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Abstract: In this study we derived asymptotic goodness-of-fit test (model 
check) for spatial regression where the critical region as well as the p-

value of the tests are approximated based on the distribution of a type of 
the integral functional of the generalized (h1h2-)-Slepian field and the set-
indexed Gaussian white noise. Such random fields are obtained as the limit 
process of the moving and the cumulative sums processes of the sequence 
of random matrices consist of independent and identically distributed 
random variables indexed by the points of a design constructed by means 
of a given continuous probability measure. Although the common 
approach in model diagnostic for regression is based on the functional of 
the residuals, in this study a new different idea is proposed by directly 
investigating the moving and the cumulative sums of the array of the 
observations. It is shown that these approaches are mathematically 
tractable and practically more applicable. Simulation study is conducted 
for investigating the finite sample size behavior of the tests. An application 
of the procedure to a mining data is also discussed, where from the 
perspective of geology and geophysics, polynomial model is reasonable 
and suitable for the data. 
 
Keywords: Slepian Field, Set-Indexed White Noise, Goodness-of-Fit Test, 
Moving Sum Process, Spatial Regression 

 

Introduction 

Modelling spatial data using spatial random field 
(process) approach has been increasingly studied in 
various scientific disciplines among them are 
agriculture, environmental sciences, geostatistics, 
geology, medicine, biology, mining industry, among 
others. In the statistical literatures of spatial analysis 
the real-valued variable observed at the space 
coordinate is usually regarded as a realization of a 
stochastic process indexed by a set of points or a family 
of sets which is commonly called random field, cf. 
Cressie (1993; Ripley, 2004;  Wackernagel, 2003). The 
measured variable in spatial analysis might stand for 
percentage of either Ni, Fe or Au in mining exploration, 
see e.g., Tahir (2010; Somayasa et al., 2015a; 2015b; 
Somayasa and Wibawa, 2015; Somayasa et al., 2016) or 
the incidence rates for breast cancer, cf. MacNeill et al. 
(1994). We refer to (Cressie, 1993) for a comprehensive 
review and bibliography. 

One important purpose of the statistical analysis for 
spatial data is optimal prediction of an unobserved part 
of the process. In the references of spatial data analysis 
this type of statistical inference is called kriging. As 
stated in the literatures mentioned above, the result of 
universal kriging depends heavily not only on the 
covariance structure of the spatial process, but also on 
the adequateness of the assumed model that describes the 
mean of the observed variable, (Cressie, 1993; Ripley, 
2004; Wackernagel, 2003). This means that preliminary 
diagnostics involving model validity check as well as 
model selection must be conducted before kriging to 
prevent wrong conclusion. A serious spatial analysis 
should be accompanied with a statistical inference for 
checking whether or not the assumed model fit to the 
sample. To this end there has been many approaches and 
procedures proposed in the literatures how to handle a 
proper model check. Stute (1997; Stute et al., 2008) for a 
complete bibliographical information. 
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It is the aim of the present paper to give a 
significance contribution in model diagnostic for 
univariate spatial regression by establishing 
asymptotic test procedures for checking the 
appropriateness of an assumed model defined on a 
closed rectangle under an arbitrary experimental 
design. By combining the setup of Goodness-of-Fit 
(GoF) hypothesis for regression defined both in 
Arnold (1981; Eubank and Hart, 1993), we propose 
asymptotic tests method by defining a test statistic 
expressed as a Riemann-Stieltjes integral of a function 
defined on a competing alternative with respect to the 
so-called spatial Moving Sums (MOSUM) process of 
the arrays of observations. We call this test in the 
sequel as MOSUM test for brevity. This statistic is 
shown to converges in distribution (weakly) to the 
integral of such regression function with respect to a 
generalized (h1h2)-Slepian field when the hypothesis 
is true. The critical region of the MOSUM test is 
determined based on the probability distribution of 
such random field. We show in the appendix that the 
generalized (h1h2)-Slepian field is obtained as a limit 
process of the MOSUM process of the sequence of 
random matrices consisting independent and 
identically distributed random variables with finite 
first and second moments indexed by the design 
points constructed using arbitrary probability 
measure. We note that the ordinary (h1h2)-Slepian 
field studied in Fuchang and Li (2007; Bischoff and 
Gegg, 2014), is a spatial process obtained as a limit 
process when the design points are constructed using 
the uniform probability measure. 

The application of spatial process such as the 
Brownian sheet (Brownian (2) motion), Brownian pillow 
and the set-indexed Bronian sheet in GoF as well as 
Lack-of-Fit (LoF) for spatial regression has been 
investigated in many literatures. A common feature of 
most work is to test the hypothesis by investigating the 
continuous functional of the Cumulative Sums 
(CUSUM) of the residuals. The critical region was 
developed by studying the principal component of the 
corresponding functional of the Gaussian processes 
stated above. For example, (Stute, 1997; Stute et al., 
2008) pro-posed the Kolmogorov-Smirnov functional 
of the so-called marked empirical process based of the 
residuals. MacNeill and Jandhyalla (1993; Xie and 
MacNeill, 2006) investigated Cramer-von Misses 
functional of the CUSUM process of the residuals for 
detecting boundary in spatial regression. Geometric 
approach have been proposed in the works due to 
Bischoff (2002; Bischoff and Somaysa, 2009;   
Somayasa et al., 2015a). However most of these papers 
have restrictive application, because the problem 
addressed to the computation of the quantities of the 
limiting distribution of the test statistic is mainly not 

tractable as the dimension of the experimental region 
gets large. We show in this study that our proposed 
method is more applicable. 

To be able to state about the sensitivity of the 
MOSUM test, we discuss a comparison study by 
defining a similar test using the integrated regression 
function under alternative with respect to univariate 
Gaussian white noise which is a random filed defined 
e.g., in Alexander and Pyke (1986; Pyke, 1983; 
Gaensler 1993; Lifshits, 2012). This statistic is 
actually the limit of that defined as the integral with 
respect to CUSUM process of the arrays of the 
observations. For convenience we call such test as 
CUSUM test. The behavior of the tests will be studied 
by investigating their empirical as well as limiting 
power functions by simulation. 

The paper is organized as follows. In section 2 we 
give a more precise definition of the model and the 
hypotheses under study to fix the idea. The detailed 
treatment of the MOSUM test and also its asymptotic 
distribution is presented in section 3. Throughout this 
work the test procedures are derived under more 
general condition incorporating the technical situation 
frequently encountered in mining or geological 
engineering in which by some practical reason the 
engineers sometimes cannot or will not determine the 
drilling bores equidistantly. We propose an 
experimental design by generalizing the approach 
introduced in Somayasa (2013) in which we construct 
the design points over the experimental region by 
means of a given probability measure defined on the 
experimental region. Hence our test procedure will be 
more applicable in practice. However, mathematically 
the derivation of the result seems to be more difficult. 
We therefore need more effort. In section 4 we study 
the CUSUM test. The finite sample behavior of the 
tests are investigated by simulation in section 5. In 
Section 6 we discuss the application of the methods to 
real data. This paper is closed with some conclusions 
and remarks for future works. Proofs of propositions, 
theorems and corollaries are postponed to the appendix. 

Model Definition 

In this section we give a brief review to the sampling 
scheme, the regression model and the hypotheses under 
study. For more detail interested reader is referred to 
(Somayasa, 2013; Somayasa et al., 2015a). We consider 
the experimental design consists of n1 × n2 points: 
 

( ){ }
1 2 1 2

1 2 1 2: , :1 ,1 , 1, 1
n n n n k

t s n k n D n n
×

Ξ = ≤ ≤ ≤ ≤ ⊂ ≥ ≥
ℓ

ℓ  

 
defined on a closed rectangle D := [a1, a2]×[b1, b2], 
say, where a1<a2 and b1<b2. Much of the existing 
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literature is concerned with the n1 × n2 regular lattice, 

given by 
( )

1

2 1

1

1
n

a a
t a

n

−
= +

ℓ
ℓ  and 

( )
2

2 1

1

2

:
n k

b b
s b k

n

−
= + , 

for 1 ≤ ℓ ≤ n1, 1≤ k ≤ n2, (Bischoff and Somayasa, 
2009; MacNeill and Jandhyala, 1993; MacNeill et al., 
1994; Somayasa et al., 2015a). This kind of 
experimental design is from practical point of view 
sometimes not efficient. It is mathematically 
associated with the uniform probability measure 

defined by a scaled Lebesgue measure 2* 21
:

| |
D D

D
λ λ= in 

the sense the corresponding discrete measure 
converges to 2*

D
λ . That is, let 

1 2n n
P be a discrete 

probability measure on the Borel σ-algebra B(D), 
defined by: 

 

( ) ( ) ( )
1 2

1 2 1 2
1 11 2

1
: 1 , ,

n n

Bn n n n k
k

P B t s B B D
n n = =

= ∈∑∑ ℓ
ℓ

 

 
where, 1B is a the indicator of B. Then for the n1 × n2 
regular lattice, it can be shown by applying the well 
known Portmanteau theorem (Billingsley (1999), pp. 
18-19), that 

1 2

2*
Dn n

P λ⇒ , as n1, n2→∞. Here and 

throughout the paper "⇒" stands for the convergence 
in distribution in the sense of (Billingsley, 1999). 
Based on this fact we go through from the opposite 
direction with the question: If we are given a 
continuous probability measure P defined on the 
Borel σ-algebra B(D) with the corresponding 
distribution function F, can we construct a design 

1 2n n×
Ξ , such that 

1 2n n
P P⇒ . The answer is "yes". We 

can determine the design points ( )
1 2

,
n n k

t s
ℓ

in natural 

way by firstly partitioning the interval [a1, a2] as 

{ }
1 1 11 2

, ,...,
n n n n

t t t using the equation ( )
1

2n
F t b

ℓ
= ℓ/n1, for 1 

≤ ℓ ≤ n1. Next, for a fixed ℓ and k, with 1 ≤ k ≤ n2, the 

point ( )
1 2

,
n n k

t s
ℓ

 is generated by solving the equation 

( )
1 2

,
n n k

F t s
ℓ

 = ℓk/(n1n2). The solution is unique 

provided F is continuous and strictly increasing on D. 
Hence, by this sampling method 

1 2n n×
Ξ is not 

necessarily a regular lattice unless P is the uniform 
probability measure on B(D), (Somayasa, 2013). For 
convenience we call the probability measure P under 
which 

1 2n n×
Ξ is constructed a design. 

