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Abstract: Let (Tm)m≥1 be the tribonacci sequence. We show that every 

integer N ≥ 1 can be written as a sum of the terms αm Tm, where m runs 

over the set of strictly positive integers and αm   (m ≥ 1) are either 1 or 0. 

The previous representation of N is unique if each time that we have αm  

= 1 then at least the two coefficients  directly following αm are zero, i.e., 

αm+1 = αm+2 = 0. 
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Introduction 

The tribonacci numbers { }
1nT
∞

, are defined by: 

 

1 2 3
, 4

n n n n
T T T T n− − −= + + ≥  

 

where, T1 = T2 = 1, T3 = 2 (Koshy, 2001). The first 

tribonacci numbers are 1, 1, 2, 4, 7, 13, 24,... . 

Recall that in 1969 J. L Brown represents the 

integers by a sum of distinct Lucas numbers    

(Brown, Jr, 1969), also in 1986 Jukka Puhko treated 

the Fibonacci and Lucas representation and theorem 

of Lekkerkerker (Pihko, 1986), in the mathematical 

literature there are several references concerning the 

representation of a positive integer by a finite sum of 

elements of an infinite sequence of integers. Our main 

goal is to prove that every positive integer N > 0 can 

be represented by 
1

m m
Tα

∞

∑ , where αm (m ≥ 1) are 

either 1 or 0. This representation is unique if the 

coefficients αm (m ≥ 1) satisfy: 

 

1

2

0
1

0,

m m

m m

for m
α α

α α
+

+

 =
≥

=
 

 

where, taking into account T1 = T2 = 1, the uniqueness is 

in the following sense. 

Definition 1.1 

Two representations  
1

m m

m

Tα
∞

=
∑ and 

1

m m

m

Tβ
∞

=
∑  are called 

identical if: 

 

• αm = βm for m ≥ 1 or 

• αm = βm for m ≥ 3 and (α1, β1) = (1, 0) and (α2, β2) = 

(0, 1) or (α1, β1) = (0, 1) and (α2, β2) = (1, 0) 

 

Main Results 

Theorem 2.1 

For every integer N > 0, there exists an integer i1 > 0 

such that 
1

1

i

i i

i

N Tα
=

=∑ , where αi ∈ {0, 1}. 

Proof 

Let N > 0 be an integer. Firstly, we show that the 

sequence (Ti)i≥1 satisfies: 

 

1
2 , 1

i i
T T i+ ≤ ∀ ≥  

 

Indeed, we easily check this for i = 1, 2, 3. For  i≥ 4, 

we have by definition: 

 

( )1 1 2 1 2 3 2i i i i i i i i iT T T T T T T T T+ − − − − −= + + ≤ + + + =  
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Now, putting ∆0 = N. Let i1 be the largest integer such 

that: 
 

1 1
0 1i i

T T
+

≤ ∆ <  

 

Putting 
1

1 0 i
T∆ = ∆ − . If ∆1 = 0, then 

1
0 i

T∆ = i.e., 

1i
N T= and this completes the proof. Otherwise, ∆1 > 0 

and in this case necessarily 
1 1

1 0 i i
T T∆ = ∆ − < because if 

not then 
1 1

0 i i
T T∆ − ≥ yields 

1 1
0 1

2
i i

T T
+

∆ ≥ ≥ but this 

contradicts the choice of i1 which yields 
1 1

0 1i i
T T

+
≤ ∆ < . 

Now we choose i2 < i1 such that: 
 

2 2
1 1i i

T T
+

≤ ∆ <  

 

Putting 
2

2 1 i
T∆ = ∆ − . If ∆2 = 0, then 

2
1 0

i
T∆ − = , or 

2
1 i

T∆ = and consequently 
2 1

1 i i
T N T∆ = = −  since ∆0 = N. 

Hence, 
1 2i i

N T T= + and this ends the proof. Otherwise, ∆2 

> 0 and in this case necessarily 
2 2

2 1 i i
T T∆ = ∆ − < if not 

then 
2 2

1 i i
T T∆ − ≥ which signifies that 

2 2
1 1

2
i i

T T
+

∆ ≥ ≥ but 

this contradicts the fact that 
2 2

1 1i i
T T

+
≤ ∆ < . 

