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Abstract: This paper introduce a series-parallel system consisted of 

independent and non-identical components with lifetimes follow the 

modified Weibull distribution. Reduction method is introduced to improve 

system reliability. Other methods of hot and cold standby duplication are 

established to improve system reliability. A procedure for computing the 

reliability of the original system and the improved systems is presented 

when the parameters of the modified Weibull distribution become fuzzy. 

Numerical study is introduced to show the results and compare between 

different improvement methods. 
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Introduction 

The reliability of a unit of a system is the probability 

that the unit will perform its specified function during an 

interval of time under given conditions. In general, 

reliability of a system depends on many factors such as 

the reliabilities of the system units, the configuration of 

the system, and system failure criteria. In reliability 

studies, the goal is to predict suitable reliability indices 

for the system based on component failure data and 

system design (Hoyland and Rausand, 2004). 

In many cases, reliabilities of practical systems should 

be improved to reach a certain level. Improving the 

reliability of a system can be achieved by decreasing the 

failure rate of its components or increasing the repair rate 

of its repairable components. Improving system reliability 

can be achieved by other methods such as hot duplication 

method and cold standby duplication method.   

By using reduction method, system reliability is 

improved by reducing the failure rates of some of its 

units by a factor ρ where (0<ρ<1). In hot duplication 

method, some of the system units are duplicated in 

parallel. In cold duplication method, some of the system 

units are duplicated by a cold redundant standby 

component via a switch which can be perfect or imperfect.  

Weibull distribution is a flexible distribution that used 

in system reliability analysis. Weibull distribution can be 

used to model a variety of life behaviors depending on 

different values of the parameters. Lai et al. (2003) 

introduced the modified Weibull distribution as a new 

lifetime distribution that capable of modeling a bathtub 

shaped hazard rate function. The proposed model is 

derived as a limiting case of the Beta Integrated Model 

and has both the Weibull distribution and Type I 

extreme value distribution as special cases. The model 

can be considered as another useful generalization of 

the Weibull distribution. 

Fuzzy set theory was introduced by Zadeh (1965) in 

order to generalize the theory of classical sets. In a fuzzy 

set, it is not necessary that the element is a full member 

of the set or not a member. It can be a partial member of 

the set. A fuzzy set is defined by a function that maps 

elements in a domain of concern to their membership 

value in a set. This function is called the membership 

function. The most main character of fuzzy set is that 

membership function gives every element a value of [0, 1] 

as it is grade of membership. The grade of membership 

has the characteristic that a single value combines the 

evidence for and the evidence against the element 

(Novák et al., 1999).  
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In Literature, there are many papers that deal with 

improving the reliability of mathematical models. Khan 

and Jan (2015) introduced reliability evaluation of a 

system using modified Weibull distribution. Ezzati and 

Rasouli (2015) improved system reliability using linear-

exponential distribution function. El-Damcese (2009) 

introduced reliability equivalence factors of a series-

parallel system when the system components are 

independent and identical with a life distribution of 

Weibull distribution. Reliability equivalence factors for 

some systems with mixture Weibull failure rates were 

introduced by Mustafa (2009). Poǵany et al. (2013) 

improved the reliability of composite system by using 

reduction method and hot duplication method 

considering the systems survivor function. Related 

survivor equivalence functions were derived in all cases 

when the components lifetime distribution follows the 

gamma–Weibull distribution. 

Since, the exact data about the parameters of a 

probability distribution cannot be always available so 

that these parameters can be expressed as fuzzy numbers. 

These fuzzy numbers can be driven from collected data 

or the opinions of the experts. El-Damcese and Temraz 

(2015) proposed analysis of availability and reliability of 

k-out-of-n model assuming the rates of the model are 

fuzzy. Cheng and Mon (1993) used the confidence 

interval for analyzing the fuzzy system reliability. Chen 

(1994) presented a new method for analyzing the fuzzy 

system reliability using arithmetic operations of fuzzy 

numbers. Chen (1996) presented a new method for fuzzy 

system reliability analysis based on fuzzy time series and 

the α-cuts arithmetic operations of fuzzy numbers. 