As an example, let us consider a probability 
measure P defined on the measurable space (D := [1, 2] 
× [2, 3], B(D)), having the probability density function 
u(t, s) := 12/(t2s2) and the distribution function F(t, s) := 
12(1-1/t)(1/2-1/s), for 1 ≤ t ≤ 2 and 2 ≤ s ≤ 3, illustrated 
in Fig. 1. There exist distribution functions F1(t) := 2(1-
1/t) and F2(s) := 6(1/2-1/s) on [1, 2] and [2, 3], 
respectively, such that for (t, s) ∈ D, F(t, s) = 
F1(t)F2(s). Then for fixed n1 ≥ 1 and n2 ≥ 1, the design 
point is computed by the formula: 

 

1 2

1 2
1 2

1 2

2 6
,1 ,1

2 3n n k

n n
t and s n k n

n n k
= = ≤ ≤ ≤ ≤

− −ℓ
ℓ

ℓ
 

 

We notice that 
1 2n n

P can also be written as: 

 

( ) ( ) ( )( ) ( )
1 2

1 2

1 1
1 1 2 2

1 11 2

1
: 1 / , / ,

n n

Bn n
k

P B F n F k n B B D
n n

− −

= =

= ∈∑∑
ℓ

ℓ  

 

 
 
Fig. 1. Left side: The three dimensional perspective plot of the density function of P. Right side: The cumulative distribution 

functions of P on the compact rectangle D = [1, 2] × [2, 3] 
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Let a nonparametric regression model Y (x) = g(x) + 
ε(x), for x ∈ D be observed on 

1 2n n×
Ξ , where g is an 

unknown function of bounded variation on D and ε is the 
unobserved random error defined on a common 
probability measure (Ω,F,P), say, with E(ε(x)) = 0 and 
Var(ε(x)) = σ2

>0 for every x ∈ D. Then the matrix of 

independent observations ( )( ) 1 2

2 1 1 2

,

1, 1
: ,

n n

n n n n k
k

Y Y t s
×

= =
=

ℓ
ℓ

 

satisfies the following decomposition: 
 

2 1 2 1 2 1n n n n n n
Y g ε

× × ×
+  (1) 

 

where, ( )( ) 1 2

2 1 1 2

,

1, 1
: ,

n n

n n n n k
k

g g t s
×

= =
=

ℓ
ℓ

 and 
2 1n n

ε
×

:= 

( )( ) 1 2

1 2

,

1, 1
,

n n

n n k
k

t sε
= =

ℓ
ℓ

 is an n2 × n1 matrix of random errors 

having independent and identically distributed 

components with ( )( )
1 2

, 0
n n k

E t sε =
ℓ

 and ( )( )
1 2

,
n n k

Var t sε
ℓ

 
2 0σ= > , for 1 ≤ ℓ ≤ n1; 1 ≤ k ≤ n2. For the sake of 

brevity we write ( )
1 2

,
n n k

Y t s
ℓ

, ( )
1 2

,
n n k

g t s
ℓ

 and ( )
1 2

,
n n k

t sε
ℓ

 

throughout this paper as Ykℓ, gkℓ and εkℓ, respectively. It is 
important to note that for our result we do not need 
normal assumption. 

As nicely noted in (Arnold, 1981; Eubank and Hart, 
19993; Stute, 1997) a common feature of the GoF test 
for regression falls into the following framework. Let V 
:= [z0,..., zp, zp+1,..., zm] and W := [z0,..., zp], p ≤ m, be 
linear subspaces of L2(D, P), where z1,..., zp, zp+1,..., zm 
are known regression functions which are without loss of 
the generality assumed to be orthogonal as functions in 
L2(D, P). The space L2(D, P) is the set of squared 
integrable functions on D with respect to P which is 
furnished with the inner product and norm denoted 
respectively by 〈⋅,⋅〉 and ||⋅||. We test the null hypothesis 
that g∈W while observing g∈V. Since g is observed as a 
function that lies in V and on the other hand W⊆V, then g 
admits an orthogonal decomposition g ≡ g1 ⊕ g2, where 
g1 ∈ W and g2 ∈ V ∩W

⊥, with 〈g1, g2〉P = 0. Hence the 
problem of testing H0: g∈W while observing g∈V can be 
handled by testing the hypotheses: 
 

0 2 1 2 1 1: 0 : ,H g against H g f for some f V W ⊥≡ ≡ ∈ ∩  (2) 

 
We notice that the statement that g∈W is equivalent 

to that of 
1 2

1
g W

n n
∈ for all n1≥1 and n2≥1. Hence the 

problem of testing H0: g∈W can be handled by testing 

that of 0

1 2

1
:H g W

n n
∈  for all n1≥1 and n2≥1. On the 

other hand by observing the localized model, the 
limiting distribution of the sequence of the moving as 
well as cumulative sums process of the observations 

under any competing alternative can be obtained 
concretely, see section 3 and section 4 below. 
Therefore without altering the test problem we 
consider in this study the localized model: 
 

2 1 2 1 2 1

*

1 2

1
n n n n n n

Y g
n n

ε
× × ×

= +  

 
In this study we restrict the consideration to 

2x∈ℝ . Result for higher dimensional rectangle can be 
obtained immediately. 

Test based on Moving Sums of the 

Observations 

In this section we introduce a test based on spatial 
Moving Sums (MOSUM) process of the observations 
extending the notion of one dimensional MOSUM test 
defined in Chu et al. (1995). Let h1 and h2 be positive 
numbers such that 0≤h1≤(a2-a1) and 0≤h2≤(b2-b1). The 
moving sums process of the matrix of observations 

2 1n n
Y

×
consisting of: 

 

( ) ( )( ) ( ) ( )( )1 1 1 1 1 2 2 2 2 2n F t h n F t n F s h n F s      + − + −        

 

components, is denoted by ( )( )
2 1

1 2 ,
n n

MSh h Y t s
×

, defined as: 

 

( )( )
( )

( )

( )

( )2 2 2 1 1 1

2 1

2 2 1 1

1 2

1 11 2

1
, :

n F s h n F t h

kn n

k n F s n F t

MSh h Y t s Y
n n

   + +      

×
   = + = +   

= ∑ ∑ ℓ

ℓ

 (3) 

 
for (t, s)∈ 

1 2h h
D := [a1, a2-h1] × [b1, b2-h2], where x:= 

{ }max :z z x∈ ≤ℤ . The MOSUM test for the hypothesis 

H0: g2 ≡ 0 against H1: g2 ≡ f1, for some f1∈V∩W
⊥, is 

realized by using the statistics: 
 

( ) ( ) ( )( )
2 1 1 2 2 1

* *
1

1
, ,

ˆn n h h n nD
n

MI Y f t s dMS Y t s
σ× ×

= ∫  

 

rejecting H0 for large value of ( )
2 1

*

n n
MI Y

×
, where ˆ

n
σ  a 

consistent estimator of σ given e.g., in Arnold (1981), pp. 

148-149. We note that for every ( )
1 2

,
h h

t s D∈ , ( )
1 2 2 1

*

h h n n
MS Y

×
 

(t,s) can be expressed in the following manner which is 
useful for the derivation of the main result. Indeed: 
 

( )( ) ( )
2 1

1 2 2 1 1 21 2

*

, ,
1 11 2

1
, 1 ,

n n

kh h n n n n kt t h s s h
k

MS Y t s t s Y
n n

   × + × +   = =

= ∑∑ ℓℓ
ℓ

 

 
( )

1 2
,

h h
t s D∈ , meaning that for fixed h1 and h2, 

( )
1 2 2 1

*

h h n n
MS Y

×
can be viewed as a partial sums process 
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indexed by {[t, t + h1] × [s, s + h2]: ( )
1 2

,
h h

t s D∈ of 

rectangles in D, cf. (Bischoff and Somayasa, 2009; 
Somayasa et al., 2015a). This end can be verified based 
on the assumption that F(t, s) = F1(t, s)F2(t, s) and the 
continuity of F1 and F2 on [a1, a2] and [b1, b2], 
respectively. Indeed we have: 
 

( )( ) ( ) ( ) ( )
1 1 1

1 1 1 1
1 11

1 1

1
n n F t

n F t n F t
F t F t

n n + 

  + = ≥ =  

 
implying 

( )1 1 1 1n n F t
t t

 + 
≤ by the monotonicity of F1. 

Further, since: 
 

( )
( )

( )
1 1 1 1

1 1 1

1 1 1

1
n n F t h

n F t h
F t F t h

n +  

 +   = ≤ + 
 

 

 
we get ( )1 1 1 1n n F t h

t
 +  

≤ t + h1. By the similar argument we 

can also show that 
( )2 2 2 1n n F s

s s
 + 

≤ and ( )2 2 2 2
2n n F s h

s s h
 +  

≤ + . 

Hence for fixed ( )
1 2

,
h h

t s D∈ , the sum in ( )( )
1 2 2 1

* ,
h h n n

MS Y t s
×

 

involves all Ykℓ with the associated design point 

( )
1 2

,
n n k

t s
ℓ

lies in the rectangle [t, t]1 × [s, s]2 := [t, t + h1] × 

[s, s + h2]. 
If the uniform probability measure 2*

D
λ on D is 

considered as the design, we have the following formula 
for every ( )

1 2
,

h h
t s D∈ : 

 

( )( )
( )

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

2 2 1 1 1 1

2 1 2 1

2 1

2 1 1 1

2 1 2 1

1 1 1 1

2 1 2 1

1 1

2 1

1 2

1 2
1 1

1 2
1

1
,

1

n s h b n t h a

b b a a

kn n

n s b n t a
k

b b a a

n t a n h

a a a a

k

n t a

a a

MSh h Y t s Y
n n

Y
n n

   + − + −
   
   − −      

×
   − −
   = + = +   − −      

   −
   +   − −      

 −
 = + −  

=

=

∑ ∑

∑

ℓ

ℓ

ℓ

ℓ
( )

( )

( )
( ) ( )
2 1 2 2

2 1 2 1

2 1

2 1

1

n s b n h

b b b b

n s b
k

b b

   −
   +   − −      

 −
 = + −  

∑

 (4) 

 

which consists of 
( ) ( )

1 1 2 2

2 1 2 1

n h n h

a a b b

     
     
  − −        

 components 

of the matrix 
2 1n n

Y
×

of the observations. Hence, by 

following the terminology introduced in (Bischoff and 
Gegg, 2014; Chu et al., 1995) we call the term h1h2 in 
this study the window size of the process. 

By the definition of ( )
2 1n n

MI Y
×

it can be seen that 

when the sample supports H1, the value of ( )
2 1n n

MI Y
×

will 

be large as it is contributed by the quantity that 

asymptotically rational to a positive constant given by 

( ) ( )
1

1 2

1 , ,
h h

fD
f t s d t sζ∫ , see Theorem 3.1 and Remark 3.2 

below. Conversely if the sample comes from H0, the 

value of ( )
2 1n n

MI Y
×

will small as ( ) ( )
1

1 2

1 , ,
h h

fD
f t s d t sζ∫  

vanishes uniformly. Hence, rejecting H0 for large 

( )
2 1n n

MI Y
×

 leads us to a conclusion that MOSUM test so 

defined is a reasonable test. 
The next result presents asymptotic size α test for 

testing (2) based on the statistic ( )
2 1

*

n n
MI Y

×
. Let Sl;P be the 

generalized (h1h2)-Slepian filed with the parameter space 

1 2h h
D , see the appendix. It is not too difficult to proof the 

following result. 

Theorem 3.1 

Let the matrix of the observations 
2 1n n

Y
×

satisfies 

Model (1) such that the unknown regression function 

g∈L2(D, P) have an orthogonal decomposition g ≡ 
g1⊕g2 with g1∈W and g2∈V∩W

⊥. Suppose that g1 and 

g2 are continuous and have bounded variation on D. 
Then an asymptotic size α test for H0: g2 ≡ 0 against 
H1: g2 ≡ f1, for some continuous functions f1∈V∩W

⊥, 

will reject H0 if and only if ( )
2 1

*
1n n

MI Y m α−×
≥ , where 

m1-α is a constant determined from the distribution of 
the statistic: 

 

( )
1 2

1 2 1 2 1 2

; 1 1 1 ;

1 1
:

h h h h h h

l P l Pg gD D D
I S f d f d f dSζ ζ

σ σ
= + +∫ ∫ ∫  

 
by the equation P{I(Sl;P) ≥m1-α|H0} = α. Thereby when 

H0 is true, the limit of ( )
2 1

*

n n
MI Y

×
 is given by 

1
1 2

1

1

h h

gD
f dζ

σ ∫ +
1 2

1 ;
h h

l P
D

f dS∫ , where for i = 1, 2, 
ig

ζ is a 

function on 
1 2h h

D , defined as: 

 

( ) ( ) ( )
1 2, ,

, : , ,
i

ig t t h s s h
t s g x y P dx dyζ

   + × +   
= ∫  

 
Furthermore, the finite sample size power function of 

this test is given by: 

( ) ( ){ }
2 1; 1 2

*
1 2: | ,

P n n
n n

G f P MI Y m g f f V Wα
⊥

−ϒ
= ≥ ≡ ∈ ∩  

 
which converges point-wise to 

P

G
ϒ

, defined by: 

 

( )
1

1 2 1 2

1 ; 1 1

1
: ,

P
h h h h

P g fD D
G f P f dS m f d f V Wα ζ

σ
⊥

−ϒ +

  
= ≥ − ∈ ∩ 

  
∫ ∫ℓ
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We note that all integrals involved in the definition of 
I(Sl;P) are in the sense of Riemann-Stieljes type defined 
e.g., in Strook (1994). 