Continuing in this process, we obtain a decreasing 

sequence i1 > i2 > i3 >... > ... which should stabilize at 

some ik. Hence 
1 2

...
ki i i

N T T T= + + +  and consequently 

1

1

i

i i

i

N Tα
=

=∑ , where αi ∈ {0, 1} for (1 ≤ i ≤ i1). 

Proposition 2.1 

For every integer n ≥ 5, we have: 
 

3

2

2

3 2
n

n n i

i

T T T
−

−
=

= + + ∑  

 

Proof 

From the definition of (Tn)n≥1, easily we have: 
 

3

1 3 2

2

2 , 5
n

n n i

i

T T T T T n
−

−
=

= + + + ≥∑  

 
Or: 

 
3

2

2

3 2 , 5
n

n n i

i

T T T n
−

−
=

= + + ≥∑  

 

Theorem 2.2 

Let N ≥ 1 be an integer represented by 
1

m m

m

Tα
∞

=
∑ , for m 

≥ 1: 

{ } 1

2

0
0,1 .

0

m m

m

m m

and
α α

α
α α

+

+

 =
∈ 

=
 

 
Then this representation is unique. 

Proof 

Before the proof we need the following lemma. 

Lemma 2.1 

Under the same assumption of theorem 2.2 and for k 

≥ 6, we have: 
 

2

2

1 2

2
k k

m m m k

m m

T T Tα
−

−
= =

< +∑ ∑  

 

Proof 

Firstly we prove by induction that: 
 

2 1
2 1 0, 6

k k
T T k− −− − ≥ ≥  

 
This formula is satisfied for k = 6, because: 

 

4 5
2 1 8 7 1

0 0

T T− − = − −

= ≥
 

 

Suppose that: 

 

2 1
2 1 0, 6

k k
T T k− −− − ≥ ≥  

 

and prove that: 

 

( ) ( ) 11 2 1 1
2 1 2 1 0k kk k
T T T T−+ − + −− − = − − ≥  

 

In fact: 
 

( )
1 1 2 3

2 3 4 2 3

4

2 1 1

1

1

k k k k k

k k k k k

k

T T T T T

T T T T T

T

− − − −

− − − − −

−

− − = − − −

+ + − − −

= −

 

 

Since T2 -1 = 0 ≥ 0 and the fact that (Ti)i≥4 is strictly 

increasing, we have always: 
 

1
2 1 0, 6

k k
T T k− − − ≥ ≥  

 
This completes the proof. 

Returning to the proof of the lemma. Putting: 
 

( )

2

2

2 1

2

1 1 1 2

2

2

2

k k

m m m k

m m

k

m m k k k k k

m

L T T T

T T T T

α

α α α α

−

−
= =

−

− − −
=

= − +

= − − − − +

∑ ∑

∑
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and prove that L > 0. We distinguish two cases: 

A) For αk = 0, we have: 
 

( ) ( )
3

1 1 1 2 2 2

2

2 2
k

m m k k k k k

m

L T T T Tα α α α
−

− − − − −
=

= − − − + + −∑  

 
then: 
 

( )
3

2 1

2

2 2 1
k

m m k k

m

L T T Tα
−

− −
=

≥ − + − −∑  

 
Since: 

 

( )
3

2

2 0, 6
k

m m

m

T kα
−

=

− > ≥∑  

 

and from above: 

 

2 1
2 1 0

k k
T T− −− − ≥  

 

Consequently L > 0. 

B) αk = 1. Which implies in this case that αk-1 = αk-2 = 

0. So: 

 

( )

( ) ( )

( )

( ) ( )

( )

2

1 2

2

3

2 2 1 2

2

3

2 1

2

4

3 3 2 1

2

4

3 2

2

2

2 2

2 3

2 2 3

2 3 1

k

m m k k

m

k

m m k k k k

m

k

m m k k

m

k

m m k k k k

m

k

m m k k k

m

L T T T

T T T T

T T T

T T T T

T T T T

α α

α α α

α α

α α α

α

−

−
=

−

− − −
=

−

−
=

−

− − −
=

−

− −
=

= − − − +

= − + − − − +

= − + − −

= − + − + − −

≥ − + + − −

∑

∑

∑

∑

∑

 