In this study, the reliability of a series-parallel system 

consisting of independent and non-identical components 

is improved assuming that the lifetime of each unit 

follows modified Weibull distribution. We suppose that 

the parameters of the modified Weibull distribution are 

fuzzy numbers with triangular membership functions. 

Reliability function of the original system and improved 

systems is derived according to reduction, hot 

duplication, and cold duplication methods. Finally, we 

study the model numerically.  

This paper is organized as follows. In Section 2, 

review of modified Weibull distribution is discussed. 

Maximum likelihood method is introduced to find point 

estimators for the modified Weibull distribution. 

Definitions and basics of fuzzy numbers are discussed. 

In Section 3, the reliability function of the original 

system is deduced. In Section 4, reduction method is 

applied to improve the system reliability. In Section 5, 

cold standby duplication method is presented to increase 

system reliability. In Section 6, hot standby duplication 

method is introduced to improve the reliability of the 

system. In Section 7, a procedure is introduced to show 

how the intervals for the system reliability are obtained. 

In Section 8, a numerical study is presented to illustrate 

the results and compare between different methods.  

Modified Weibull Distribution 

The probability density function of the modified 

Weibull distribution is defined as: 

 

( ) ( ) 1

0, 0, 0, 0

,
tt t ef t t t e e

t

γ λγ λ ββ γ λ

β γ λ

− −= +

> ≥ ≥ >
 (1) 

 

The distribution function is given by: 

 

( ) 1
tt eF t e

γ λβ−= −  (2) 

 

The hazard rate function is given by: 

 

( ) ( ) 1 th t t t eγ λβ γ λ −= +  (3) 

 

For λ=0, we obtain the original Weibull distribution. 

Different shapes of the probability density and hazard 

rate functions are illustrated in Fig. 1 and 2.  

 

 
  
Fig. 1. Different shapes of PDF versus time 

 

 

 

Fig. 2. Different shapes of HRF versus time 
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Random Number Generation  

Using the method of inversion we can generate 

random numbers from the modified Weibull distribution 

as follows: 
 

( ) 1
tt eF t e u

γ λβ−= − =  
 
where, u~uniform(0,1). After simple calculation this 

yields: 
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 (4)  

 
We can use the previous relation to generate random 

numbers when the parameters β, γ and λ are known 

where LambertW is a function that satisfies the following 

relation: 
 

LambertW(x) * exp(LambertW(x)) = x 

 

Parameters Estimation 

The maximum likelihood method is used to find point 

estimators for the parameters of the modified Weibull 

distribution as follows: 

Let T1,T2,…,Tn be a sample of size n from a modified 

Weibull distribution. Then the likelihood function is 

given by: 
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1 1
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Take the logarithm of the likelihood function: 

 

( )
( ) ( )

( ) ( )1 1

log log
, ,

1 log

i

n n
i t

i

i ii i

t
log L t e

t t

λγ
β γ λ

β γ λ β
γ λ= =

 + +
= − 

+ − +  
∑ ∑  (6) 

 

The first partial derivatives with respect to β, γ and λ 

are derived as follows: 
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In order to obtain the point estimators ( )ˆ ˆ ˆˆ, ,θ β γ λ=  for 

the parameters θ = (β, γ, λ), the previous system of 

nonlinear equations can be solved numerically after 

equating them to zero. 

Second derivatives of the logarithm of the likelihood 

function are derived and the results are: 
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The observed information matrix is defined as: 

 

( )
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In order to compute the standard error and asymptotic 

confidence interval the usual large sample approximation 

is used in which the maximum likelihood estimators of θ 

can be treated as approximately normal. Hence as n→∞, 

the asymptotic distribution of the MLE  ( )ˆ ˆˆ, ,β γ λ   will be 

given by: 
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is the approximate variance covariance matrix and I
−1

(θ) 

is the inverse of the observed information matrix. An 

Approximate 100(1−α)% two sided confidence intervals 

for β, γ and λ are, respectively, given by: 

 

11 22 33
2 2 2

ˆ ˆ ˆˆ ˆˆ, ,z z zV V Vα α αβ γ λ± ± ±  

 

Fuzzy Parameters 

Now let us suppose that the parameters of the 

modified Weibull distribution are fuzzy. A fuzzy set is 

defined as a function that maps elements in a domain of 

concern to their membership value in a set and this 

function is called membership function. The membership 

function of a fuzzy set A is denoted as µA and membership 

value of x in A is denoted as µA (x). The domain of 

membership function is called the universe of discourse. 