Remark 3.2 

Unfortunately, the probability distribution model of 
I(Sl;P) is not tractable for arbitrary probability measure P, 
by the reason the increments of Sl;P is not stochastically 
independent and the limit I(Sl;P) still depends on the 
choice of g1, unless g1 and f1 are orthogonal on 

1 2h h
D . 

Therefore, the test is implemented in practice by 
approximating m1-α by generating Monte Carlo 
simulation. However, when the design is constructed 

under the 2*
D

λ (regular lattice), it can be shown that 

( )2*; Dl
I S

λ
has independent increment, see Proposition A.6. 

As pointed out in Proposition A.7, it can be shown that: 
 

( ) ( )2*

1 2 1 2

2 2*
1 1;

0,4 , ,
D

h h h h

DlD D
f dS N f t s dt ds

λ
λ

 
 
 

∫ ∫∼  

 
Hence, under H0, it holds: 

 

( ) ( ) ( )2*
1

1 2 1 2

2 2*
1 1;

,4 , ,
D

h h h h

Dl gD D
I S N f d f t s dt ds

λ
ζ λ

 
 
 
∫ ∫∼  

 
Table 1. The simulated quantiles for constant, first and second order model under H0 generated with 60×70 design points constructed 

using F(t, s) = 12(1-1 = t)(1-1 = s) on D = [1, 2]×[2, 3] 

   Left Tile Probabilities 
   ---------------------------------------------------------------------------------------------------------- 
Models h1 h2 0.990 0.975 0.950 0.900 0.850 0.800 
Const. 0.05 0.05 0.4096 0.3440 0.2849 0.2223 0.1784 0.1454 
 0.05 0.10 0.3961 0.3317 0.2780 0.2163 0.1717 0.1394 
 0.05 0.15 0.3995 0.3285 0.2741 0.2136 0.1712 0.1394 
 0.05 0.25 0.3859 0.3288 0.2780 0.2136 0.1749 0.1441 
 0.15 0.10 0.7076 0.6111 0.5111 0.3944 0.3185 0.2583 
 0.15 0.15 0.6994 0.5939 0.5005 0.3876 0.3147 0.2549 
 0.15 0.25 0.7053 0.5878 0.4933 0.3826 0.3106 0.2513 
 0.20 0.10 0.7914 0.6729 0.5569 0.4433 0.3632 0.2961 
 0.20 0.15 0.8028 0.6699 0.5570 0.4320 0.3461 0.2801 
 0.20 0.25 0.7606 0.6456 0.5391 0.4230 0.3401 0.2715 
 0.25 0.15 0.8627 0.7092 0.6046 0.4731 0.3769 0.3038 
 0.25 0.20 0.8469 0.7219 0.6014 0.4718 0.3868 0.3170 
 0.25 0.25 0.8430 0.7218 0.6022 0.4620 0.3734 0.3054 
1st order 0.05 0.05 1.3817 1.1644 0.9910 0.7621 0.6107 0.4957 
 0.05 0.10 1.3281 1.1220 0.9528 0.7399 0.5919 0.4763 
 0.05 0.15 1.3093 1.0707 0.8769 0.6862 0.5513 0.4489 
 0.05 0.25 1.2394 1.0434 0.8706 0.6861 0.5510 0.4540 
 0.15 0.10 2.3136 1.9527 1.6371 1.2710 1.0402 0.8258 
 0.15 0.15 2.2480 1.8734 1.5791 1.2190 0.9905 0.7913 
 0.15 0.25 2.2690 1.8688 1.5619 1.2087 0.9669 0.7828 
 0.20 0.10 2.6455 2.2453 1.8779 1.4240 1.1408 0.9297 
 0.20 0.15 2.5909 2.1499 1.8101 1.4051 1.1334 0.9156 
 0.20 0.25 2.4980 2.1154 1.7507 1.3345 1.0797 0.8581 
 0.25 0.15 2.7584 2.3539 1.9714 1.5372 1.2017 0.9837 
 0.25 0.20 2.6930 2.2771 1.9429 1.5069 1.2122 0.9461 
 0.25 0.25 2.7318 2.3243 1.9429 1.4797 1.1786 0.9427 
2nd order 0.05 0.05 1.5798 1.2735 1.0398 0.7529 0.5651 0.4170 
 0.05 0.10 1.5010 1.2493 1.0375 0.7546 0.5587 0.4083 
 0.05 0.15 1.4574 1.1982 0.9903 0.7459 0.5597 0.4280 
 0.05 0.25 1.4599 1.2139 1.0052 0.7507 0.5727 0.4498 
 0.15 0.10 2.4139 1.9833 1.5187 1.0345 0.7012 0.4632 
 0.15 0.15 2.3644 1.8953 1.4916 1.0549 0.7296 0.4740 
 0.15 0.25 2.3958 1.9212 1.5290 1.0459 0.7556 0.5330 
 0.20 0.10 2.7522 2.1992 1.6782 1.0582 0.6975 0.4036 
 0.20 0.15 2.5483 2.0170 1.5789 1.0728 0.6967 0.4155 
 0.20 0.25 2.6376 2.0509 1.5926 1.0819 0.7365 0.4702 
 0.25 0.15 2.8682 2.2099 1.6637 1.0857 0.6623 0.3250 
 0.25 0.20 2.8535 2.2716 1.7374 1.1395 0.7370 0.4260 
 0.25 0.25 2.8014 2.2198 1.7144 1.1171 0.7506 0.4563 
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Thus, it can be stated that an asymptotically size α 
test will reject H0, if: 
 

( ) ( ) ( ) ( )
2 1

1 2

1 2 2*
11 4 , ,

h h

Dn n D
MI Y f t s dt dsα λ−

×
≥ Φ − ∫  

 
provided f1 and g1 are also orthogonal on 

1 2h h
D as 

functions in ( )
1 2

2*
2 ,

Dh h
L D λ . Under the same condition as 

before we further get the corresponding power function 
of the test as given by: 
 

( ) ( ) ( )
2* 2 1; 1 2 1 2

1 2 2
1 2: 1 4 |

n n h hD

Dn n D
G f P MI Y f d g f

λ

α λ−
ϒ ×

  
= ≥Φ − ≡ 

  
∫  

 
which converges point-wise to the following power 
function: 
 

( )

( )
( ) ( )

2*

1 2

1 2

1
1

2 2*
1

: 1

1

1 ,
4 , ,

D

f
Dh h

D
Dh h

G f

f d

f V W
f t s dt ds

λ

ζ
σα

λ

ϒ

− ⊥

=

 
 

−Φ Φ − − ∈ ∩ 
  
 

∫

∫

 

 
Although the m1-α can not be calculated analytically, 

the application of the MOSUM test in the practice can be 
realized at least by simulation by approximating the p-

value of the test. For arbitrary design P, let m
*
 be the 

observed value of ( )
2 1n n

MI Y
×

, then the p-value can be 

obtained by approximating the following probability: 
 

( ){ }
2 1

*
0|

n n
p value P MI Y m H

×
− = ≥  

 
For the design 2*

D
λ we have: 

 

( ){ }

( ) ( )

2 1

1 2

*
0

*

2 2*
1

|

1
4 , ,

h h

n n

D
D

p value P MI Y m H

m

f t s dt dsλ

×
− = ≥

 
 
 ≈ −Φ
 
 
 

∫

 

 
provided f1 and g1 are orthogonal on 

1 2h h
D . Hence, the 

realization of the MOSUM test is according to the 
following algorithm 
 
1. Construct the design of experiment containing n1 × n2 
points using a given probability measure P. 
2. Define the hypothesis of interest. 

3. Compute the critical value of ( )
2 1n n

MI Y
×

. 

4. Calculate the associated p-value. 
5. Draw decision: reject H0 when α≥p-value. 
 
Comparison to Set-Indexed CUSUM 

Method 

In this section we aim to establish a different 
approach for testing Hypothesis 2 in that instead of 
considering the moving sums we define other reasonable 

test statistic ( )
2 1n n

CU Y
×

, defined by: 

 

( ) ( ) ( )( )
2 1 1 2 2 1

1

1
: , ,

ˆn n n n n nD
n

CU Y f t s d S Y t s
σ× ×

= ∫  

 
where: 
 

( )( ) ( ) ( )
1 2

1 2 2 1 1 21 1, ,
1 11 2

1
, : 1 , , ,

n n

kn n n n n n ka t b s
k

S Y t s t s Y t s D
n n

   × ×   = =

= ∈∑∑ ℓℓ
ℓ

 

 
is the cumulative sums process of the observations 
indexed by D. This type of stochastic process is a special 
case of the more general one defined by: 
 

( )( ) ( ) ( )
1 2

1 2 2 1 1 2
1 11 2

1
: 1 , , :

n n

B kn n n n n n k
k

S Y B t s Y B A B D
n n

×
= =

= ∈ =∑∑ ℓℓ
ℓ

 

 
which is commonly called set-indexed partial sums 
process, (Alexander and Pyke, 1986; Gaenssler, 1993; 
Pyke, 1983; Xie and MacNeill, 2006). For each 

( )
1 2 2 1

,
n n n n

S Yω
×

∈Ω (ω) constitutes a signed measure on A, 

therefore the integral involved in the statistic 

( )
2 1n n

CU Y
×

can be interpreted path-wise as the integral of 

a function in L2(D, P) with respect to a signed measure. 
We refer the reader to Cohn (1980), pp. 121-153 for the 
definition of integral with respect to signed measure. 

Based on the definition of both MOSUM and 
CUSUM process it can be seen that 

1 2n n
S coincides with 

1 2h h
MS when 

1 2n n
S  is restricted to the Vapnick-

Chervonenkis class (VCC) {[t1, t2] × [s1, s2]: a1<t1, t2<a2, 
b1<s1, s2<b2} of subsets of D. By this reason the 
CUSUM test is viewed as a generalization of the 
MOSUM test. Clearly the MOSUM test differs from the 
CUSUM test in that each moving sum contains a fixed 
number of the observations, whereas the cumulative 
sums test incorporates more and more observations. 
Therefore we can conjecture that MOSUM test should be 
more sensitive than that of CUSUM test in detecting the 
change in model, see also (Chu et al., 1995). It is the 
purpose of this work to investigate this sensitivity 
property by comparing the behavior of the finite sample 
power functions of both tests. 
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The following theorem gives the asymptotic size α 

test for testing (2). The proof is devoted to the appendix. 

