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Introduction 

Throughout w, χ and Λ denote the classes of all, gai 

and analytic scalar valued single sequences, respectively. 

We write w
3
 for the set of all complex triple sequences 

(xmnk), where m, n, k∈ℕ , the set of positive integers. 

Then, w
3
 is a linear space under the coordinate wise 

addition and scalar multiplication. 
We can represent triple sequences by matrix. In case 

of double sequences we write in the form of a square. In 
the case of a triple sequence it will be in the form of a 
box in three dimensional case. 

Some initial work on double series is found in 
Apostol (1978) and double sequence spaces is found in 
Hardy (1917; Deepmala and Mishra, 2016; Deepmala et al., 
2016) and many others. Later on investigated by some 
initial work on triple sequence spaces is found in  
Sahiner et al. (2007; Esi, 2014; Esi and Necdet Catalbas, 
2014; Esi and Savas, 2015; Subramanian and Esi, 2015; 
Prakash et al., 2016) and many others. 

Let (xmnk) be a triple sequence of real or complex 

numbers. Then the series
, , 1 mnkm n k

x
∞

=∑  is called a triple 

series. The triple series
, , 1 mnkm n k

x
∞

=∑  give one space is said 

to be convergent if and only if the triple sequence (Smnk) 

is convergent, where: 
 

( ), ,

,, , 1
, , 1,2,3,...

m n k

mnk i jqi j q
S x m n k

=
= =∑  

 
A sequence x = (xmnk) is said to be triple analytic if: 

 
1

, ,sup m n k
m n k mnkx + + < ∞  

The vector space of all triple analytic sequences are 

usually denoted by Λ3
. A sequence x = (xmnk) is called 

triple entire sequence if: 
 

1

0 , ,m n k
mnkx as m n k+ + → →∞  

 
The vector space of all triple entire sequences are 

usually denoted by Γ3
: The spaces Λ3

 and Γ3
 are metric 

spaces with the metric: 
 

( )
1

, ,, sup : , , :1,2,3,...m n k
m n k mnk mnkd x y x y m n k+ +

 
= − 

 
 (1.1) 

 

For all x = {xmnk} and y = {ymnk} in Γ3
: Let φ = {finite 

sequences}. 

Consider a triple sequence x = (xmnk), The (m, n, k)
th
 

section x[m, n, k] of the sequence is defined by x[m, n, k] 

= 
, ,

, , 0

m n k

ijq ijqi j q
x

=
ℑ∑  for all m, n, k∈ℕ : 

 

0 0 ...0 0 ...

0 0 ...0 0 ...

.

.

.

0 0 ...1 0 ...

0 0 ...0 0 ...

. . .... . ...

. . .... . ....

ijq

 
 
 
 
 
 
 ℑ =
 
 
 
 
 
 
 

 

 
with 1 in the (i, j, q)

th
 position and zero otherwise. 
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A sequence x = (xmnk) is called triple gai sequence if 

( )( )
1

! 0m n k
mnkm n k x + ++ + →  as m, n, k→1. The triple gai 

sequences will be denoted by χ3
. The notion of 

difference sequence spaces (for single sequences) was 

introduced by Kizmaz (1981) as follows: 

 

( ) ( ) ( ){ }:k kZ x x w x Z∆ = = ∈ ∆ ∈  

 

for Z = c, c0 and ℓ∞, where ∆xk = xk-xk+1 for all k∈ℕ . 

Here c, c0 and ℓ∞ denote the classes of convergent, 

null and bounded scalar valued single sequences 

respectively. The difference sequence space bvp of the 

classical space ℓp is introduced and studied in the case 1 

≤ p ≤ ∞ 1 by Basar and Altay and in the case 0 < p < 1 

by Altay and Basar. The spaces c(∆), c0 (∆), ℓ∞ (∆) and 

bvp are Banach spaces normed by: 

 

( ) ( )

1 1

1/

1

|| || | | sup | | || ||

|| | , 1

p
k k bv

p
p

kk

x x x and x

x p

≥

∞

=

= + ∆

= ≤ ≤ ∞∑
 

 

Later on the notion was further investigated by many 

others. We now introduce the following difference 

double sequence spaces defined by: 
 