Definition 1  

Dijkman et al. (1983) defined fuzzy number  as a 

generalization of a regular, real number in the sense that 

it does not refer to one single value but rather to a 

connected set of possible values, where each possible 

value has its own weight between 0 and 1. 

Definition 2 

A membership function µA (x) of a fuzzy set A is a 

function µA:X→[0,1] such that every element x in X has 

membership degree µA(x)∈[0,1].  

We suppose that the type of the membership 

functions is the triangular one. In general, the triangular 

membership function is defined as follows. 

Definition 3 

A triangular membership function is determined by 

three numbers {a, b, c} where a is the lowest value, b is 

the nominal value and c is the maximum value. The 

triangular membership function is given by: 
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x c
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 

> 

 

 

where, the parameters {a, b, c}, with (a<b<c), determine 

the x coordinates of the three corners of the underlying 

triangular membership function. 

 
 
Fig. 3. A series-parallel system 

 

Original System 

We consider a series-parallel system consisted of k 

subsystems connected in parallel and each subsystem 

consists of ni units connected in series for i = 1, 2,…, k. 

The system will operate successfully when at least one 

subsystem is up (see Fig. 3).  

Let Rij (t) be the reliability function of the unit j (j = 

1, 2,…, ni) of a subsystem i, i = 1, 2, …, k. Hence, the 

reliability function of the system will be given by: 
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 (10) 

 

If all units of the system are identical, then the 

reliability function will be given by: 
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k
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Reduction Method 

It is assumed in the reduction method that the system 

design can be improved by reducing the failure rates of a 

set of its components by a factor ρ such that 0<ρ<1 

(Sarhan et al., 2004; Sarhan, 2009). We suppose that the 

failure rates of a set Ai of the units of each subsystem are 

decreased by multiplying by a factor ρ and hence system 

reliability function is obtained as follows: 
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where: 
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{ }1,2,.., , 1,2, ,i iA n i k= …⊆  

 

Cold Standby Duplication Method 

In this method, we suppose that a set Ci of 

components of each subsystem are duplicated with an 

identical cold standby unit. The reliability function of the 

improved system is obtained as follows: 
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where: 
 

{ }1,2,.., , 1,2, ,i iC n i k= …⊆  

 
Hot Standby Duplication Method 

In this method, we suppose that a set of Di 

components of each subsystem are duplicated with a hot 

standby unit. The reliability function of the improved 

system is obtained as follows: 
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Where: 
 

{ }1,2,.., , 1,2, ,i iD n i k= …⊆  

 
Procedure 

In this section, we introduce a procedure to illustrate 

how the reliability of the system is computed: 
 
Step 1: Generate a random sample from the modified 

Weibull distribution at fixed values of the 

parameters (β, γ, λ) by using relation (4). 

Step 2: Substituting in a set of equations (7)-(9) and then 

equating them to zero 

Step 3: Obtain the MLE ( )ˆ ˆˆ, ,β γ λ  by solving the 

resultant system of equations numerically 

Step 4: Constructing the observed information matrix 

and compute its inverse 

Step 5: Calculate the confidence intervals for the 

parameters (β, γ, λ) at a level of significance a 

Step 6: Calculate the intervals for the fuzzy parameters 

by substituting in the following relation: 
 

( )( )
( )( )

( )
,

ˆ ˆ,  , ,L U

L cut M L U
for

cut U M

α
θ θ θ β γ λ

α

 + − −
  = =   + − −  

 (15) 

 
where, a−cut ={0,0.1,0.2,…,1} and M is the point 

estimator of θ and [L,U] is the confidence interval 

limits of θ. 