Theorem 4.1 

Let g have an orthogonal decomposition g ≡ g1 ⊕ g2 
with g1∈W and g2∈V∩W

⊥ as functions in L2(D, P). 
Suppose that g1 and g2 are continuous and have bounded 
variation on D. Then an asymptotic size α test for the 
hypothesis H0: g2 ≡ 0 against H1: g2 ≡ f1, for some 
continuous functions f1∈V∩W

⊥ will reject H0 if and only 

if ( ) ( )
2 1

1 1 || ||
Pn n

CU Y fα−

×
≥ Φ − . 

An immediate consequence of Theorem 4.1 is the 
asymptotic power function of the test as presented in the 
following corollary. 

Corollary 4.2 

Let 
1 2;P n n

Ψ : V∩W
⊥ → (0, 1) defined by: 

 

( ) ( )
( )

2 1

1 2

*

;
1

1 2

: ,
1 || || |

n n

P n n

P

CU Y
f P f V W

f g fα

× ⊥

−

 
 

Ψ = ∈ ∩ 
 ≥ Φ − ≡ 

 

 
be the power function of the test of size α based on the 

statistic ( )
2 1

*

n n
CU Y

×
 derived above. Then under the 

assumption of Theorem 4.1 it holds: 
 

( ) ( ) ( )
1 2

1 2

11

;,
1

,
lim 1 1 :

|| ||
P

PP n n
n n

P

f f
f f

f
α−

→∞

 
 Ψ = −Φ Φ − − = Ψ
  
 

 

 
where, Φ is the cumulative distribution function of the 
standard normal distribution. 

In contrast to MOSUM test, CUSUM test can be 
realized in the practice in relatively easier way by the 
reason the quantities addressed to the limiting 

distribution of ( )
2 1

*

n n
CU Y

×
 for arbitrary design P can be 

computed analytically. In particular the p-value of the 
test can be approximated by the formula: 
 

( )
2 1

*
*

0

1

1
| 1

ˆ || ||n n
n P

t
p value P CU Y t H

fσ ×

    
− = ≥ ≈ −Φ   

    
 

 

where, t
*
 is the observed value of ( )

2 1

*

n n
CU Y

×
. The 

decision making process is mainly based on the p-value 

instead of computing the value of Φ−1(1-α)||f1||P. 

Simulation Study 

In this section we present simulation study to 

approximate the quantiles of the statistic ( )
2 1

*

n n
MI Y

×
and 

to demonstrate the finite sample behavior of the test 

based on ( )
2 1

*

n n
MI Y

×
as well as ( )

2 1n n
CU Y

×
. We visualize 

the simulation result by scattering the graphs of the 
power functions of both tests. 

Simulating the Quntiles of ( )
2 1

*

n n
MI Y

×
 

Not like the CUSUM test, the asymptotic critical 
value m1-α of the MOSUM test for arbitrary design P and 
window size h1h2 can not be determined analytically as α 
varies in the interval (0, 1). In this study we approximate 
the m1-α for α = 0.01, 0.025, 0.05, 0.10, 0.15 and 0.20 by 
Monte Carlo simulation developed according to the 
assumed model under H0: constant, first and second 
order polynomial model defined on a closed rectangle. 
For each model we use standard normal distribution with 
60×70 observations to approximate the generalized 
(h1h2)-Slepian field Sl;P. Table 1 presents the simulation 
results for the experimental design is constructed using 
the distribution function F(t, s) = 12(1-1/t)(1/2-1/s) on D 

= [1, 2] × [2, 3] defined in Section 1. 

Constant Model 

In the first case we assume under H0, a constant 
model defined as Y (t, s) = β0z0(t, s) + ε(t, s) while we are 
observing a first order model given by Y (t, s) = β0z0(t, s) 
+ β1z1(t, s) + β2z2(t, s) + ε(t, s), where z0(t, s) = 1, z1(t, s) 
= t, z2(t, s) = s, for (t, s) ∈D, β0, β1 and β2 are unknown 
parameters. By a re-parametrization, the model can be 
represented as: 
 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, , , , ,Y t s z t s z t s z t s t sγ γ γ ε= + + +ɶ ɶ ɶ  

 
where, ( )0 ,z t sɶ := 1, ( )1 ,z t sɶ := t-2 ln (2) and ( )2 ,z t sɶ = s-6 

ln (3/2) are orthogonal in L2(D, P) and γ0, γ1, γ3 are 
unknown parameters. The observations are generated 
from a constant model defined as: 
 

( ) ( ) ( )
1 2 1 2 1 2

0, , , ,1 60,1 70
n n k n n k n n k

Y t s z t s t s kε= + ≤ ≤ ≤ ≤
ℓ ℓ ℓ

ɶ ℓ  

 
In this simulation g2 is hypothesized as zero under H0 

and 2 1 3 4g f z z≡ ≡ +ɶ ɶ under H1. Hence, the critical region 

is constructed using the test statistic: 
 

( ) ( )( ) ( )( )
2 1 1 2 2 1

1 2

* *
1 2

1
, ,

ˆh h

n n h h n nD
n

MI Y z z t s d MS Y t s
σ× ×

= +∫ ɶ ɶ  

 
whose simulated (1-α)-quantiles is presented in Table 2. 

First Order Model 

In the second case we give approximation to the (1-

α)-quantiles of the statistic ( )
2 1

*

n n
MI Y

×
for testing first 

order model, that is we test: 
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( ) ( ) ( ) ( ) ( )0 0 0 1 1 2 2: , , , , ,H Y t s z t s z t s z t s t sβ β β ε= + + +  

 
while we are observing a second order model: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 1 2 2

3 3 4 4

, , , ,

, , ,

Y t s z t s z t s z t s

z t s z t s t s

β β β

β β ε

= + +

+ + +
 

 
where, z0(t, s) = 1, z1(t, s) = t, z2(t, s) = s, z3(t, s) = t2 and 
z4(t, s) = s2, for (t, s)∈D. By the similar Grahm-Schmidt 
orthogonalization procedure, the model can be written by 
introducing new parameter system as: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1 1

2 2 3 3 4 4

, , ,

, , , ,

Y t s z t s z t s

z t s z t s z t s t s

γ γ

γ γ γ ε

= +

+ + + +

ɶ ɶ

ɶ ɶ ɶ
 

 
where, γ0, γ1, γ2, γ3, γ0 are unknown parameters and: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )( )

0 1 2

2 2
3

2
4

, 1, , 2ln 2 , , 6ln 3 / 2

, 4ln 2 3 6ln 2 8ln 2 2

, 36ln 3 / 2 15

6ln 3 / 2 36ln 3 / 2 15 6

z t s z t s t z t s s

z t s t t

z t s s s

= = − = −

= +  −  + − − 

= +  −  

−  −  + 

ɶ ɶ ɶ

ɶ

ɶ
 

 
The hypothesis is tested by proposing a statistic: 

 

( ) ( )( ) ( )( )
2 1 1 2 2 1

1 2

* *
3 4

1
, ,

ˆh h

n n h h n nD
n

MI Y z z t s d MS Y t s
σ× ×

= +∫ ɶ ɶ  

 
By generating the observations under H0 using the 

model: 
 

( ) ( )
( ) ( ) ( )
1 2 1 2

1 2 1 2 1 2

0

1 2

, ,

, , ,

n n k n n k

n n k n n k n n k

Y t s z t s

z t s z t s t sε

=

+ + +

ℓ ℓ

ℓ ℓ ℓ

ɶ

ɶ ɶ

 

 
for 1≤ℓ≤60, 1≤k≤70, we present the quantiles of 

( )
2 1

*

n n
MI Y

×
under H0 in Table 2 for several combinations 

of h1 and h2. 

Second Order Model 

For the last case we simulate the (1-α)-quantiles of 

the statistic ( )
2 1

*

n n
MI Y

×
for testing the hypothesis H0 that 

states a second order model is adequate versus H1 that 
assumes a third order model: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1 1 2 2

3 3 4 4 5 5

, , , ,

, , , ,

Y t s z t s z t s z t s

z t s z t s z t s t s

γ γ γ

γ γ γ ε

= + +

+ + + +

ɶ ɶ ɶ

ɶ ɶ ɶ
 

 
where, γ0, γ1, γ2, γ3, γ4, γ5 are unknown constants with: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )( )
( )

0 1 2

2 2
3

2
4

3 2
5

, 1, , 2ln 2 , , 6ln 3 / 2 ,

, 4ln 2 3 6ln 2 8ln 2 2 ,

, 36ln 3 / 2 15

6ln 3 / 2 36ln 3 / 2 15 6 ,

, 1.38452 0.19293 1.03650

z t s z t s t z t s s

z t s t t

z t s s s

z t s t t t

= = − = −

= +  −  + − − 

= +  −  

−  −  + 

= − − +

ɶ ɶ ɶ

ɶ

ɶ

ɶ

 

 
We present the simulation results for a choice f1 ≡ z5 

in Table 2 by generating the observations under H0 from 
the model: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )
1 2 1 2 1 2 1 2

1 2 1 2 1 2

0 1 2

3 4

, , , ,

, , , ,1 60,1 70

n n k n n k n n k n n k

n n k n n k n n k

Y t s z t s z t s z t s

z t s z t s t s kε

= + +

+ + + ≤ ≤ ≤ ≤

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

ɶ ɶ ɶ

ɶ ɶ ℓ

 

 
Simulating the Power 

We investigate by simulation the behavior of the 
empirical power function of the CUSUM test for two 
different cases: Constant and first order model described 
in Subsection 5.1 under two different designs: The 
probability measure P and the uniform measure 2*

D
λ . Our 

purpose is to demonstrate that the finite sample power 
function ( )

1 2;P n n
fΨ lies closed enough to its limit ΨP (f) as 

f varies in V∩W
⊥
 when the sample size n1 and n2 get large. 

The simulation is based on 10000 runs developed using R. 

Constant Model 

By considering the hypothesis formulated in Subsection 
5.1.1, we have ||f1||P = 0.37045 for 1 1 2f z z≡ +ɶ ɶ , so that Φ−1 

(1-α)||f1||P = 0.60934, when α = 0.05. In order to make f 

varies in V∩W
⊥, we define f ≡ λf1, for λ ∈ℝ and generate 

the samples independently from the normal distribution 

with mean ( ) ( )( )
1 2 1 2

1 1

1 2

1
n n n n

g f
n n

λ
× ×

Ξ + Ξ and the 

variance σ2 which is assumed to be unknown. In this case 
we estimate σ2 by using the consistent estimator defined 
in (Arnold, 1981), pp. 148-149. It is clear that the samples 
support the proposed model under H0 if and only if λ = 0, 

otherwise the alternative H1: g∈V = 0 1 2, ,z z z  ɶ ɶ ɶ holds true. 

In this simulation we develop the graphs of 

( )
1 2

1;P n n
fλΨ for α = 0.05, where: 

 

( ) ( )
1 2 1 2 1 2

*
1 1;

1
0.60934

ˆP n n n n n nD
n

f P f dS Yλ
σ ×

  
Ψ = ≥ 

  
∫  

 
together with its point-wise limit ΨP (λf1) = 1-
Φ(1.64485-0.37045λ), where we chose the VCC {[1, t] × 

[2, s]: (t, s) ∈ D} instead of the much larger family A0 as 
the index sets. The simulation results are exhibited in 
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Fig. 2 for λ varies in the closed interval [0, 15] presented 
in two panels (a) and (b) associated with the sample 
sizes 60×65 and 70×75, respectively. It can be seen that 

for constant model the curves of 
1 2;P n n

Ψ approximates 

well those of the limit ΨP achieving the size α = 0.05 at 
λ = 0 as they should be. 

