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Abstract: We propose a distribution called Odds Exponential Log Logistic
Distribution (OELLD), which is an odds family of distribution. Its hazard
rate is an increasing and decreasing function based on the value of the
parameter. Explicit expressions for the ordinary moments, L-moments,
quantile, generating functions, Bonferroni Curve, Lorenz Curve, Gini’s
index and order statistics are derived. The parameters of the proposed
distribution are estimated by using maximum likelihood method and also
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Introduction

In describing the real world phenomena, the
distributions are very much useful. In spite of the fact
that a number of distributions are developed, always
there is a scope for introducing distributions, analysing
their properties to use them for fitting real world
scenarios. Hence, we are always developing new and not
rigid distributions. In recent works, new distributions are
defined by introducing one or more parameters to the
distribution functions. The addition of parameters to the
distribution functions makes the distribution richer and
more flexible for modelling life time data. But, at the
same time adding of too many parameters to the
distribution make inferential aspect more complicated.
Proportional Odds Model (POM), Proportional Hazard
Model (PHM), Proportional reversed hazard model
(PRHM), Power Transformed Model (PTM) are some of
the models originated from this idea to add a shape
parameter. For such models, a few pioneering works are
by Box and Cox (1964; Cox, 1972; Marshall and
Olkin, 1997; Gupta and Kundu, 1999; Kantam and Rao,
2002; Ashkar and Mahdi, 2006; Rosaiah et al., 2006;
Gupta and Gupta, 2007; Aljarrah ef al., 2014; Tahir et al.,
2015; El-Damcese et al., 2015) and the references
therein. Many distributions have been developed in
recent years that involve the logit of the beta
distribution. Using the generalized class of beta
distribution, the distribution function (df) for this class
of distributions for the random variable X is generated
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illustrated by a lifetime data set.

Family, Log Logistic Distribution, ML

by applying the inverse of the df of X to a beta
distributed random variable:

G(x)
_ a-1 A1 g

F(x)= 5ad) ! (A= ds; 0, a, >0
where, G(x) is the df of other distribution. This class of
distributions has not only generalized the beta
distribution but also supplemented the parameter(s) to it.
Among this class of distributions are, the beta-Normal
Eugene et al. (2002); beta-Gumbel Nadarajah and Kotz
(2004); beta-Weibull Famoye et al. (2005); beta-
Exponential Nadarajah and Kotz (2006); beta-Laplace
Kozubowski and Nadarajah (2008) and beta-Pareto
Akinsete et al. (2008), beta-Rayleigh Akinsete and Lowe
(2009). Number of useful statistical properties arising
from these distributions and their applications to real life
data has been discussed in the literature.

Alzaatreh et al. (2013) has proposed a new
generalized exponential family of distributions, known

as T-X family and the cumulative distribution function
(cdf) is defined as:

W (Fo (x)

F(x;2,0) = j £ (1) dt, (1)

where, the random variable 7, X< [a, b], for —0o<a, b <
o and W(Fy(x)) be a function of the cdf Fy(x), so that
W(Fy(x)) should satisfies the following conditions:
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*  W(Fdx))e [a,b]

o  W(FAx)) is differentiable and monotonically non-
decreasing

o W(Fdx))—a as x— o and W(Fdx)) >b as x—o

We defined a generalized class of any distribution
Fy(x)

1-F,(x)’

the odds function, the cdf of the proposed distribution is:

having positive support. Taking W(Fg(x)):

Fp(x)
1=F (x)
F(x;4,0) = J
0

The support of the resulting distribution will be that
of F ).

Here,

£ (1) dt )

Fy (x)
Fo(x)
corresponding distribution is the generalization to the
base distribution. This type of distributions is named as
Odds Family of Distributions (OFD).