Step 7: Substituting in equations (10), (12), (13) and 

(14) to obtain intervals for the fuzzy reliability 

function of the original system and the 

improved systems, respectively. 

Numerical Study 

Let us consider a series-parallel system consists of 
two subsystems connected in parallel. The first 
subsystem consists of two units connected in series and 
the second one consists of one unit. Suppose that all units 
are identical. We will apply our procedure to obtain the 
limits for the fuzzy reliability of the system. The reliability 
function of the original system will be given by: 
 

( ) ( )( )1 1 exp( 2 ) 1 exp( )t tR t t e t eγ λ γ λβ β= − − − − −  

 

Now, we will generate a random sample with size n = 

30 at (β, γ, λ) = (0.1,0.7,0.3) and the result is:  
 

4.9 3.9 5.2 3.9 1.1 
1.8 2.7 1.0 5.4 0.9 
0.6 5.6 6.0 1.0 3.3 
3.6 0.1 5.1 1.3 5.3 
7.5 5.1 3.4 3.8 6.0 
5.6 3.1 2.6 0.6 0.3 

 
Substituting in a set of equations (7)-(9) and then 

equating them to zero. One can obtain the MLE ( )ˆ ˆˆ, ,β γ λ  

by solving the resultant system of equations numerically 

and the values are: 
 

( ) ( )ˆ ˆˆ, , 0.119,0.763,0.261 ( , , )L M Uβ γ λ = =  

 

 
 
Fig. 4. Comparison of the reliabilities of the original system 

and different improved systems 
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In Fig. (4), we can observe that the reliability of the 

original system is improved by different ways. Cold 

standby method is better than hot duplication method 

and reduction method has different values which 

improves the system reliability.  

We construct the observed information matrix and 

the result is: 
 

( )
2107.177 391.958 1280.519

391.958 94.728 287.520

1280.519 287.520 959.924

I θ
 
 =  
 
 

 

 
Taking the inverse of this matrix yields the following 

matrix: 
 

( )1

0.00255 0.00250 0.00266

0.00250 0.11860 0.03218

0.00266 0.03218 0.014237

I θ−

− 
 = − − 
 − − 

 

 
Calculate the 95% confidence intervals for the 

parameters (β, γ, λ) and the results are: 
 

Confidence interval for β = [0.020,0.217] 

Confidence interval for γ = [0.088,1.437] 

Confidence interval for λ = [0.027,0.494] 
 

Now, we consider that the parameters β, γ and λ are 

triangular fuzzy numbers then calculate the intervals for 

them by using in relation (15) and the results are shown 

in Table 1. 

The intervals for the fuzzy reliability function of the 

original system will be calculated from the following 

relation: 
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Substituting the values of the fuzzy parameters from 

Table 1 in the above relation, we obtain the intervals for 

the fuzzy reliability function of the original system at a 

fixed time (t = 2) and the results are shown in Table 2. 

Also, we obtain the intervals for the fuzzy reliability 

functions of the improved systems using reduction, cold 

standby and hot duplication methods at a fixed time (t = 2) 

and the results are shown in Tables 3-5, respectively. 

 
Table 1. Calculations of the intervals for fuzzy parameters 

( )ˆ ˆˆ, ,β γ λ  

α−cut ,L Uβ β  
ɶ ɶ  ,L Uγ γ  ɶ ɶ  ,L Uλ λ  

ɶ ɶ  

0.0 [0.020, 0.217] [0.088, 1.437] [0.027, 0.494] 

0.1 [0.029, 0.266] [0.155, 1.504] [0.050, 0.517] 

0.2 [0.039, 0.236] [0.223, 1.571] [0.073, 0.540] 

0.3 [0.049, 0.246] [0.290, 1.639] [0.097, 0.563] 

0.4 [0.059, 0.256] [0.358, 1.706] [0.120, 0.587] 

0.5 [0.069, 0.266] [0.425, 1.774] [0.144, 0.610] 