 

 
 
Fig. 2. The graphs of the empirical power functions of the asymptotic size α = 0.05 CUSUM test for constant model represented by 

using dotted line approximated by the limit power function (ΨP (λf1)) scattered using smooth lines. The design points are 
generated using the CDF F(t, s) = 12(1-1/t)(1/2-1/s) on D 

 

 
 

 
 
Fig. 3. The graphs of the empirical power function of the asymptotic size α = 0.05 CUSUM test for constant model under the design 

generated using the scaled Lebesgue measure 2*
D

λ (regular lattice) scattered by using dotted lines approximated by the limit 

power function ( )2* 1
D

f
λ

λΨ represented by smooth lines 
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Table 2. The critical and p-values of MOSUM and CUSUM test for Fe data with a comparison to KS and CvM tests based on the 
residuals proposed in (Somayasa et al., 2015a) 

Model H0 Test Critical value p-value 
n

σɶ  

Constant MOSUM   0.20780 
 h1 = 0.20; h2 = 0.25 3.56799 6.2157e-6 
 h1 = 0.25; h2 = 0.25 3.10043 0.00007 
 CUSUM 1.71874 1.2766e-5 
 KS 1.66759 0.03210 
 CvM 0.48443 0.01240 
First order MOSUM   0.20163 
 h1 = 0.20; h2 = 0.25 1.65455 0.01668 
 h1 = 0.25; h2 = 0.25 1.46001 0.03022 
 CUSUM 1.06940 0.00297 
 KS 0.89523 0.42660 
 CvM 0.09341 0.20460 
Second order MOSUM   0.19759 
 h1 = 0.20; h2 = 0.25 1.94889 0.16492 
 h1 = 0.25; h2 = 0.25 1.28138 0.26086 
 CUSUM 2.60534 0.00459 
 KS 0.92080 0.10380 
 CvM 0.09080 0.01240 

 
Figure 3 illustrates the empirical power function of 

the CUSUM test for constant model when the design 
points are constructed using the uniform measure 2*

D
λ . 

The observations are generated from the model: 
 

( )
( ) ( )( ) ( )

1 2

1 2 1 2 1 2

*

0 1

1 2

,

1
, , ,

n n k

n n k n n k n n k

Y t s

t s f t s t s
n n

ω λ ε= + +

ℓ

ℓ ℓ ℓ
ɶ

 

 
for testing constant model using the statistic 

( )
1 2 2 1

*
1

1

ˆ n n n nD
n

f dS Y
σ ×∫ , where for (t, s)∈D, ( )0 ,t sωɶ = 1, 

f1(t, s) = ( )1 ,t sωɶ  + ( )2 ,t sωɶ , with ( )1 ,t sωɶ = t-3/2 and 

( )2 ,t sωɶ = s-5/2. The set { }0 1 2, ,ω ω ωɶ ɶ ɶ builds orthogonal 

basis of ( )2*
2 , DV L D λ⊂ . In this case 

1
1/ 1

n
t n= +
ℓ
ℓ and 

2
2/ 2

n k
s k n= + , for 1 ≤ ℓ ≤ n1 and 1≤ k ≤ n2. The graphs 

of the finite sample power function 

( )2*
1 2

1;D n n
f

λ
λΨ together with the point-wise limit 

( )2* 1
D

f
λ

λΨ , for α = 0.05 and λ varies in [0, 14] are 

exhibited in Fig. 3 in four panels: (a), (b), (c) and (d) 
associated with the sample sizes 40×50, 60×65, 70×75 
and 80×85, respectively, where: 
 

( ) ( )
( ) ( )

2*
1 2 1 2 2 1

2*

*
1 1;

1

1
0.67151

ˆ

1 1.64485 0.40825

D

D

n n n n n nD
n

f P f dS Y

f

λ

λ

λ
σ

λ λ

×

  
Ψ = ≥ 

  

Ψ = −Φ −

∫
 

 
The simulation shows that in the case of constant 

model the empirical power functions of the CUSUM test 

lie very close to their limits independent to the choice of 
the design strategy even for relatively moderate sample 
sizes. Thus ΨP as well as 2*

Dλ
Ψ give very good 

approximation to 
1 2;P n n

Ψ and 2*
1 2;D n nλ

Ψ , respectively. 

First Order Model 

We simulate the power function of the CUSUM 
test for the setup considered in Subsection 5.1.2 in 
which we propose a test using the statistic 

( )
1 2 2 1

*
1

1

ˆ n n n nD
n

f dS Y
σ ×∫ , where the observations are 

generated independently from the normal distribution 
with mean given by: 
 

( ) ( )( )
1 2 1 2

1 1

1 2

1
, ,

n n k n n k
g t s f t s

n n
λ+

ℓ ℓ
ɶ  

 
and unknown variance σ2. In this case 

1 0 1 2g z z z W≡ + + ∈ɶ ɶ ɶ ɶ  and 1 3 4f z z V W ⊥≡ + ∈ ∩ɶ ɶ . That is 

under H0 we assume that a first order model is adequate, 
while we are observing a second order model. Since ||f1||P 

= 1.50177, then for α = 10%, we have: 
 

( ) ( )
( ) ( )

1 2 1 2 2 1

2*

*
1 1;

1

1
1.92459

1 1.28155 1.50177
D

P n n n n n nD
n

f P f dS Y

f
λ

λ
σ

λ λ

×

  
Ψ = ≥ 

  

Ψ = −Φ −

∫⌢
 

 
Next, we consider the same test problem as before 

with a little modification in that the experimental 
design is now given by a regular lattice of size n1 × n2 
on the experimental region I

2:= [0, 1] × [0, 1]. Then 
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the corresponding orthogonal version of the regression 
functions {z0, z1, z2, z3, z4, z5} are given by: 

 

( ) ( ) ( )
( ) ( )

0 1 2

2 2
3 4

, 1, , 1 / 2, , 1 / 2,

, / 12 7 / 24, , / 12 7 / 24

w t s w t s t w t s s

w t s t t w t s s s

= = − = −

= − − = − −

ɶ ɶ ɶ

ɶ ɶ
 

 

We test 0 0 1 2: : , ,H g W w w w ∈ =  ɶ ɶ ɶ  against 

1 0 1 2 3 4: : , , , ,H g V w w w w w ∈ =  ɶ ɶ ɶ ɶ ɶ  by the statistic 

( )2
1 2 2 1

*
1

1

ˆ n n n nI
n

f dS Y
σ ×∫ , where the observations are 

generated independently based on the normal 
distribution with mean: 

 

( ) ( )( )1 1 2 1 1 2

1 2

1
/ , / / , /g n k n f n k n

n n
λ+ℓ ℓ  

 

and unknown variance σ2, thereby 

1 0 1 2g w w w W≡ + + ∈ɶ ɶ ɶ and 1 3 4f w w V W ⊥≡ + ∈ ∩ɶ ɶ . In this 

case we get after little computation 

2
2

1|| || 0.38879
I

f
λ

= and there for ( ) 2
2

1
10.90 || ||

I

f
λ

−Φ = 

0.49825, giving the powers: 

 

( ) ( )
( ) ( )

2 2
2 1 2 1 2 2 1

2
2

*
1;

1

1
0.49825

ˆ

1 1.28155 0.38879

I

I

n n n n n nI
n

f P dS Y

f

λ

λ

λ
σ

λ λ

×

  
Ψ = ≥ 

  

Ψ = −Φ −

∫
 

 
evaluated at λf1∈V∩W

⊥, for λ∈R. 
For the two different situations we present the 

simulation results in Fig. 4 and 5, respectively. It can be 
seen therein that independent to the choice of the design 
strategy, the limiting power function gives relatively 
good approximation to that of the finite sample power 
function of the CUSUM test. Both quantities achieve the 
specified probability 10% when λ is set to zero even for 
relatively moderate sample sizes. Thus, in the practice 
we can realize the test by directly calculating the 

quantiles of the limiting distribution of ( )
2 1n n

CU Y
×

under 

H0 which is given by Φ−1(1-α)||f1||P, for a given α∈(0, 1) 
and f1∈V∩W

⊥. 

 

 
 
Fig. 4. The graphs of the empirical power functions of the asymptotic size α = 10% CUSUM test for first order model under the 

design generated using the CDF F(t, s) = 12(1-1/t)(1/2-1/s) for (t, s)∈D represented by using dotted line approximated by the 
limiting power function ΨP (λf1) scattered using smooth lines. (a) Sample size = 60×65, (b) Sample size = 70×75 
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Fig. 5. The graphs of the empirical power functions of the asymptotic size α = 10% CUSUM test for first order model represented 

by using dotted lines approximated by the limit power function ( )2

2
1I

fλ λΨ  scattered using smooth lines. The design is n1 × 

n1 regular lattice: (a) 50×55, (b) 60×65, (c) 70×75 and (d) 80×85 
 

 
 
Fig. 6. The three dimensional scatter plot of the trend surface of the logarithm of the percentage of Fe. Source of data: Tahir (2010) 

 

Numerical Application 

This section illustrates strategies for selecting 
appropriate model for describing the physically 
meaningful functional relationship between the 

conditional and the response variables given by the 
coordinate and the observed percentage of Ferum (Fe), 
respectively. We study the data provided in Tahir (2010) 
received from a mining industry, which consists of the 
percentage of Fe observed independently over 7×14 
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lattice points of drilling bores on the exploration region 
of the company with 7 equidistance column running 
from west to east and 14 equidistance rows running from 
south to north as scattered in Fig. 6. Here our goal is to 
verify by conducting both MOSUM and CUSUM tests 
for checking whether or not a first-order model 
appropriate for describing the model is. For that we 
regard the observation as a realization of a regression 
model defined on the unit rectangle I

2 by putting the 
coordinate (-5824,-6000) where the observation process 
was initiated as the point (0,0) and the coordinate (-5825, 
-5725) where the observation process was ended as the 
point (1, 1). To stabilize the variance we apply logarithm 
transformation to the percentages of Fe. We denote the 
transformed measurement as LogFe. Preliminary 
goodness of fit for the normality of the sample is 
presented in Fig. 7 which shows that the distribution 
model of LogFe is not fit to normal family. 

Table 2 presents the computation results of the 
critical values and the corresponding p-values of the 
MOSUM and CUSUM tests compared with those 
proposed in (Somayasa et al., 2015a) defined by using 
the Kolmogorov-Smirnov (KS) and Cramer-von Mises 
(CvM) functionals of the partial sums process of the 
least squares residuals. The p-values of the KS and CvM 
tests are approximated by simulation, whereas those of 
the MOSUM and CUSUM tests are computed 
analytically. For the computation of the CUSUM, KS 
and CvM statistics we consider the VCC class {[0, t] × 

[0,s]: 0≤t, s≤1} instead of the family of all convex sets. 

See also the cumulative sums defined in (Bischoff and 
Somayasa, 2009; Somayasa et al., 2015a; Xie and 
MacNeill, 2006). For each assumed model we also calculate 

n
σɶ  using the method proposed in (Arnold, 1981). 

In the case of constant model, both the MOSUM and 
the CUSUM tests result in too small p-values. This mans 
that the constant model is not appropriate for LogFe 
under the MOSUM and CUSUM tests. But quite 
different result is obtained when we consider the p-

values of the KS and CvM tests in which constant model 
could be adequate at level less than 3% for KS and at 
level less than 1% for CvM, respectively. 