In this study, we take upper and lower incomplete

Fy (x) _
1-F,(x)

as x —oo. The

— ©,

gamma functions are I'(p,x)= j w’le™dw  and

7(p.x)= J wfle™dw, forx >0, p>0 respectively. Also,
0
the jth derivatives with respect to p are denoted by

rY (p,x) = T(ln w)j w e ™ dw 7(1) (p,x)

X

and

f (Inw)’ 'wr e "dw, for x >0, p>0 respectively.
0

In this study, we choose particular function f;(¢) =

(1/4)e™, i.e., the exponential distribution and the log
4

logistic distribution F,,(x)= O_gx+ L given in Equation
2. Hence, we name this distribution as Odds Exponential
Log Logistic Distribution (OELLD). The development
of new distribution is presented in Section 2. A study of
statistical properties along with moments, L-moments,
quantile, generating functions, Bonferroni Curve, Lorenz
Curve, Gini’s index and order statistics and reliability of
the new distribution is provided in Section 3. In Section
4, ML estimation of parameters is discussed and a real
life data set has been analysed and compared the results
with other fitted distributions. In Section 5, we present
the concluding remarks.

The Odds Exponential Log logistic
Distribution (OELLD)

The cumulative distribution function (cdf) of the new
Odds Exponential Log Logistic Distribution (OELLD) is
defined as:

Fn,ﬁ(-")
1-F, 4(x)
F(x)= I £, (t)at
0
where
]
X —(x.
Fa;a(x)=o_g+x andﬂ( ) G x>0, 0,0,4>0
so that
i e
xxlo'@ = I e dy =1—¢ *\° 3)
o A

Also the probability density function (pdf) of the
OELLD is:

X

99 xg’leiz[;) , x>0, 0,0,1>0
o

f(x;/l,O',H)= 4)

with range (0, o), the following Fig. 1 shows the pdfs, Fig.
2 shows the distribution function and Fig. 3 hazard rate and
reversed hazard rate for different values of A, ¢ and 6.

Statistical Properties

Distribution Function Limits
,i[i)g
Since the cdf of OELLD is F(x;1,0,0)=1—e *\°/ |
we have:

limF(x;/'i,O',H) =0 and limF(x;l,a,é?) =1
x—0

X0

Some Statistical Measures of OELLD

The mean and medians are:

:E(X):Txf( :1,0,0) dx = o3/ r(9+1 1]

and:

M

0.5=Jf(x;/1,0',9) dx =1—e%(%] = Mzcr[l an]yH
0

The mode is:

d .
;lnf(x;/l,a,ﬁ)

0
:i{—lnz+1ne—91na+(0—1)1n[ij—l(ij }:0
dx o) Alo

l

= Mode =
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Fig. 2. The distribution function of OELLD for different A and fat 6 =1
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The " order raw moment is:

» 0-1 <Y
/J; — E(Xr) — J‘xrli(ij eii(;] dx
v Ao\o

%)
= o"l"(i + 1,1}
0

The Skewness (k) is:

The Kurtosis (k,) of the OELLD is:

F[%H,i}
{F[+l,l}}
4

Hy
Moment generating function (MGF):

2,2 py3 x
+
2!

3!

Mx(t):E[e"‘]E{l+tx+
_ S i S S i rle __r L
_zr'ﬂr zr!l o F[eﬂ,lj

r=01"- r=0

Characteristic Function (C.F.):

“orr(5 )
0

so=[e] - 3. %)

r=0 r!

Cumulant Generating Function (C.G.F):

K.(1)=In,(M.(0)=1n, {z’_'a o r(% N ”ﬂ )
r=0 1"

Mean Deviation

The mean deviation about the mean and the mean
deviation about the median are:

Md(about mean) = ]olx - y|f(x)dx
0

:ZyF(,u)—Z/H—ij f(x;ﬂ,o,@)dx
u

We have:

° o=t _1(xY 0
= xii e’v(”]dx =/1%90'F i+1,'u9
g Ao

Therefore, mean deviation about mean is:

Ifu

J— 78 0
Md, —2%{1—6 e }2u+2aﬂ%r(%+1,ﬂ’é ] ©)

(o2

)

Md(about median) = J.|x - M| f(x;/'i,cr,é?)dx

0

Md,, = AJ{(M —x)f(x;/l,a,é’)dx

+T(x—M)f(x;/'i,0',9)dx
=M F(M)—Afxf(x;l,a,ﬁ)dx

+fxf(x;/1,0',0)dx—M{l—F(M)}

M

Therefore, mean deviation about median is:

(10)

4
Md, =-pu+ 2071%’1"[%+ L /11\/2 ]
o

Conditional Moments

In reliability theory, the residual life and the reversed
residual life play an important role.
The #" order raw moment for the residual life is:

m(r)%[“"% >t}=%7(x—r)’f<x)dx

t

Letx’= u, then:

_ (u%’ —t) ei%“’ydu

x

S

—_

~

~—

Il
Se— 8

/10'967[;)
. ) . . 0
—F S () wir{ 5]
i) & J o
Aole *\o ~

The #" order raw moment for the reversed residual
life is:
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(- )’ : Quantile Function of OELLD
m'(t)=E f f(x4,0,0)dx
F(t)5 The quantile function, say Q (p), defined by F(Q(p))

1 A = p is the root of the equation:
— }J
L]
F(t) Ao 0 7%0(‘”)8 %
l-e~° =p :Q(p)zcr[—ln(l—p)l] (1
Therefore: A
Thus, the 1004, percentiles are z, :o-[—lln(l—q)J 0
, 1 - (7)., and 50th percentiles is the median.
0 -—L =3} _ N
- e‘z(zj 0 Bonferroni Curve, Lorenz Curve and Gini’s
. P Index: 100y,
o0\ T ( +1/1J r| L2 : ;
0 0 o The Bonferroni and Lorenz curves are respectively
defined by:
L-Moments '
h . B(p)z—Ixf(x;)i,a,H)dx and
Suppose X;., be the k' smallest moment in a sample DU 12
of size n, then the L-moments of X are defined by: 1 (12)
L(p) :—Ixf(x;/l,a,e)dx
1 1 /U 0
lz TR L] =12, ,
r k or equivalently:
P P
For OELLD with parameters A, 6 and o, we have: B(p)= LJ' F7'(x)dx andL(p) = iJ.F “(x)dx (13)
PHY M

E[X, = (.r—!.)!Ix[F(x)]jl [1-F(x)]"f(x)ax where, 4= E (x) and ¢ = F' (p).

The Bonferroni and Gini indices are:

B:l—jB(p)dp andG=1—2jL(p)dp (14)

By wusing quantile function, we calculate the
equations given in (13) as:
Therefore, the first four L — Moments OELLD are: o
j F(x)dx=-0 j [In(1-x)2] dx

=oge' A"’ {y(%+ 1] - y(%+ 1,In(1- p)ﬂ

L =E[X,]= UMF(QHAJ ZZZ%E[Xz;z_Xlzz]

—o1’|T [Hmj ! (1+121j
0 2
1 - Then:
13 = EE[XH -2X,,+ X1:3]
ce’ V! 1 1
yl (1 3 (1 2 (1 B(p)= {7£—+1J—7£—+1,ln(1—p)ﬂ (15)
=0A?| T [ +1/1j— ( +121j ( +13/1J pu 0 0
Lo 2o 3
1 and:
14 = ZEI:XM =3X,,+3X,, - X1:4:|
r 111/9 1 1
[1 +1,1j 6 (1 i uj L(p)=Z {y[;ﬂ}—y(gﬂ,ma—mﬂ (16)
Y 0 2/9 H
=oA’?
lﬁ [1 +1 31] 5/ (1 +1 41] Integrating Equation 15 and 16 with respect to p, we
L 37 40 get the Bonferroni and Gini indices as:
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oe* AVl (1 j ; (1 J }
B=1- 7| —=+1 y| —+LIn(1- p) |dp
pH { 0 l 0
and:
20e* 2V 1 c (1
G="L g =41 =[] =+ 1LIn(1- p) |4
2 b o]
Order Statistics

Suppose X1,X;,...X, is a random sample from the
p.d.f of OELLD. Let X;),X(),... X, be the corresponding
order statistics. The probability density function and the
cumulative distribution function of the k™ order statistics,
say ¥ = X are:

R e TS L O RCY

(k=1)!(n
k-1 , —k+1 17
I AT ™ 0
RTETTE A ¢

and:

(18)

Reliability and Related Properties

The reliability function and hazard rate function of
OELLD are:

- ’l[i)g __ 9 o
R(x)=e and h( )—/1 X (19)
o
Now
,;{L\f
Now, f.,(x:4,0,0)=—x""e " =Inf(x)
o

4
:—lnl+ln:9—6?lnc7+(9—l)lnx—%(ij

e}
dinf(x) -1 1 ), d'In/(x)
dx X Ao’ d’x

~0- 1)[—+/1 Ox }

The distribution is log-concave for A>0, 8> 1, >0

d’Inf
%()C)<O. Therefore,
X

and x>0, the distribution

satisfies the properties of Increasing Failure Rate (IFR)
and Decreasing Mean Residual Life (DMRL).
Mean residual life (MRL) is:

L (A
— HZ(—I)’[_]t“o%"r(i+l,ﬂ—t€]
=NV 0 o
o

(20)
0 0
o
eTL?; o /15
Reversed hazard rate
0 o, 3
m(x) = S(x) _ Ao’ _ (1)
F(x) iE
1_ e A\O

Mean Reversed Residual Life (MRRL) function or
Expected Inactivity Time (EIT) is defined as:

S O=E(Y) = — >

1-¢

i . .

oA r(i+1,x]— 1

0 0

tr(,) - L2

froa-r(ak
1Y’ 0

l_e’i(;J -2 r£1+1,xJ—r(l+1,M9}
}\‘5 6 6 (¢}

ML Estimation of the Parameters

(22)

Using the method of ML method of Estimation
(MLE), we estimate the parameters of the OELLD. The
likelihood function is:

L 2.0,0) =] [ f(3:4.0,0)

i=1

_H/‘icrg ' l(ﬁ]

= InL=-nlnA+nnéd-6Onlho

n 1 n
-1)> Inx, - ¢
+(0 ); nx, o’ ;&

The ML equations of A, ¢ and 0 are:

OlnL
oA

s g, O 0 &,
Z oo +laﬂ+1 ;xf =0

olnL n u 1Y (x
=——nlno+ Y Inx, —— » |~ | In| =<~ [=0
DL 2o+ Sn 1Z(UJ n( j

o

—I’l

ﬁ, 129

—I’l

(o2

and
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Fig. 3. Hazard rate and reversed hazard rate of the OELLD for different A and fat c =1

ML estimates of the parameters A, ¢ and 0 can be
obtained by simultaneously solving the above three
equations using some numerical iterative techniques.

Second derivatives of MLEs are:

@inL_n 2¢(xY @IL_no 0O+
PYE :7_72[_j; S0 2N

= 80_2 2 /10_9-%-2

0*InL n
and =———-—
06? 6* =
InL 1 &

0
n x[
8100 ,12‘1( j E j 0400 _iza;(;j

&InL  n x,
— ) |+ Hln
0000 o /10' S\ o

Data Analysis

i=1

and

In this section, we study the application of the
OELLD (and their sub-models: ELLog, LeLLog and
LLog distributions considered by Lemonte (2014)) for a
real lifetime data set to illustrate its potentiality. The
following real lifetime data set corresponds to an
uncensored data set from Nichols and Padgett (2006) on
breaking stress of carbon fibres (in Gba):

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27,
2.87,1.47,3.11, 4.42,2.41, 3.19,3.22, 1.69,

20

3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43,
2.95,2.97,3.39, 2.96, 2.53,2.67, 2.93, 3.22,

3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31,
2.85,2.56, 3.56, 3.15,2.35, 2.55, 2.59, 2.38,
2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68,
2.97, 1.36, 0.98,2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00,
1.22,1.12,1.71, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39,
3.68,2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88,
2.82,2.05, 3.65.

We fitted the proposed OELLD curve for the above
data, which is shown in the following graphs:

The unknown parameters of OELLD are estimated
by the ML method. In order to compare the models
considered by Lemonte (2014) with the proposed
OELLD model, the Cramér-von Mises (W') and
Anderson-Darling (A") statistics are used. The details
of the statistics W™ and A" are described in Chen and
Balakrishnan (1995). In general, the smaller the
values of these statistics, the better the fit to the data.
Let H(x; 0) be the c.d.f., where the form of H is
known but 6 (a k-dimensional parameter vector) is
unknown. The statistics W™ and A" can be obtained as
follows:
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e Compute v,=H(x;0), where the x;’s are in

ascending order and then y,=¢"'(v,), where &) is
the standard normal c.d.f. and ¢’1(-)its inverse

e Compute u, = ¢{(yl. —jz)/sy} , Where y = (l/n)iy[
i=1
and s? = (n- 1)*2(%. -7)

e Calculate W’ = Zn:{ul —(21’—1)/(2n)}2 +1/(12n) and

i=1
A =-n—(/n) Zn:{(Zi—l)ln(ui)
i=1
+(2n+1-2i)In(1-u,)} and then W =W>(1+0.5/n)

and A" = A°(1+0.75/n+2.25/n?)