 

From: 

 

1 2 3k k k k
T T T T− − −= + +  

 

we get: 

 

( )
4

2 1

2

2 2 1
k

m m k k

m

L T T Tα
−

− −
=

≥ − + − −∑  

 

Since: 

 

2 1
2 1 0

k k
T T− −− − ≥  

 

and: 

 

( )
4

2

2 0
k

m m

m

Tα
−

=

− >∑  

then: 
 

0L >  

 
Consequently: 

 
2

2

1 2

2 , 6
k k

m m m k

m m

T T T for every kα
−

−
= =

< + ≥∑ ∑  

 
Which completes the proof of lemma. 

Let us return to the proof of theorem 2.2 by taking N 

≥ 1 and assuming that N has two non identical 

representations 
 

1 1

m m m m

m m

N T Tα β
∞ ∞

= =

= =∑ ∑  

 
where: 
 

1

2

0
, 1

0

m m

m m

for m
α α

α α
+

+

 =
≥

=
 

 

and the same constraints for 
m
β ( 1m ≥ ). 

 

That is, 
1

| | 0
m m

α β
∞

− ≠∑ . Let k be the largest value of 

m such that αk ≠ βk, we may assume without loss of 

generality that  αk ≠ 1 and βk = 0. Since the validity of 

lemma 2.1 and proposition 2.1 is for k ≥ 6, we 

distinguish in the sequel two cases. 

A) 1 ≤ k ≤ 6. 

k = 1 

This means that α1 = 1, β1 = 0 and αm = βm, for m ≥ 2. 

Since: 
 

2 2

m m m m

m m

T Tα β
+∞ +∞

= =

=∑ ∑  

 
and: 

 
1

1 2 2 1

2 2

1

0

m m m m m m m m

m m m m

m m m m

m m

T T T T

T T

α α α β

β β

+∞ +∞ +∞

= = = =

+∞ +∞

= =

+ = + ≠

+ = +

∑ ∑ ∑ ∑

∑ ∑
 

 

there is not two non identical representations, because N 

cannot be represented by two different values. 

k = 2 

Which yields α2 = 1, β2 = 0 and αm = βm for m ≥ 3. 

With these coefficients we can represent N as: 
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1 1

m m m m

m m

N T Tα β
+∞ +∞

= =

= =∑ ∑  

 

if and only if α1 = 0 and β1 = 1. Thus: 
 

1 2 1 2

3 3

0. 1. 1. 0.
m m m m

m m

N T T T T T Tα β
+∞ +∞

= =

= + + = + +∑ ∑  

 
but a such representations are identical in the sense of 

the definition 1.1. If β1 = 0, then: 
 

1 1

m m m m

m m

T Tα β
+∞ +∞

= =

≠∑ ∑  

 
and there are not two non identical representations, since 

N can not be represented by two different values. 

k = 3. 

That is, α3 = 1, β3 = 0 and for m ≥ 4, αm = βm. In this 

case the greatest value of 
3

1

m m

m

Tβ
=
∑ is 1 and in contrast 

3

1

m m

m

Tα
=
∑  = 2. Hence: 

 
3 3

1 4 4 1 4

2
m m m m m m m m m m

m m m m m

T T T T Tα α α β β
+∞ +∞ +∞

= = = = =

+ = + ≠ +∑ ∑ ∑ ∑ ∑  

 
Then, as above, there are not two non identical 

representations, since N can not be represented by two 

different values. 

k = 4 

That is, α4 = 1, β4 = 0 and for m ≥ 5, αm = βm. In this 

case the greatest value of 
4

1

m m

m

Tβ
=
∑ is 2 and in contrast the 

smallest value of 
4

1

m m

m

Tα
=
∑ is 4. Hence, N can not be 

represented by two different values, that is, there is not 

two non identical representations. 

k = 5 

That is, α5 = 1, β5 = 0 and for m ≥ 6, αm = βm. In this 

case the greatest value of 
5

1

m m

m

Tβ
=
∑  is 5 and in contrast the 

smallest value of 
5

1

m m

m

Tα
=
∑  is 7. Thus, as above there is 

not two non identical representations. 

k = 6 

That is, α6 = 1, β6 = 0 and for m ≥ 7, αm = βm. In this 

case the greatest value of 
6

1

m m

m

Tβ
=
∑ is 8 and in contrast the 

smallest value of 
6

1

m m

m

Tα
=
∑ is 13. Thus, as in the previous 

cases N can not be represented by two different values, 

that is, there is not two non identical representations. 