The MOSUM as well as the CUSUM tests do not 
reject a first order model for all level of significance 
α≤1.668% and α≤0.297%, respectively. This means that 
there is a significance evidence where a first order 
model is fit to the sample. Under additional information 
obtained from the p-values of the KS and CvM tests in 
which the hypothesis is not rejected for almost all 
frequently used values of α, it can be stated that first 
order model is an appropriate model for LogFe. This 
conjecture is also suitable with the scatter plot of the 
data. Even though second order model is also fit to the 
model when the test is conducted using the MOSUM 
and KS tests as their p-values show, since the CUSUM 
and the CvM tests show evidence that it only fit for α 

set less then or equal 0.459 and 1.24%, respectively, we 
recommend that first order model is the most 
appropriate for the LogFe. 

 

 
 
Fig. 7. The qqnorm plot for LogFe. Two sided Kolmogorov-Smirnov for normality assign the critical value 0:0933 and the p-value 

0.0352. Source of data: Tahir (2010) 
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Concluding Remark 

We established an asymptotically size α test for 
checking the appropriateness of a spatial regression 
whose critical region is constructed by using the 
probability distribution of the statistic expressed as the 
integral of the competing known regression function 
with respect to the generalized (h1h2)-Slepian field. This 
statistic appears as the limit of the integral of such 
regression function with respect to the MOSUM process 
of the matrix of the observations. Other test which is 
called CUSUM test is also proposed defined in the like 
way as in the MOSUM test. We show that our tests are 
more applicable in the case where the design strategy must 
be incorporated in the analysis. Beside that our test 
procedures are also tractable in the sense the quantities 
such as the quantiles of the limiting distribution and the p-

values can be computed analytically. Based on the limit 
power functions of both tests it is shown that the MOSUM 
test is asymptotically more sensitive in detecting the 
change of the model than the CUSUM test. In the present 
work the result was derived under independently 
distributed observations. In the future we put our setup in 
a more general and reasonable situation in which the 
observations are assumed to be dependent or at least 
stationary. This approach will be useful for handling the 
modeling problem of spatial data. In a forthcoming paper 
of Somayasa and et al. the investigation is extended to 
multivariate spatial regression model defined in 
(Somayasa et al., 2015b; Somayasa and Wibawa, 2015; 
Somayasa et al., 2016) by considering the moving sum 
process of the multivariate recursive residuals. 
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Appendix A. Generalized (h1h2)-Slepian 

Field 

Definition A.1 

For i = 1, 2, let hi with 0 < h1 < (a2-a1) and 0 < h2 < 

(b2-b1) be positive real numbers. A process Sl;P:= {Sl;P (t, 
s): (t, s) ∈

1 2h h
D is called a generalized (h1h2-)Slepian 

filed, if and only if Sl;P is a centered Gaussian process 
with the covariance function: 
 

( ) ( )( )
( )

;
1 1 2 2

1 1 1 1 2 2 2 21 2 1 2

, , ,

, , , ,

l PS
t s t s

P t t s s t t s s

γ

       = × ∩ ×       

 

 
for (t1, s1), (t2, s2)∈

1 2h h
D := [a1, a2-h1] × [b1, b2-h2], where [x, 

x]1 and [y, y]2 stand for [x, x + h1] and [y, y+h2], 
respectively. In the case where P is the Lebesgue measure 
λ2 on D, we call Sl;P a generalized (h1h2-)Slepian filed, 
denoted by 2;l

S
λ

, with the covariance function: 

 

( ) ( )( ) ( ) ( )2
;

1 1 2 2 1 1 2 2 1 2, , , | | | |
lS

t s t s h t t h s s
λ

γ
+ +

= − − − −  

 
where, x

+:= max{x, 0}, see also (Bischoff and Gegg, 
2014; Chu et al., 1995; Fuchang and Li, 2007). 

Remark A.2 

Some immediate consequences implied by the 
definition of Sl;P can be summarized as follows: 
 

• For every (t, s) ∈
1 2h h

D , Sl;P (t, s) ∼ N(0, P([t, t]1 × [s, 

s]2) 
• Let WP (t, s):= WP ([a1, t] × [b1, s]). For fixed h1, h2 

defined above, let: 
 

( ) ( )
( ) ( ) ( )

1 2

2 1

, : ,

, , ,

P P

P P P

W x y W x h y h

W x y h W x h y W x y

∆ = + +

− + − + +
 

 

Since ∆WP (x, y) is also distributed as N(0, P([t, t]1 × 

[s, s]2), then Sl:P is said to be equivalent in distribution to 

∆WP, denoted by ;

D

l P PS W∆ . 

Theorem A.3. (Invariant Principle for MOSUM 

Process) 

Let { }
2 1

1 21; 1n n
n n

ε
× ≥ ≥

be a sequence of independent and 

identically distributed random matrices, where 

( ) 1 2

2 1

,

, 1
:

n n

kn n k
ε ε

× =
=

ℓ
ℓ

, ( )
1 2

: ,
k n n k

t sε ε=
ℓ ℓ

, with E(εkℓ) = 0 and 

Var(εkℓ) = σ2
<∞, for 1≤ℓ≤n1 and 1≤k≤n2. Let the 

experimental design 
1 2n n×

Ξ is constructed using a 

probability measure P on D = [a1, a2] × [b1, b2], such 
that P = P1 × P2 with the associated distribution function 

F satisfying F = F1 × F2 for continuous and increasing 
marginals F1 and F2 on [a1, a2] and [b1; b2], respectively. 
Then as n1, n2-1, we have: 
 

( )
1 2 2 1

;

1
l Ph h n n

MS Sε
σ ×

⇒  
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Proof 

By applying the well-known Prohorov's theorem (cf. 
Billingsley (1999), pp. 35-40), we show first that the finite 

dimensional distribution of ( )
1 2 2 1

1
h h n n

MS ε
σ ×

converges to 

that of Sl;P. That is for any points (t1, s1), (t2, s2),..., (tm, sm) 
in D and any constants b1,...,bm, we show that the 

sequence { }
1 2n n

C , for n1≥1, n2≥1, where 

( )( )
1 2 1 2 2 11

1
: ,

m

i i in n h h n ni
C b MS t sε

σ ×=
=∑ converges in 

distribution to ( );1
,

m

i l P i ii
b S t s

=∑ . The last is normally 

distributed with mean zero and variance 

1 1

m m

i ji j
b b

= =∑ ∑ P([ti, ti]1 × [si, si]2∩[tj, tj]1 × [sj,sj]2). By the 

definition of ( )
1 2 2 1h h n n

MS ε
×

, we get: 

 

( )
( )( ) ( )( )( )

( )
( )

( )

( )

( )

( )

( )

( )

1 2

1 2 2 1 1 2 2 1

1 1 1 2 2 2 1 1 1

2 2 1 1 2 2 1 1

2
1 1

1 1 1 21 1 1

1
, ,

i j j

i i j j

n n

m m

i j i i j jh h n n h h n n
i j

n F t h n F s h n F t h
m m

k k

i j

i j k n F s n F t k n F s n F t

Var C

b b E MS t s MS t s

E
b b

n n

ε ε
σ

ε ε

σ

× ×
= =

     + + +          
′ ′

= =        ′ ′= = + = + = +            

=

=

∑∑

∑∑ ∑ ∑ ∑ ℓ ℓ

ℓ ℓ

( )2 2 2

1

in F s h +  

+

∑

 

 
Furthermore, by the independence of εkℓ, we have: 

 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

2 2 2 1 1 1 2 2 2 1 1 1

2 2 1 1 2 2 1 1
1 21 1 1 1

2 2 2 2 2 2

2 2

2 2

min ,

max

i i j j

i i j j

n F s h n F t h n F s h n F t h

k k

k n F s n F t k n F s n F t

i j

i

E

n n

n F s h n F s h

n n

n F s

ε ε

σ

       + + + +              
′ ′

       ′ ′= + = + = + = +              

    + +    
 
  

=


−

∑ ∑ ∑ ∑ ℓ ℓ

ℓ ℓ

( )

( ) ( )

( ) ( )

2 2

2 2

1 1 1 1 1 1

1 1

1 1 1 1

1 1

,

min ,

max ,

j

i j

i j

n F s

n n

n F t h n F t h

n n

n F t n F t

n n

 
 
 
 
         

  
    

     + +          ×          −   
    

 

 
which converges as n1, n2→∞, to: 
 

( ) ( ){ } ( ) ( ){ }( )
( ) ( ){ } ( ) ( ){ }( )

( ) ( )
( )

2 2 2 2 2 2

1 1 1 1 1 1

2 12 2 1 1

1 2 1 2

min , max ,

min , max ,

, , , ,

, , , ,

i j i j

i j i j

i i j j i i j j

i i i i j j j j

F s h F s h F s F s

F t h F t h F t F t

P s s s s P t t t t

P t t s s t t s s

+ + −

× + + −

       = ∩ ∩       

       × × ∩ ×       

 

{ }( ) { }( )( )
{ }( ) { }( )( )

2 2 2 2

1 1 1 1

min , max ,

min , max ,

i j i j

i j i j

F s h s h F s s

F t h t h F t t

= + + −

× + + −
 

 
The first equality of the preceding result follows 

from the assumption that F1 and F2 are increasing on 
[a1, a2] and [b1, b2], respectively. Thus it is shown that 
for n1, n2→∞: 
 

( )
( )

1 2

1 2 1 2
1 1

, , , ,

n n

m m

i j i i i i j j j j

i j

Var C

b b P t t s s t t s s
= =

       → × ∩ ×       ∑∑
 

 

which is the variance of ( );1
,

m

i l P i ii
b S t s

=∑ . Next we show 

that for every ∈>0, it holds ( )
1 2,

lim 0
n n

L
→∞

∈ = , where: 

 

( )

( )

( )

( )

( )2 2 2 1 1 1

2 2 1 1

1 2

2

11 1 1 1 2

1
: 1

i i

ki i

n F s h n F t h
m

i k

i k n F s n F t
n n

L

b E
n n ε

σ

ε
σ

   + +      

 
 =     >∈= + = +           

∈

 
 

= × 
 
 

∑ ∑ ∑
ℓ

ℓ

ℓ

 

 
Let K:= max1≤i≤m |bi|, since εkℓ is independent and 
identically distributed, then we get: 
 

( )
( ) ( )

( ) ( )
{ }

( ) { }

1 2 1 2

11 1 2

11 1 21 2

2 2 2 2 2

2
, ,

2 2

1 1 1 1 1 2
11

| |
1 1

2
112 1 2 | |,

0 lim lim

| | 1

, , lim | | 1 0

i i

n n n n

i i

n n

i i i i
n nn n

n F s h n F smK
L

n n

n F t h n F t
E

n n

mK
P t t s s E

ε σ

ε σ

σ

ε

ε
σ

→∞ →∞

>∈

>∈→∞

    +    < ∈ ≤ −
 
 

    +      × − ×     

 
   = × × =    

 

 

 
by the dominated convergence theorem. Hence, the 
Lindeberg central limit theorem (cf. Athreya and 
Lahiri (2006), pp. 343-345), leads us to the conclusion 

that 
1 2n n

C converges in distribution to ( );1
,

m

i l P i ii
b S t s

=∑ . 

In the last step of the proof we have to show the 
tightness of the MOSUM process. It can be shown 
that for every (t, s)∈D, it holds: 
 

( )( ) ( ) [ ] [ ]( )
1 2 2 1 1 2 2 1 1 2

, , ,
h h n n n n n n

MS t s S t t s sε ε
× ×

= ×  

 
that is the MOSUM process coincides with the 
CUSUM process when the index sets are restricted to 
the VCC {[t, t]1 × [s, s]2: (t, s)∈D} of subsets of D. 
Due to the results of Alexander and Pyke (1986) and 

Pyke (1983), the tightness of ( )
1 2 2 1h h n n

MS ε
×
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immediately follows from the tightness of ( )
1 2 2 1n n n n

S ε
×

, 

establishing the proof. 