0.6 [0.079, 0.275] [0.493, 1.841] [0.167, 0.633] 

0.7 [0.089, 0.285] [0.560, 1.908] [0.190, 0.657] 

0.8 [0.099, 0.295] [0.628, 1.976] [0.214, 0.680] 

0.9 [0.109, 0.305] [0.695, 2.043] [0.237, 0.703] 

1.0 [0.119, 0.315] [0.763, 2.111] [0.261, 0.727] 

 

Table 2. Calculations of the intervals for the fuzzy reliability 

function at time t = 2 

a−cut ,L UR R  
ɶ ɶ  

0.0 [0.240, 0.999] 

0.1 [0.187, 0.997] 

0.2 [0.140, 0.994] 

0.3 [0.102, 0.990] 

0.4 [0.083, 0.983] 

0.5 [0.047, 0.974] 

0.6 [0.031, 0.961] 

0.7 [0.019, 0.944] 

0.8 [0.010, 0.921] 

0.9 [0.005, 0.893] 

1.0 [0.002, 0.857] 

 
Table 3. Calculations of intervals of fuzzy reliability function using reduction method at time t = 2 

α−cut {1,0} {1,0}

'p L p UR R  
ɶ ɶ  

{0,1} {0,1}

'p L p UR R  
ɶ ɶ  

{2,0} {2,0}

'p L p UR R  
ɶ ɶ  

{1,1} {1,1}

'p L p UR R  
ɶ ɶ  

{2,1} {2,1}

'p L p UR R  
ɶ ɶ  

0.0 [0.280, 0.999] [0.477, 0.999] [0.370, 0.999] [0.505, 0.999] [0.566, 0.999] 

0.1 [0.220, 0.998] [0.422, 0.998] [0.302, 0.998] [0.445, 0.999] [0.503, 0.999] 

0.2 [0.166, 0.996] [0.366, 0.997] [0.237, 0.997] [0.385, 0.998] [0.437, 0.998] 

0.3 [0.120, 0.992] [0.313, 0.995] [0.179, 0.995] [0.326, 0.996] [0.372, 0.997] 

0.4 [0.083, 0.987] [0.262, 0.991] [0.129, 0.991] [0.271, 0.993] [0.308, 0.995] 

0.5 [0.055, 0.980] [0.215, 0.986] [0.089, 0.986] [0.221, 0.989] [0.250, 0.993] 

0.6 [0.035, 0.970] [0.175, 0.980] [0.059, 0.979] [0.178, 0.984] [0.199, 0.989] 

0.7 [0.021, 0.956] [0.137, 0.970] [0.037, 0.969] [0.138, 0.977] [0.152, 0.984] 

0.8 [0.011, 0.937] [0.104, 0.958] [0.021, 0.956] [0.105, 0.967] [0.114, 0.976] 

0.9 [0.006, 0.914] [0.077, 0.942] [0.011, 0.939] [0.077, 0.954] [0.082, 0.967] 

1.0 [0.003, 0.884] [0.054, 0.922] [0.005, 0.916] [0.054, 0.937] [0.057, 0.954] 
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Table 4. Calculations of intervals for fuzzy reliability function using cold standby method at time t = 2 

a−cut {1,0} {1,0}

'C L C UR R  
ɶ ɶ  

{0,1} {0,1}

'C L C UR R  
ɶ ɶ  

{2,0} {2,0}

'C L C UR R  
ɶ ɶ  

{1,1} {1,1}

'C L C UR R  
ɶ ɶ  

{2,1} {2,1}

'C L C UR R  
ɶ ɶ  

0.0 [0.293, 0.999] [0.551, 0.999] [0.431, 0.999] [0.583, 0.999] [0.664, 0.999] 

0.1 [0.228, 0.998] [0.476, 0.999] [0.343, 0.999] [0.503, 0.999] [0.576, 0.999] 

0.2 [0.169, 0.997] [0.398, 0.999] [0.258, 0.999] [0.418, 0.999] [0.481, 0.999] 

0.3 [0.121, 0.994] [0.322, 0.999] [0.185, 0.999] [0.337, 0.999] [0.385, 0.999] 

