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Abstract: This analysis proposes an analytical-numerical approach for 

providing solutions of a class of nonlinear fractional Klein-Gordon equation 

subjected to appropriate initial conditions in Caputo sense by using the 

Fractional Reduced Differential Transform Method (FRDTM). This 

technique provides the solutions very accurately and efficiently in 

convergent series formula with easily computable coefficients. The 

behavior of the approximate series solution for different values of 

fractional-order � is shown graphically. A comparative study is presented 

between the FRDTM and Implicit Runge-Kutta approach to illustrate the 

efficiency and reliability of the proposed technique. Our numerical 

investigations indicate that the FRDTM is simple, powerful mathematical 

tool and fully compatible with the complexity of such problems. 
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Introduction 

Fractional Partial Differential Equations (FPDEs) are 

widely used in interpretation and modeling of many of 

realism matters appear in applied mathematics and 

physics including fluid mechanics, electrical circuits, 

diffusion, damping laws, relaxation processes, 

mathematical biology (Klimek, 2005;  Kilbas et al., 

2010; Baleanu et al., 2009; Jumarie, 2009; Ortigueira, 

2010; Mainardi, 2010). Fractional derivatives provide 

more accurate models of real-world problems than 

integer-order derivatives; they are actually found to be 

a powerful tool to describe certain physical problems. 

The topic of fractional calculus is a significantly 

important, useful branch of mathematics, plays a 

critical and serious role to describe a complex 

dynamical behavior in tremendous scope of 

application fields, helps to understand the nature of 

matter as well as simplified the controlling design 

without any loss of hereditary behaviors and explain 

even more complex structures. 

Consider the following nonlinear Klein-Gordon 

equations of one-dimensional time fractional model: 

( ) ( )
( )

( )( ) ( )

2 2

2 2

, ,
,

, , , 0

u x t u x t
au x t

t x

bG u x t f x t t

α

α

∂ ∂
− +

∂ ∂

+ = ≥

 (1) 

 

with initial conditions: 

 

( ) ( ) ( ) ( )0 1
,0 , ,0u x g x u x g x

t

∂
= =

∂
 

 

where, � and � are real constants, f(x,t), g0(x) and g1(x) 

are known analytical functions, G (u) is a nonlinear 

function, u is an unknown function of x and t to be 

determined. This model is derived from well-known 

Klein-Gordon Equations (KGEs) by replacing the time 

order derivative with fractional derivative of order �. 

The KGEs are fundamental class of nonlinear 

evolution equations arising in classical relativistic and 

quantum mechanics. It got a lot of attention for studying 

solitons and condensed matter physics (Yusufoglu, 2008; 

Sweilam et al., 2012). On the other hand, analytical-

numerical studies of the solution for the FKGEs with the 

Caputo or Riemann-Liouville fractional derivative were 
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used to handle these problems (Golmankhaneh and 

Baleanu, 2011; Gepreel and Mohamed, 2013; Yang et al., 

2014; Marasi and Karimi, 2014; Khader et al., 2014). As 

we know, there is no classical method to handle the 

nonlinear FPDEs and provide its explicit solution due to 

the complexities of fractional calculus involving these 

equations. For this reason, we need a reliable numerical 

approach to find the coefficients of the fractional series 

solutions of such equations. During the past few decades, 

many numerical-analytical methods were developed for 

handling the FPDEs and their system. For examples of 

these methods, we refer to the work in (Hesameddini and 

Fotros, 2012; Moaddy et al., 2011; Abdulaziz et al., 

2008; Hashim et al., 2009; Odibat and Momani, 2006; 

Khalil et al., 2015a; 2015b; 2015c; El-Ajou et al., 2015; 

Abu-Gdairi et al., 2015; Freihat and Al-Smadi, 2013; 

Momani et al., 2014; Al-Smadi et al., 2013; 2015; 2016). 

On the other hand, many applications for different problems 

by using other numerical algorithms can be found in     

(Abu Arqub et al., 2012; 2013; 2015; Abu Arqub and     

Al-Smadi, 2014; Moaddy et al., 2015; Komashynska and 

Al-Smadi, 2014; Komashynska et al., 2016). 

In this analysis, we intend the application of FRDTM 

to provide numerical analytical solutions for a class of 

nonlinear partial differential equations included some 

well-known fractional Klein-Gordon equations. The 

FRDTM has several advantages for dealing directly with 

suggested equations; it needs a few iterations to get high 

accuracy, it is very simple for obtaining analytical-

approximate solutions in rapidly convergent formulas, it 

allows better significantly information in providing 

continuous representation of these approximations and it 

has the ability for solving other problems appearing in 

several scientific fields. 
This article is organized as follows: In the next section, 

necessary details and preliminaries about the fractional 
calculus theory are briefly provided. In section 3, the 
procedure of the RDTM is presented to construct and 
predict the series solution for fractional PDEs (1). In section 
4, numeric results for certain types of FKGEs are given to 
verify the validity and performance of the present method. 
Finally, this article ends with some concluding remarks. 