Definition A.4 

Let Γ1:= [ ] [ ] ( ){ }11
0 1 1 2 1
, , , , , ,

mm
t t t t t t

−

 ⋅ ⋅ ⋅   
 be a set of m1 

closed intervals on [a1, a2], such that 

1
1 0 1 2 2m

a t t t t a= < < < ⋅ ⋅ ⋅ < = . Let Γ2 := 

[ ] [ ] ( ){ }22
0 1 1 2 1
, , , , , ,

mm
s s s s s s

−

 ⋅ ⋅ ⋅   
 be a set of m2 closed 

intervals on [b1, b2], such that 

2
1 0 1 2 2m

b s s s s s= < < < ⋅ ⋅ ⋅ < = . The Cartesian product K := 

Γ1 ×Γ2 which are consisting of m1m2 closed rectangles 
which builds a partition on D. For 1≤wi≤mi, with i = 1, 2, 
let 

1 2w w
J be the element of K defined by 

1 2 1 1
: , ,

i i i iw w w w w w
J t t s s

− −
   = ×    . The increment of Sl;P on 

1 2w w
J is denoted by 

1 2
;l Pw w

S∆ , given by: 

 

( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

; ; ; 1

; ;1 1 1

: , ,

, ,

l P l P l Pw w w w w w

l P l Pw w w w

S S t s S t s

S t s S t s

−

− − −

∆ = −

− +
 

 
Remark A.5 

Let 
1

,
i iw w

t t
+

 
   × 

1
,

i iw w
s s

+
 
  and 

1
,

i iw w
t t

′ ′ +
 
   

×
1

,
i iw w

s s
′ ′ +

 
   be arbitrary disjoint rectangles on D. Then 

( )
1 2 1 2

; ;1 1 1 1
,

l P l Pw w w w
Cov S S

′ ′+ + + +
∆ ∆ is computed by the 

following formula: 
 

( )
1 2 1 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1

; ;1 1 1 1

1 1 1 1 1 1 1 11 2 1 2

1 1 1 1 1 11 2 1 2

1 1

,

, , , ,

, , , ,

,

l P l Pw w w w

w w w w w w w w

w w w w w w w w

w w

Cov S S

P t t s s t t s s

P t t s s t t s s

P t t

′ ′+ + + +

′ ′ ′ ′+ + + + + + + +

′ ′ ′ ′+ + + + + +

+ +

∆ ∆

        = × ∩ ×         

        − × ∩ ×         

−
2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 1 11 2 1 2

1 1 1 11 2 1 2

1 1 1 1 1 11 2 1

, , ,

, , , ,

, , , ,

w w w w w w

w w w w w w w w

w w w w w w w w

s s t t s s

P t t s s t t s s

P t t s s t t s s

′ ′ ′ ′+ + + +

′ ′ ′ ′+ + + +

′ ′ ′ ′+ + + + + +

       × ∩ ×         

        − × ∩ ×         

       − × ∩ ×       

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

2

1 1 1 11 2 1 2

1 1 1 11 2 1 2

1 11 2 1

, , , ,

, , , ,

, , ,

w w w w w w w w

w w w w w w w w

w w w w w w w

P t t s s t t s s

P t t s s t t s s

P t t s s t t s

′ ′ ′ ′+ + + +

′ ′ ′ ′+ + + +

′ ′ ′+ +

 
 
 

        − × ∩ ×         

        − × ∩ ×         

     − × ∩ ×     

) )
2

1 1 2 2 1 1 2 2

2

1 1 1 1 1 11 1 22

,

, , , ,

w

w w w w w w w w

s

P t t s s t t s s

′

′ ′ ′ ′+ + + + + +

     

       − × ∩ ×         

 

) )

) )

) )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

1 1 1 11 1 22

1 1 1 11 1 22

1 1 1 12

, , , ,

, , , ,

, , ,

w w w w w w w w

w w w w w w w w

w w w w w w w

P t t s s t t s s

P t t s s t t s s

P t t s s t t s

′ ′ ′ ′+ + + +

′ ′ ′ ′+ + + +

′ ′ ′+ + +

       − × ∩ ×         

       − × ∩ ×         

    − × ∩ ×      2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1

1 1 2

1 1 1 11 2 1 2

1 11 2 1 2

1 11 2

,

, , , ,

, , , ,

, , ,

w

w w w w w w w w

w w w w w w w w

w w w w w w

s

P t t s s t t s s

P t t s s t t s s

P t t s s t t

′ +

′ ′ ′ ′+ + + +

′ ′ ′ ′+ +

′ ′+ +

     

        − × ∩ ×         

        − × ∩ ×         

    − × ∩     2 2

1 1 2 2 1 1 2 2

1 2

1 11 2 1 2

,

, , , ,

w w

w w w w w w w w

s s

P t t s s t t s s

′ ′

′ ′ ′ ′+ +

   ×    

        − × ∩ ×         

 

 
Proposition A.6 

The ordinary (h1h2)-Slepian field 2;l
S

λ
 is a centered 

Gaussian process with independent increments. 

Proof 

Let 
1

,
i iw w

t t
+

 
   × 

1
,

i iw w
s s

+
 
  and 

1
,

i iw w
t t

′ ′ +
 
   

×
1

,
i iw w

s s
′ ′ +

 
   be arbitrary disjoint rectangles on D. We 

assume without loss of generality that 

1 11w w
t t

′+
≤ ,

2 21w w
s s

′+
≤  and 0 , 1

i i i
w w m′≤ − . In addition we 

need to set 
1 1

11w w
t t h

′+
≤ < and 

2 2
21w w

s s h
′+

≤ < . By the 

property of Gaussian distribution, it is sufficient to show 

that ( )2 2
1 2 1 21 1 ; 1 1 ;

, 0
w w l w w l

Cov S S
λ λ′ ′+ + + +

∆ ∆ = . By recalling the 

definition of the increments of 2;l
S

λ
, we get the 

following result when P is substituted by λ2: 

 

( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )

2 2
1 2 1 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2

1 1 ; 1 1 ;

1 21 1 1 1

1 21 1 1

1 21 1 1

1 21 1

1 21 1 1

1 2 1

,
w w l w w l

w w w w

w w w w

w w w w

w w w w

w w w w

w w w

Cov S S

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t h s

λ λ′ ′+ + + +

′ ′+ + + +

′ ′+ + +

′ ′+ + +

′ ′+ +

′ ′+ + +

′ ′ +

∆ ∆

= − + − +

− − + − +

− − + − +

− − + − +

− − + − +

− − + −( )
( )( )
( )( )
( )( )

2

1 1 2 2

1 1 2 2

1 1 2 2

1

1 21 1

1 2 1

1 21 1 1

w

w w w w

w w w w

w w w w

s

h t t h s s

h t t h s s

h t t h s s

+

′ ′+ +

′ ′ +

′ ′+ + +

+

− − + − +

− − + − +

− − + − +
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( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1

1 21 1

1 21 1

1 21

1 21 1 1

1 2 1

1 21

1 21

1 1 1

w w w w

w w w w

w w w w

w w w w

w w w w

w w w w

w w w w

w w

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t h s s

h t t
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1
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w w w w

w w w w w w
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1 1 2 1 1 2
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w w w w w w
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Since both rectangles are arbitrary and disjoint, then 

by the normality of the increments of 2;l
S

λ
, 

2
1 21 1 ;w w l

S
λ+ +

∆ and 2
1 21 1 ;w w l

S
λ′ ′+ +

∆  are independent which is 

completing the proof. 

Proposition A.7 

Let 
1 1 1

: ,
k n n

I t t
+

 =  ℓ ℓ ℓ
 × 

2 2 1
,

n k n k
s s

+
 
   be any rectangle in 

1 2h h
D . For any h1, h2 with 0<h1<(a2-a1) and 0<h2<(b2-

b1), it holds ( )21, 1 ;k l
Var S

λ+ +∆
ℓ

= 4λ2(Iℓk). 

Proof 

By a result in multivariate analysis, ( )21, 1 ;k l
Var S

λ+ +∆
ℓ

 

= aE(hhT)aT, where the vector h is defined as: 
 

( ) ( )
( ) ( )

2 2
1 2 1 2

2 2
1 2 1 2

T

; 1 1 ; 1

; 1 ;

, , , ,

, , ,

l n n k l n n k

l n n k l n n k

S t s S t s
h

S t s S t s

λ λ

λ λ

+ + +

+

 
 =  
 
 

ℓ ℓ

ℓ ℓ

 

 
and a := (1,-1,-1, 1). The definition of the covariance 
function 

2;l
S

λ

γ leads us to the following variance-

covariance matrix of h: 
 

( )
11 12 13 14

12 22 13 14

13 23 33 34

14 24 34 44

T

c c c c

c c c c
E hh

c c c c

c c c c

 
 
 =  
  
 

 

where: 
 

( )
( ) ( )( )

( )( )
( ) ( )

2 2

1 1 1 1 2 2

1 1 2 2

1 1 2 2

11 22 33 44 1 2 12 1 2 1

13 2 1 14 1 21 1 1

23 1 21 1

24 1 2 34 1 21 1

,

, ,

,

,

n k n k

n n n n n k n k

n n n k n k

n n n k n k

c c c c h h c h h s s

c h h t t c h t t h s s

c h t t h s s

c h t t h c h h s s

+

+ + +

+ +

+ +

= = = = = − +

= − + = − + − +

= = + − +

= − + = − +

ℓ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

 

 
After some computations, aE(hhT)aT

 can be further 
expressed as: 
 

( ) ( )( )
( ) ( )

( ) ( )
( )( ) ( )

( )
( )

1 1 2 2

1 1 2 2

2 2 2 2

2 2 2 2 2 2

2 2

2 2

1 2 1 21 1

1 2 2 11 1

1 2 1 2 1 21 1

1 2 11 1 1

1 2 2 1

1

4 4

4 4

4 4 4 4

4 4 4

4 4

4

T T

n n n k n k

n n n k n k

n k n k n n

n n n k n k n k n k

n n

n n

aE hh a h h h t t h s s

h t t h h s s h

h h h h h s s h t t

t t s s h h h s s

h h h t t

t t

+ +

+ +

+ +

+ + +

+

+

= + − + − +

− − + − − +

= + − + − +

+ + + − + +

− + +

= +

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ ( ) ( )
2 2

2

1
4 kn k n k

s s Iλ
+

+ = ℓ

 

 
which is completing the proof.  