( ) ( ) ( ){ }2 :mn mnZ x x w x Z∆ = = ∈ ∆ ∈  

 

where, Z = Λ2
, χ2

 and ∆xmn = (xmn-xmn+1) - (xm+1n-xm+1n+1) 

= xmn-xmn+1-xm+1n + xm+1n+1 for all m, n∈ℕ . The 

generalized difference double notion has the following 

representation: ∆m
xmn = ∆m−1

xmn - ∆m−1
xmn+1-∆

m−1
xm+1n + 

∆m−1
xm+1n+1 and also this generalized difference double 

notion has the following binomial representation: ∆m
xmn 

= ( ) ,0 0
1

m m i j

m i n ji j

m m
x

i j

+

+ += =

  
−   

  
∑ ∑  

Let w
3
, χ3

 (∆mnk) and Λ3
 (∆mnk) be denote the spaces 

of all, triple gai difference sequence space and triple 

analytic difference sequence space respectively and is 

defined as: 

 

, 1, , , 1 , 1, 1 1, ,

0

1, 1, 1, , 1 1, 1, 1  

mnk mnk m n k m n k m n k m n k

m n k m n k m n k mnk mnk

x x x x x

x x x and x x

+ + + + +

+ + + + + + +

∆ = − − + −

+ + − ∆ =
 

 

Definitions and Preliminaries 

Definition (Kamthan and Gupta, 1981) 

An Orlicz function is a function M: [0,∞)→[0,→) 

which is continuous, non-decreasing and convex with 

M (0) = 0, M (x)>0, for x>0 and M (x)→∞ as x→∞. If 

convexity of Orlicz function M is replaced by M (x + 

y) ≤ M (x) +M (y); then this function is called modulus 

function. 

Lindenstrauss and Tzafriri (1971) used the idea of 

Orlicz function to construct Orlicz sequence space: 
 

1

| |
: , 0k

M k

x
x w M for someρ

ρ
∞

=

   
= ∈ < ∞ >  
   

∑ℓ  

 
The space ℓM with the norm: 

 

1

| |
|| || inf 0 : 1k

k

x
x Mρ

ρ
∞

=

   
= > ≤  

   
∑  

 
becomes a Banach space which is called an Orlicz 

sequence space. For M(t) = t
p
 (1≤p<∞1), the spaces ℓM 

coincide with the classical sequence space ℓp, 

A sequence f = (fmnk) of Orlicz function is called a 

Musielak-Orlicz function (Musielak, 1983). A sequence 

g = (gmn) defined by: 
 

( ) ( )( ){ }sup | | : 0 , , , 1,2,...mn mnkg u f u u m n kυ υ= − ≥ =  

 
is called the complementary function of a Musielak-

Orlicz function f. For a given Musielak-Orlicz 

function f, the Musielak-Orlicz sequence space tf is 

defined as follows: 
 

( ){ }1/
3 : | | 0 , ,

m n k

f f mnkt x w I x as m n k
+ +

= ∈ → →∞  

 
where, If is a convex modular defined by: 
 

( ) ( ) ( )1/

1 1 1
| | ,

m n k

f mnk mnk mnk fm n k
I x f x x x t

+ +∞ ∞ ∞

= = =
= = ∈∑ ∑ ∑  

 
We consider tf equipped with the Luxemburg metric: 

 

( )
1/

1 1 1

| |
,

m n k

mnk
mnkm n k

x
d x y f

mnk

+ +
∞ ∞ ∞

= = =

 
=  

 
∑ ∑ ∑  

 
is an exteneded real number. 

Let X and Y be Banach metric spaces and T: X→Y be 

a bounded linear operator. The set of all bounded linear 

operators on X into itself is denoted by B(X). The adjoint 

T
*
: X

*→X
*
 of T is defined by (T

*φ) (x) = φ(Tx) for all 

φ∈X
*
 and x∈X. Clearly, T

*
 is a bounded linear operator 

on the dual space X
*
. 

Let T: D(T)→X a linear operator, defined on D(T)⊂X, 

where D(T) denote the domain of T and X is a complex 

normed linear space. For T∈B (X) we associate a 

complex number α with the operator (T-αI) denoted by 

Tα defined on the same domain D(T), where I is the 

identity operator. The inverse (T-αI)
−1

, denoted by 1Tα
− is 
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known as the resolvent operator of T. Many properties of 

Tα and 1Tα
− depend on á and spectral theory is concerned 

with those properties. We are interested in the set of all α 

in the complex plane such that 1Tα
− exists. Boundedness 

of 1Tα
− is another essential property. We also detemine 

α's, for which the domain of 1Tα
− is dense in X. 