Mathematical Preliminaries 

The basic preliminaries, concepts and notations of 
fractional integrals and derivatives in Caputo definition 
(Caputo, 1967) are introduced as follows. Here, we adopt 
the Caputo fractional derivative, which is a modification 
of Riemann-Liouville, because the initial conditions that 
defined during the formulation of the system are similar to 
those conventional conditions of integer order. 

Definition 1 

A real function u (x,t), x ∈ℝ, � >0 is said to be in the 

space Cµ, µ∈ℝ, if there exists a real number �>� such 

that u (x,t) = t
q
u1(x,t), where u1(x,t) ∈C (ℝ×[0,∞)) and it 

is said to be in the space m

C
µ

 if ( ), ,

m

m

u x t C m
t

µ

∂
∈ ∈

∂
ℕ . 

Definition 2 

The Riemann-Liouville integral operator of order 

�≥0 of a function � (�,�) ∈C�, �≥−1 is defined as: 
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( ) ( )
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Consequently, the operator 
t

J
α  has the following 

properties: For u (x,t) ∈Cµ,µ ≥−1, �,	 ≥0, c∈ℝ and 
 > 

−1, one can get: 
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• 
( )
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1
t
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α γ α γ

γ

α γ

+
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=
Γ + +

 

 

Now, we introduce a modified fractional differential 

operator 
t

D
α  proposed by Caputo as follows: 

 

( ) ( )
( )

( ) ( ) ( )
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, 0
x m mm

t t
t
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α
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For m-1<�≤m, m ∈ ℕ, x≥t and f x ∈
1

m

C
−

. 

Definition 3 

For � to be the smallest integer that exceeds �, the 

Caputo time-fractional derivative operator of order �>0 

is defined as: 
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Theorem 1 

If m−1<�≤m, m ∈ℕ, u (x,t) ∈ m

C
γ
 and 
 ≥ −1, then 

( ) ( ), ,

t t
D J u x t u x t

α α

=  and ( ) ( ), ,

t t
J D u x t u x t
α α

=  

( )1

0

,0

!

k k
m

kk

u x t

t k

+

−

=

∂
−

∂
∑ , where �>0. 
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For more details about FDEs, see (Millar and Ross, 

1993; Podlubny, 1999; Samko et al., 1993). 

Description of the Method 

Let u(x,t) be a function of two variables such that u(x,t) 

= f(x)g(t), then from the properties of the one-dimensional 

Differential Transform (DT) method, we have: 

 

( ) ( ) ( ) ( )
0 0 0 0

, ,

i j i j

i j i j

u x t f i x g j t U i j x t
∞ ∞ ∞ ∞

= = = =

= =∑ ∑ ∑∑  (4) 

 

where U(i,j) = f(i)g(j) is called the spectrum of u(x,t). 

Next, we assume that u(x,t) is continuously 

differentiable function with respect to space variable x 

and time t. 

Lemma 1 (Srivastava et al., 2013) 

Let u(x,t) be an analytic function, then the FRDT of � 

is given by: 
 

( )
( )

( )
0

,1

1

k

k k

u x t
U x t t

k t

α

α

α

 ∂
= = 
Γ + ∂ 

 (5) 

 
where � is a parameter describing the order of time-

fractional derivative in Caputo sense. 

The inverse transformed of Uk is defined by: 
 

( ) ( )( )0
0

,

k

k

k

u x t U x t t
α

∞

=

= −∑  (6) 

 
From Equations 5 and 6, we have that: 
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In particular, for t = 0, Equation 7 reduces to: 

 

( )
( )

( )

0

0

,1
,

1

k

k

k

k
t t

u x t
u x t t

k t

α

α

α

α

∞

=
=

 ∂
=  

Γ + ∂ 
∑  (8) 

 

Moreover, if α = 1, then the FRDT of Equation 7 

reduces to the classical RDT method. 