Appendix B. Proof of Theorem 3.1 

By the linearity of 
1 2h h

MS on 2 1n n×
ℝ and the definition 

of the cumulative sums operator, we get: 
 

( ) ( )2 1

1 2 2 1 1 2 1 2 2 1

1 2 1 2

*
1 1

1 2
h h h h

n n

h h n n h h h h n nD D

g
f MS Y f MS MS

n n
ε×

× ×

  
  = +

    
∫ ∫  

 
By Equation 3, for every (t, s)∈

1 2h h
D , it holds: 

 

( )( )

[ ] [ ] ( ) ( )

( )( )

[ ] [ ] ( )( )

1 2 2 1

2 1
1 2

1 21 2

1 2 2 1

1 2 2 1
1 2

*

, ,
1 1 1 2

, ,

1
,

ˆ

,1
1 ,

ˆ

1
,

ˆ

1 1
,

ˆ ˆ

h h n n
n

n n
n n k

n n kt t s s
kn

h h n n
n

n h h n nt t s s
n n

MS Y t s

g t s
t s

n n

MS t s

gdP MS t s

σ

σ

ε
σ

ε
σ σ

×

×
= =

×

×

=

+

+

∑∑

∫

ℓ

ℓ
ℓ  

 
The right-hand side of the last equation converges in 

distribution to: 
 

( ) ( );

1
, ,g l Pt s S t sζ

σ
+  

 
by the invariance principle for MOSUM process 
(Theorem A.3) and the fact that Pn⇒P. Hence, by the 
continuous mapping theorem we get: 
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( ) ( ) ( )
1 2 2 1

1 2 1 2 1 2

*
1 1 1 ;

1 1
, ,

ˆ h h h h h h

g l Ph h n nD D D
n

f MS Y f t s f S t sζ
σ σ×

⇒ +∫ ∫ ∫  

 
which is establishing the proof. 

Appendix C. Set-Indexed Gaussin white 

Noise 

Definition C.1. (Lifshits (2012), pp. 13-15) 

Let P be a probability measure on D, B(D)) and A0:= 
{A∈B(D): P(A)<∞} be a class of subsets of D which has 
finite measure under P. Let C(A0) be the space of 
functions on A0 which are dP -uniformly continuous, 
where dP is a pseudo metric on A0 × A0, defined by dP 

(A1,A2):= P(A1∆A2). As usual C(A0) is furnished with the 
uniform norm 

0
|| ||

A
⋅ given as 

0
|| ||

A
w := ( )

0
sup | |

A A
w A

∈
, for 

every w∈C(A0). A centered Gaussian process WP := {WP 

(A), A∈A0} defined on a common probability space (Ω-
,F, P), say, is called univariate Gaussian white noise with 
the control measure P, if and only if: 
 

( ) ( )( ) ( ) 0, ,P P PE W A W B P A B A B A= ∩ ∀ ∈  
 

The sample path (trajectory) of WP is concentrated in 

C(A0) (cf. (Lifshits, 2012), pp. 13-15). 

Theorem C.2. (Construction of the Set-Indexed 

Gaussin white Noise) 

Let the experimental design 
1 2n n×

Ξ be constructed by 

using the probability measure P on B(D) and let the 
sequence of the matrix of random errors 

( ) 2 1

2 1

,

1, 1
:

n n

kn n k
ε ε

× = =
=

ℓ
ℓ

consists of i.i.d. random variables with 

E(εkℓ) = 0 and Var(εkℓ) = σ2
<1, for n1≥1 and n2≥1, where 

( )
1 2

: ,
k n n k

t sε ε=
ℓ ℓ

. Then we have: 

 

( )
1 2 2 1

1 2

1
,Pn n n n

S W as n and nε
σ

⇒ → ∞  

 
Proof 

Let c1,..., cm be any constant and B1,...,Bm be any 
subset in A0, m≥1. We define linear combination 

( )( )( )
1 2 1 2 1 21

:
m

i in n n n n ni
F c S Bε

×=
= Ξ∑ . Then we get: 

 

( ) ( )( ) ( )( )

{ } ( )

( ) ( )

1 2 1 2 1 2 1 2 1 2

1 2

1 2

1 1

1 1 1 11 2

1 1 1 1

1
1 ,

i j

m m

i j i jn n n n n n n n n n
i j

n nm m

i j n n kB B
i j k

m m m m

i j n i j i j i j

i j i j

Var F E c c S B S B

c c t s
n n

c c P B B c c P B B

ε ε
× ×

= =

∩
= = = =

= = = =

 
=  

 

=

= ∩ → ∩

∑∑

∑∑ ∑∑

∑∑ ∑∑

ℓ
ℓ

 

where, ( )1 1

m m

i j i ji j
c c P B B

= =
∩∑ ∑ is actually the variance of 

( )1

m

i P ii
c W B

=∑ which is normally distributed with mean 

zero and variance ( )1 1

m m

i j i ji j
c c P B B

= =
∩∑ ∑ . Next we show 

that the Lindeberg condition is fulfilled. For every ∈>0, let: 
 

( )
( )

1 21 2

1 1 2
1 2

2

11 2

1 1

1
1 ,

1
1 ,

:
1

i

m

i ki B n n ki

m

i kB n n kn n
i

k

c t s
n n

c t s
n n

L E

ε

ε

ε

=

=

= =
 
   

>∈  
   

 
 
 
 =
 ×
 

∑ 
 

∑
∑∑

ℓℓ

ℓℓ

ℓ

 

 
and let M := max1≤i≤m|ci|. Then by the i.i.d. property of εkℓ 

and by the well-known bounded convergence theorem it 
holds: 
 

( )
1 21 2 1 2

11

2 2 2
11

, ,
| |

0 lim lim | | 1 0
n nn n n n

Mm

L M m E
ε

ε ε
 ∈→∞ →∞  

> 
  

 
 

≤ ≤ = 
 
 

 

 
Thus, by the Lindeberg-Levy central limit theorem, the 

finite dimensional distribution of ( )
1 2 2 1n n n n

S ε
×

 converges 

weakly to that of WP. Since ( )
1 2 2 1n n n n

S ε
×

is dP-continuous, 

we define the modulus of continuity of ( )
1 2 2 1n n n n

S ε
×

as: 

 

( )
( ){ }

( )( ) ( )( )
1 2 1 2 2 1 1 2 2 1

; : sup | |
n n n n n n n n n n

P A B

W S S A S B
δ

δ ε ε
× ×

∆ <

= −  

 
Hence in order to show tightness it suffices to show that: 

 

( )( ){ }
1 2

1 2
0 ,

limlimsup : ; 0, 0
n n

n n

P W S
δ

ω ω δ
→ →∞

∈Ω >∈ = ∀∈>  

 
To this end we refer the reader to (Alexander and Pyke, 

1986; Gaenssler, 1993; Pyke, 1983), establishing the proof. 

Proposition C.3 

The process WP constitutes a finite signed measure P-
almost surely on A0. That is there exists a set Ω′⊂ Ω with 

P(Ω′C) = 0 such that ∀ω∈Ω′, WP (ω) is a finite signed 
measure on A0. 

Proof 

Since Var(WP (A)) = P(A), ∀A∈A0, then 

( )( ) ( )0 0 0PVar W P/ = / = . This implies ∃Ω′ with P(Ω′C) = 

0, such that ( )0;PW ω/ = 0, ∀ω∈Ω′. Next we show 

countable additivity. Let {An: n≥1} be a sequence of 

disjoint sets in A0, then ( ) ( )( )11
0,P j jjj

W A N P A
∞ ∞

== ∑∼∪ . 

Since on the other hand ( )1 P jj
W A

∞

=∑ is also distributed 
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as ( )( )1
0,

jj
N P A

∞

=∑ and it is well-known that a normal 

distribution model is determined uniquely by its mean 
and variance, we can conclude that both random 
variables are equivalent in distribution. That is: 
 

( )
11

D

P j P j

jj

W A W A
∞ ∞

==

 
  
 

∑∪  

 
This means that WP is countably additive P-a.s., 

finishing the proof. 

Proposition C.4 

For any f, g∈L2(D, P), it holds: 
 

( )
( ) ( )2

, ,

0,|| ||

P P PD D

P P
D

Cov f dW gdW f g

f g dW N f g

=

− −

∫ ∫
∫ ∼

 

 
Proof 

First we refer the reader to Lifshits (2012), pp. 13-14 for 
the definition of ∫D f dWP which is defined path-wise as the 
integral with respect to the finite signed measure WP. Let 

{ }1
: 1 1

j

n

n j Aj
f a n

=
= ≥∑  and { }1

: 1
j

n

n j Bj
g b

=
=∑  be sequences 

of step functions converging uniformly to f and g, 
respectively, with 1 1

n n

j j j jA B D= == =∪ ∪ . We notice that the 

existence of {fn} and {gn} are guaranteed by the denseness 
of the class of step functions in L2(D, P). Then we have: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

1 1

, lim

lim ; ;

lim ; ;

lim lim , , ,

, , , ,

n n

P P P j j P j P j
D D n

j j

n n

j j P j P j
n

j j

n n

j j P j P j
n

j j

n n

j j j j n n
Dn n

j j

D

Cov f dW gdW E a b W A W B

a b W A W B P d

a b W A W B P d

a b P A B f t s g t s P dt ds

f t s g t s P dt ds f

ω ω ω

ω ω ω

→∞
= =

Ω →∞
= =

Ω→∞
= =

→∞ →∞
= =

 
=  

 

=

=

= ∩ =

=

∑∑∫ ∫

∑∑∫

∑∑ ∫

∑∑ ∫

∫ P
g

 

 
Hence by this equation we further get ∫D f dWP is 

normally distributed with mean 0 and variance 2|| ||
P

f . 

This result immediately implies ∫D(f-g) dWP is 
normally distributed with mean 0 and variance 

2|| ||
P

f g− . We are done. 

Appendix D. Proof of Theorem 4.1 

Without loss of generality we assume σ2 = 1. Then by 
the definition of the model, if H0 is true we have for 
every n1≥1 and n2≥1: 

( ) ( ) ( )( )

( )
( )

( )

( )( )

2 1 1 2 2 1

1 2

1 2

1 2 2 1

1

1

1 2 1

1 2

1

, ,

, ,

,

n n n n n nD

n n

n nD

n n n nD

CU Y f t s dS Y t s

g
n n f t s dS t s

n n

f dS t sε

× ×

×

×

=

 Ξ
 =   
 

+

∫

∫

∫

 

 
For large enough n1 and n2, it holds by recalling the 

invariance principle of the set-indexed process (cf. 
(Alexander and Pyke, 1986; Pyke, 1983; Gaenssler,  
1993; Xie and MacNeill, 2006)) and the fact that g1 is 
continuous and of bounded variation on D: 
 

( ) ( ) ( ) ( ) ( )
2 1

1 2 1 1 1, , , ,D

Pn n D D
CU Y n n f t s d g t s f t s dW t sϕ

×
+∫ ∫��	  

 
However, since f1 and g1 are orthogonal in L2(D, P) 

when H0 is true, we get ( ) ( )1 1 1 1, , , 0
PD

f t s d g t s f gϕ =∫ . 

Hence, under H0, ( )
2 1n n

CU Y
×

is normally distributed with 

mean zero and variance 2
1|| ||

P
f . Thus by applying the 

well known Lindeberg-Levy central limit theorem, we 
get the critical region of the asymptotically size α test as; 
 

( ) ( ){ }2 1

2 1 2 1

1
1: 1 || ||n n

Pn n n n
CU Y CU Y fα α× −

× ×
∈ ≥ Φ −ℝ  

 
Appendix E. Proof of Corollary 4.2 

If g2 ≡ f for any f∈V∩W
⊥, by applying the similar 

argument as in the proof of Theorem 4.1, we get; 
 

( ) ( ) ( )
2 1

*
1 1 1 2, , , , ,D

Pn n P D
CU Y f f f t s dW t s as n n

×
→ ∞∫��	  

 
Based on this convergence we further get: 
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* 1
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,

1
1 1 1
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P D

P

P

f

P CU Y f g f

P f f f t s dW t s f

f f

f

α

α

α

→∞

−

×→∞

−

−

Ψ

= ≥ Φ − ≡

= + ≥ Φ −
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∫  