B) 7 ≤ k. From the fact that αm = βm for m ≥ k + 1 and: 
 

1 1

m m m m

m m

N T Tα β
+∞ +∞

= =

= =∑ ∑  

 
we have: 
 

1 1

k k

m m m m

m m

T Tα β
= =

=∑ ∑  

 
Putting: 

 

1 1

k k

m m m m

m m

l T Tα β
= =

= =∑ ∑  

 
Then: 

 
1

1 1

k k

m m m m

m m

l T Tα β
−

= =

= =∑ ∑  

 

since βk = 0. On the other hand l ≤ N and we can write: 
 

1

1 1

k k

m m m m k k

m m

l T T T Tα α
−

= =

= = + ≥∑ ∑  

 
According to lemma 2.1. we have: 

 
1 3

3

1 2

2
k k

m m m k

m m

l T T Tβ
− −

−
= =

= < +∑ ∑  

 
And by proposition 2.1, we have: 

 
3

2

2

3 2
k

k k m

m

T T T
−

−
=

− − = ∑  

 
So: 

 

2 3
3

k k k
l T T T− −< − − +  

 
By the recurrent relation of Tn, we have: 

 

1 2 3 2 3
3

k k k k k
l T T T T T− − − − −< + + − − +  

 
That is: 

 

1 3
3 2

k k
l T T− −< − +  

 
Now to get l < Tk, we will prove that: 

 

1 3
3 2

k k k
T T T− −− + <  

 
Indeed: 
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1 3 1 2 3 1 3

2 3

3 4 5 3

4 5

3 2 3 2

3

3

3 0

k k k k k k k k

k k

k k k k

k k

T T T T T T T T

T T

T T T T

T T

− − − − − − −

− −

− − − −

− −

− + − = + + − + −

= + −

= + + + −

= + + >

 

 

Then: 

 

1 3
3 2

k k k
l T T T− −< − + <  

 

Finally, we have: 

 

k k
T l T≤ <  

 

which is a contradiction. Hence the representation is 

unique. 

Applications and Perspectives 

The representation of a positive integer n by a sum of 

elements of a given sequence is an interesting problem 

which is well known in the mathematical literature; 

namely, unique representation of integers as sum of 

distinct Lucas numbers (Brown, Jr, 1969), Fibonacci and 

Lucas representation (Pihko, 1986), Cantor’s 

development of a positive integer (Mercier, 2004),... . 

Our problem set in this context but with a well addition 

which is the uniqueness of representation. 

As a perspective, the techniques used in our work can 

be employed in other problems for the same purposes. In 

this sense we can consider, for example, the case of the 

generalized tribonacci sequences and higher orders 

(Pentanacci, hexanacci, ...k-Fibonacci sequence..). 

This field of mathematics which focuses on the study 

of words and formal languages combinatorics on words 

affects various areas of mathematics study, including 

algebra and computer science. Combinatorics of words is 

connected to many modern, as well as classical, fields of 

mathematics. Connections to combinatorics-actually 

being part of it - are obvious, but also connections to 

algebra are deep. Indeed, a natural environment of a 

word is a free semigroup. 

More generally, the above connections can be 

illustrated as in Fig. 1 (Karhumaki, J.). 

For more clarification we can take the sequences of 

words like the Fibonacci sequence of words on the binary 

alphabet {0, 1} can be de.ned by the recurrent relation: 

 

( )
1 2

1 2

1, 0

n n n

F F

F F F withtheconcatenation product− −

 = =


=
 

 

F1 = 1, F2 = 0, F3 = 01, F4 = 010,.... . For further 

references on the subject see for example (Lotaire, 2002; 

Karhumaki and Berstel, 2003). 

 
 
Fig. 1. Reference grid of the relationship between the fields of 

applications 
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