A regular value is a complex number α of T such that: 

 

• (N1) 
1Tα

− exists 

• (N2) 
1Tα

− is bounded and 

• (N3) 
1Tα

−  is defined on a set which is dense in X 

 

The resolvent set of T is the set of all such regular 

values α of T, denoted by ρ(T). Its complement is given 

by C\ρ (T) in the complex plane C is called the spectrum 

of T, denoted by σ(T). Thus the spectrum σ(T) consists 

of those values of α∈C, for which Tα is not invertible. 

We discuss about the point spectrum, continuous 

spectrum, residual spectrum, approximate point 

spectrum, defect spectrum and compression spectrum. 

There are many different ways to subdivide the spectrum 

of a bounded linear operator. Some of them are 

motivated by applications to physics, in particular in 

quantum mechanics. 

Definition 

The point (discrete) spectrum σp (T,X) is the set of 

complex number α such that 1Tα
− does not exist. Further 

α∈p (T,X) is called the eigen value of T. 

Definition 

The continuous spectrum σc (T,X) is the set of 

complex number α such that 1Tα
− exists and satisfies (N3) 

but not (N2) that is 1Tα
− is unbounded. 

Definition 

The residual spectrum σr (T,X) is the set of complex 

number α such that 1Tα
− exists (and may be bounded or 

not) but not satisfy (N3), that is the domain of 1Tα
− is not 

dense in X. 

This is to note that in finite dimensional case, 

continuous spectrum coincides with the residual 

spectrum and equal to the empty set and the spectrum 

consists of only the point spectrum. 

Given a bounded linear operator T in a Banach metric 

space X, we call a sequence (xmnk)∈X as a sequence for T if: 

 

( ),0 1 || 0 || 1 || ||mnk mnkd x x x= ⇒ − = =  (2.1) 

 

and: 

( ),0 1 0 0 , ,mnk mnkd Tx Tx Tx as m n k= ⇒ − = → →∞  (2.2) 

 

Definition 

The approximate point spectrum σap (T,X) = {α∈C: 

there exists (2.1), (2.2) sequence for T-αI}. 

Definition 

The defect spectrum σd (T,X) = {α∈C:T-αI is not 

subjective}. 

Definition 

The compression spectrum σd (T,X) = 

( ){ }:C R T I Xα α∈ − ≠  

Goldberg’s Classification of Spectrum (Paul and 

Tripathy, 2016; Goldberg, 1985) 

If X is Banach metric space and T∈B(X); then there 

are three possibilities for R(T): 

 

• R(T) = X 

• R(T) ≠ ( )R T = X 

• (III) ( )R T  ≠ X 

• T
−1

 exists and is continuous 

• T
−1

 exists but is discontinuous 

• T
−1

 does not exist 

 

Definition (Musielak, 1983) 

Let n∈ℕ  and X be a real vector space of dimension 

m, where n ≤ m. A real valued function dp(x1,..., xn) = 

||(d1(x1, 0),..., dn(xn, 0))||p on X satisfying the following 

four conditions: 

 

• ||(d1(x1, 0),..., dn(xn, 0))||p = 0 if and only if d1(x1, 

0),..., dn(xn, 0) are linearly dependent 

• ||(d1(x1, 0),..., dn(xn, 0))||p is invariant under 

permutation 

• ||(d1(x1, 0),..., αdn(xn, 0))||p = |α| ||(d1(x1, 0),..., dn(xn, 

0))||p, α∈R 

• dp ((x1, y1), (x2, y2)⋅⋅⋅(xn, yn)) = (dX(x1, x2,⋅⋅⋅xn)
p
 + 

dY(y1, y2, ⋅⋅⋅yn)
p
)

1/p
 for 1≤p <∞ 

• d ((x1, y1), (x2, y2), ⋅⋅⋅ (xn, yn)) := sup {dX(x1, x2,⋅⋅⋅ xn), 

dY (y1, y2, ⋅⋅⋅yn)}, for x1, x2,⋅⋅⋅xn∈X, y1, y2,⋅⋅⋅ yn∈Y is 

called the p product metric 

 

Definition 

Let ( ),

mn

kA a=
ℓ

 
denote a four dimensional 

summability method that maps the complex triple 
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sequences x into the triple sequence Ax where the k,  

ℓ-th term of Ax is as follows: 

 

( )
1 1 1

mn

k mnkk m n k
Ax a x

∞ ∞ ∞

= = =
=∑ ∑ ∑ ℓℓ

 

 

such transformation is said to be non-negative if mn

k
a
ℓ

is 

non-negative. 