The Table 1 lists the MLEs (and the corresponding
standard errors in parentheses) of the parameters of all

Estimated density of the OELLD

Density
02 04 05
1

01

0.0
L

Sample Quantiles

the models for the data set (breaking stress of carbon
fibres). The statistics W™ and A" are also listed in this
Table 1 for the models. It can be seen from the table
given below, the proposed OELLD has the smallest
values for the statistics W™ and A" than most of the
other models, that is, the proposed model fits the
breaking stress of carbon fibres data better than most
of the other models considered. More information is
provided by a visual comparison in Fig. 4 of the
histogram of the data with the fitted OELLD density
function. Clearly, the OELLD distribution provides a
closer fit to the histogram. The Kaplan-Meier (K-M)
estimate and the estimated survival function of the
fitted OELLD distribution is shown in Fig. 4. OELLD
has three parameters only. From this plot, note that
the OELLD model fits the data adequately and hence
can be adequate for this data.

Q-Q plot

@0

T T T T T T T
o 1 2 3 4 5 <]

Fitted OELLD Quantiles

Fig. 4. Estimated density and Q-Q plot for OELLD

Table 1. MLEs (standard errors in parentheses) and the statistics #" and 4" for the above data

*

Distribution Estimates /4 A

Beta log logistic (a,b,a.p) 0.09 (0.1700) 0.2254 (0.4452)  3.1486 (0.1851)  25.417 (46.670) 0.03867  0.27763
OELLD(a, A, 0) 2.3743 (6.3663)  1.8227 (13.6484)  2.7931 (0.2145) 0.0622  0.4158
Exponentiated log logistic(a,o,p) 0.3339 (0.0998)  3.3815 (0.2270)  7.4714 (1.4975) 0.04627  0.3019
LeLLog(b, o, B) 7.8795 (11.370)  5.6426 (3.3334)  3.0234 (0.3873) 0.06717  0.38989
Exponentiated Weibull(a, B, a)  0.0928 (0.0904)  2.4091 (0.5930)  1.3168 (0.5969) 0.07036  0.41313
Marshall-Olkin Weibull(c, v, 2)  0.6926 (0.8310)  3.0094 (0.7181)  0.0309 (0.0472) 0.07052  0.43016
Beta half-Cauchy

(¢, a,b) 15.194 (20.687)  5.5944 (0.8087)  46.116 (70.775) 0.1386  0.70838
Log Logistic (o, B) 2.4984 (0.1051)  4.1179 (0.3444) 0.23903  1.2409
Weibull(a, p) 0.049 (0.0138)  2.7929 (0.2131) 0.06227  0.41581
Gamma(h, 1) 5.9526 (0.8193)  2.2708 (0.3261) 0.14802  0.75721
Log-normal(y, 6) 0.8774 (0.0444)  0.4439 (0.0314) 027734 1.48332
Birnbaum-Saunders(a, ) 0.4622 (0.0327)  2.366 (0.1064) 0.29785  1.61816

21



Rosaiah Kanaparthi ef al. / Journal of Mathematics and Statistics 2017, 13 (1): 14.23
DOI: 10.3844/jmssp.2017.14.23

The estimated variance-covariance matrix is:

-1

[@*InL  &*Inl  &°Inl
lom 0o0A 0008
_ *InL  &*Inl  &*Inl
10) = .
O0loo oA 0100
*InL  &*Inl &*Inl
| 0c 0604 06* ]
[ 138.4137 64.5495 -43.6248 !
= 64.5494  -30.1081 20.3428
L —43.6248 20.3428 -35.5612
40530  86.878  0.021
=| -86.876 186.278 -0.015
L 0.026 -0.024 0.046

Concluding Remarks

In this study, we proposed a new probability
distribution and named it as Odds Exponential Log
Logistic Distribution (OELLD). This distribution is a
particular case of T-X family of distributions
proposed by Alzaatreh et al. (2013). The structural
properties of this distribution have been studied and
inferences on parameters have also been mentioned.
The advantage of this proposed distribution is, it has
only three parameters that are to be estimated. The
appropriateness of fitting the odds exponential log
logistic distribution has been established by analyzing
a real lifetime data set.
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