0.4 [0.082, 0.991] [0.251, 0.999] [0.124, 0.999] [0.260, 0.999] [0.294, 0.999] 

0.5 [0.054, 0.985] [0.189, 0.998] [0.079, 0.998] [0.194, 0.999] [0.215, 0.999] 

0.6 [0.034, 0.977] [0.137, 0.997] [0.048, 0.996] [0.140, 0.998] [0.152, 0.999] 

0.7 [0.020, 0.967] [0.093, 0.994] [0.027, 0.994] [0.094, 0.996] [0.100, 0.999] 

0.8 [0.011, 0.952] [0.060, 0.991] [0.014, 0.990] [0.060, 0.994] [0.063, 0.998] 

0.9 [0.006, 0.932] [0.036, 0.985] [0.007, 0.983] [0.036, 0.990] [0.037, 0.997] 

1.0 [0.003, 0.907] [0.020, 0.977] [0.003, 0.973] [0.020, 0.985] [0.020, 0.995] 

 

Table 5. Calculations of intervals for fuzzy reliability using hot duplication method at time t = 2 

α-cut {1,0} {1,0}

'H L H UR R  
ɶ ɶ  {0,1} {0,1}

'H L H UR R  
ɶ ɶ  {2,0} {2,0}

'H L H UR R  
ɶ ɶ  {1,1} {1,1}

'H L H UR R  
ɶ ɶ  {2,1} {2,1}

'H L H UR R  
ɶ ɶ  

0.0 [0.267, 0.999] [0.396, 0.999] [0.315, 0.999] [0.418, 0.999] [0.456, 0.999] 

0.1 [0.206, 0.998] [0.321, 0.999] [0.241, 0.999] [0.337, 0.999] [0.366, 0.999] 

0.2 [0.153, 0.997] [0.249, 0.999] [0.176, 0.999] [0.260, 0.999] [0.280, 0.999] 

0.3 [0.109, 0.994] [0.186, 0.999] [0.123, 0.999] [0.193, 0.999] [0.205, 0.999] 

0.4 [0.075, 0.990] [0.133, 0.998] [0.082, 0.998] [0.137, 0.999] [0.144, 0.999] 

0.5 [0.049, 0.985] [0.091, 0.997] [0.054, 0.996] [0.093, 0.998] [0.097, 0.999] 

0.6 [0.032, 0.976] [0.060, 0.994] [0.033, 0.994] [0.061, 0.996] [0.063, 0.999] 

0.7 [0.019, 0.965] [0.037,0.990] [0.020, 0.989] [0.037, 0.993] [0.038, 0.998] 

0.8 [0.011, 0.948] [0.021, 0.983] [0.011, 0.982] [0.021, 0.989] [0.022, 0.996] 

0.9 [0.005, 0.927] [0.011, 0.973] [0.006, 0.970] [0.011, 0.982] [0.011, 0.992] 

1.0 [0.002, 0.899] [0.005, 0.958] [0.002, 0.953] [0.005, 0.971] [0.005, 0.986] 

 

Conclusion 

In this paper, we analyzed a series-parallel system 

consisted of independent and non-identical components 

when the lifetimes of the components follow modified 

Weibull distribution. In literature, the parameters of the 

lifetime distribution were considered to be known. 

However, exact values of the parameters of any 

distribution are often unknown. Here, the parameters of 

the modified Weibull distribution were considered to be 

fuzzy which means that they are not longer treated as 

fixed numbers. Reduction method was used to improve 

the reliability of the original system. Also, cold and hot 

duplication methods were introduced to increase system 

reliability. A procedure was added to show how the 

intervals for fuzzy reliability function are computed.  

Numerical study was proposed to compare between 

different methods. The values obtained in Tables 4 and 5 

show that cold standby method is better than hot 

duplication method for improving system reliability.  

As future work, a study of a system assuming that its 

components are dependent can be treated. Also, increasing 

the number of standby units can be used to increase 

systems reliability. New distributions can be used to 

model the lifetimes of the components of a system.   
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