Let E and F be two sequence spaces and 

( ),

mn

kA a=
ℓ

be an four dimensional infinite matrix of real 

or complex numbers ,

mn

ka
ℓ

, where m, n, k∈ℕ . Then A: 

E→F, if for every sequence x = (xmnk)kℓ∈E the 

sequence Ax = {(Ax)kℓ} is in F where 

( )
1 1 1

mn

k mnkk m n k
Ax a x

∞ ∞ ∞

= = =
=∑ ∑ ∑ ℓℓ

, provided the right hand 

side converges for every k, ∈ℓ ℕ and x∈E. 

Consider the operator D(p, q, r, s, t, u), where: 

 

( )

0 0 0 0 0 0 0 . .

0 0 0 0 0 0 . .

0 0 0 0 0 . .

0 0 0 0 . .

0 0 0 . .
, , ,

0 0 . .

0 0 . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . .

p

q p

r q p

s r q p

t s r q p
D p q r s

u t s r q p

u t s r q p

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 ⋱

 

 

Remark 

In particular if we consider p = 1, q = 1, r = 1, s = 1, t 

= 1, u = 1 then D(p, q, r, s, t) = ∆3. 

Definition 

Let f be an sequence of Musielak-Orlicz functions 

and a sequence of spectrum operator h is defined as 

following: 

 

( )( )( )
( ) ( ) ( )( )

( )( ) ( )( )( )

( ) ( ) ( )( )

3

, ,

1 2 1

1/

1 2 1

, , , , ,
lim

|| ,0 , ,0 , , ,0 ||

, , , , ! | |
0

,|| ,0 , ,0 , , ,0 ||

f

m n k

n p

m nk

mnk

n p

D p q r s t

d x d x d x

D p q r s t m n k x
f

d x d x d x

χ σ

σ

→∞

−

+

−

 
  =
 ⋅ ⋅ ⋅ 

  + +   =   ⋅ ⋅ ⋅   

 

 

( )( )( ) ( ) ( ) ( )( )
( )( ) ( )

( ) ( ) ( )( )

3

1 2 1

1/

1 2 1

, , , , ,|| ,0 , ,0 , , ,0 ||

, , , , | | ,
sup

|| ,0 , ,0 , , ,0 ||

f n p

m nk

mnk

mnk

n p

D p q r s t d x d x d x

D p q r s t x
f

d x d x d x

σ

σ

−

+

−

 Λ ⋅ ⋅ ⋅ 

   
   = < ∞   ⋅ ⋅ ⋅     

 

Main Results 

Theorem 

If α,β,µ,η,  = p, q, r, s, t then α,β, γ, µ, 

η∈III1[
3

fχ (σ(D(p, q, r, s, t, u))), ||(d (x1, 0), d (x2, 

0),⋅⋅⋅, d (xn-1, 0))||p). 

Proof 

If α = p, β = q, γ = r, µ = s, η = t then the operator 

D(p, q, r, s, t, u)-αI-βI-γI-µI-ηI = D(0, 0, 0, 0, 0, u). 

Since R(D(0, 0, 0, 0, 0, u)) ≠ [ 3

fχ (σ(D(p, q, r, s, t, u))), 

k(d(x1, 0), d(x2, 0),⋅⋅⋅, d(xn−1, 0))||p]. It is not invertible 

and hence [ 3

fχ (σ(D(p, q, r, s, t, u))), k(d(x1, 0), d(x2, 

0),⋅⋅⋅, d(xn−1, 0))||p]∈ III1. 

