probably due to the presence of 

outlying entities. The estimation of multiple non-

crossing quantile regressions is enforced by requiring 

nothing more than lower quantile levels do not cross 

higher quantile levels. This gives rise to a set of 

inequalities that should be all satisfied. Inequalities can 

be considered a priori pieces of information about the 

true parameters that restrict the original parameter 

space. It is known that, under general conditions, the 

estimate ( )ˆ
hpβ  has optimal properties for the h-th 

conditional distribution and this is also true for h = 1,⋅⋅⋅, 

k. Since, the criterion (4) does not use the fact that 

β(ph), h = 1,⋅⋅⋅, k lie in A
m
, one might wonder if using 

such conditions in estimation procedures give a gain in 

efficiency. This is not necessarily so (Rothenberg, 

1973[p. 55-57]) for the case of the linear least squares 

estimator). The question then is to find the best way of 

satisfying the constraints without worsening the 

properties of the regression quantile estimators. 

We have shown that our method, because of the 
introduction of an efficient system of weights, is 
successful at determining quantile regression 
hyperplanes that do not cross in the convex hull of the 
explanatory variables. The results presented in this paper 
support this view. There are still many unknown aspects 
of our methodology; for example, what is the efficiency 
of parameter estimates for clean data (absence of outliers 
or Gaussian disturbances), what is the power function of 
the test statistics and what is the bias in parameter 
estimates when data are affected by specific forms of 
heteroscedastic errors. These problems can be addressed 
through asymptotics for large samples and via a diffuse 
Monte Carlo simulation plan evaluation for finite 
samples. These will be topics for further study. Two 
other potential directions for future research should be 



Ilaria Lucrezia Amerise / Journal of Mathematics and Statistics 2018, Volume 14: 107.118 

DOI: 10.3844/jmssp.2018.107.118 

 

117 

considered: to devise a multistep mechanism for building 
more effective weights and to establish test statistics 
which help which help to decide on goodness of fit for 
systems of quantile regressions on the same data set. 
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