Therefore we have ||[ 3

fχ (σ(D(p, q, r, s, t, u))), ||(d(x1, 

0), d(x2, 0),⋅⋅⋅, d (xn−1, 0))||p]|| =
3

u
d (x, 0). It is bounded 

below and it has a bounded inverse. Hence α, β, γ, µ, 

η∈III1[
3

fχ (σ(D(p, q, r, s, t, u))), ||(d(x1, 0), d(x2, 0),⋅⋅⋅, 

d(xn−1, 0))||p]. This completes the proof. 

Lemma: 

 

( )( )( ) ( ) ( ) ( )( )
{ }

3

1 2 1, , , , , , ,0 , ,0 , , ,0

, , , , :| |,| |,| || |,| | | |

f n
p

D p q r s t u d x d x d x

p q r s t u

χ σ

α β γ µ η α β γ µ η

−
 ⋅ ⋅ ⋅  
= ∈ − − − − − ≤ℂ

 

 

Theorem: 

 

( )( )( )
( ) ( ) ( )( )

{ } { } { } { } { }

3

1 2 1

, , , , , ,

,0 , ,0 , , ,0

, , , , :| |,| |,
\ , , , ,

| |,| |,| | | |

f ap

n
p

D p q r s t u

d x d x d x

p q
p q r s t

r s t u

χ σ

α β γ µ η α β
γ µ η

−

 



⋅ ⋅ ⋅  

∈ − − 
=  

− − − ≤ 

ℂ

 

 

Proof 

We have: 

 

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

3

1 2 1

3

1 2 1

3

1 1 2 1

3

1 2 1

, , , , , , ,0 , ,0 , , ,0

, , , , , , ,0 , ,0 , , ,0 \

, , , , , , ,0 , ,0 , , ,0 ,

, , , , , , ,0 , ,0 , , ,0

f ap n
p

f n
p

f n
p

f ap n
p

D p q r s t u d x d x d x

D p q r s t u d x d x d x

III D p q r s t u d x d x d x

D p q r s t u d x d x d x

χ σ

χ σ

χ σ

χ σ

−

−

−

−

 ⋅⋅⋅  

 = ⋅⋅⋅  

 ⋅⋅⋅  

 ⋅⋅⋅  
={ }
{ } { } { } { } { }

, , , , :| |,| |,| |,| |,| | | | \

, , , ,

p q r s t u

p q r s t

α β γ µ η α β γ µ η∈ − − − − − ≤ℂ
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is obtained by Lemma (3.2) and Theorem (3.1). This 

completes the proof. 

Lemma: 

 

( )( )( )
( ) ( ) ( )( )

3

1 2 1

, , , , , ,

,0 , ,0 , , ,0

f p

n
p

D p q r s t u

d x d x d x

χ σ
φ

−

 
 =

⋅ ⋅ ⋅  

 

 

Theorem: 

 

( )( )( ) ( ) ( ) ( )( )
{ }

{ } { } { } { } { }

3

1 2 1, , , , , , ,0 , ,0 , , ,0

, , , , :| |,| |,| |,| |,| | | | \

, , , ,

f d n
p

D p q r s t u d x d x d x

p q r s t u

p q r s t

χ σ

α β γ µ η α β γ µ η

−
 ⋅ ⋅ ⋅  
= ∈ − − − − − ≤ℂ  

 

Proof 

We have: 

 

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

3

1 2 1

3

1 2 1

3

3 1 2 1

, , , , , , ,0 , ,0 , , ,0

, , , , , , ,0 , ,0 , , ,0 \

, , , , , , ,0 , ,0 , , ,0

f d n
p

f n
p

f n
p

D p q r s t u d x d x d x
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is obtained by Lemma (3.6). Again: 
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This completes the proof. 

Lemma 

The adjoint operator T
*
 of T is onto if and only if T 

has a bounded inverse. 

Theorem 

If α, β, γ, µ, η = p, q, r, s, t, u then: 
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whenever α = p, β = q, γ = r, µ = s, η = t. By Lemma 
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must be continuous, hence it is show that: 
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is onto by Lemma (3.8). Given: 
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we can find: 
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such that: 
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which shows that: 
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is onto. This completes the proof. 

Conclusion 

Author’s are introduced and examined various 

spectrum of the operator D(p, q, r, s, t, u) on the 

sequence space χ3
 defined by Musielak-Orlicz function. 
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