From the above lemma, the fundamental operations 

of the FRDTM are given by the following theorems 

(Srivastava et al., 2014): 

Theorem 2 

Let u(x,t), v(x,t) and w(x,t) be any analytic functions 

such that u(x,t) = ( ) ( )1
, ,

D k
R U x v x t

−    = ( )1

D k
R V x

−     and 

w(x,t) = ( )1

D k
R W x

−    , then: 

• If u(x,t) = v(x,t) ± w(x,t), then Uk (x) = Vk(x) ± Wk(x) 

• If u(x,t) = av(x,t), then Uk(x) = aVk(x), a is an 

arbitrary constant 

• If u(x,t) = x
m
t
n
v(x,t), then Uk(x) = Vk-n(x) 

• If u(x,t) = x
m
t
n
, then Uk(x) = x

m
�(k-n), �(k) = 

1, 0

0 0

k

k

=

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• If u(x,t) = v(x,t) w(x,t), then Uk(x) = 

( ) ( )
0
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r k rr
V x W x

−
=

∑ ( ) ( )
0
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r k rr
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Theorem 3 

Let u(x,t) and v(x,t) be any two analytic functions such 

that u(x,t) = ( )1

D k
R U x

−     and v(x,t) = ( )1

D k
R V x

−    , then: 
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x

∂

∂
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r

kr
V x
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• If u(x,t) = ( ),
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r

v x t

t

∂

∂

∂

∂
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( )

( )
( )

1

1
k r

k r
V x

k

α α

α
+

Γ + +

Γ +
 

 

Corollary 1 

If u(x,t) = e�
t+µx

, then ( )
!

k

x

k
U x e

k

µλ
= .  

Corollary 2 

If u(x,t) = sin(ηx+ωt), v(x,t) = cos(ηx+ωt), then Uk(x) 

= sin
! 2

k
k

x
k

ω π
η
 

+ 
 

 and Vk(x) = cos
! 2

k
k

x
k

ω π
η
 

+ 
 

. 

The reader is referred to (Keskin and Oturanc, 2009; 

Abazari and Abazari, 2012; Secer, 2012; Sohail and 

Mohyud-Din, 2012; Al-Amr, 2014) and the references 

therein to know more details about the reduced differential 

transform technique, including their applications in 

various kinds of differential equations. 

Now, by applying the FRDTM to Equation 1, we 

obtain the following recurrence relation formula: 
 

( )

( )
( ) ( )

( ) ( ) ( )

2

2 2

2 1

1
k k

k k k

k
U x U x

k x

aU x bG U x F x

α α

α
+

Γ + + ∂
=

Γ + ∂

 − − + 

 (9) 

 
where Fk(x) and G[Uk(x)] are the reduced transformation 

of the functions f(x,t) and G(u(x,t)), respectively. 

Using the initial conditions, we have: 
 

( ) ( ) ( ) ( )0 0 1 1
,U x g x U x g x= =  (10) 

 
Substituting Equation 10 into Equation 9 and by 

straightforward iterative calculation, we obtain the 
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values Uk(x), for k = 1,2,3,…. Thus, inverse RDT of 

( ){ }
1

n

k
k

U x
=

 yields that: 

 

( ) ( )( )0

0

,

n
k

n k

k

u x t U x t t
α

=

= −∑
⌣

 (11) 

 

Therefore, the closed form solution given by: 

 

( ) ( ), lim ,
n

x

u x t u x t
→∞

=

⌣

 (12) 

 

Numerical Examples 

In this section, some numerical examples are given to 

verify the simplicity and applicability of the present 

technique in finding approximate series solution for 

fractional KGEs. The simulation results indicate that the 

FRDT method is highly accurate and fully compatible 

with the complexity of the PDEs of fractional-order. 

Example 4.1 

We consider the following one-dimensional linear 

fractional Klein-Gordon equation: 

 

( ) ( )
( )

2

2

, ,
, 0,0 1

u x t u x t

u x t

t x

α

α

α

∂ ∂
− − = < ≤

∂ ∂
 (13) 

 

with initial condition: 

 

( ) ( ),0 1 sinu x x= +  

 

where �,�≥0. 

Applying the transformation (Li and He, 2010), we 

have: 

 

( ) ( )
( )

2

2

, ,

,

u x t u x t
u x t

T x

∂ ∂
− =

∂ ∂
 

 

By using the FRDTM of Equation 13, we have the 

recurrence relation formula: 

 

( )
( )

( )( )
( ) ( )
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1 2

1

1 1
k k k

k
U x U x U x

k x

α

α
+
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= + 
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 (14) 

 

with transformed initial data: 

 

( ) ( )0
1 sinU x x= +  (15) 

 

Substituting the condition (15) into Equation 14, we 

get the values successively Uk(x), k = 1,2,3,…, as 

follows: 

( )
( )

( )
( )

( )
( )

( )
( )

1 2

3

1 1
, ,

1 2 1

1 1
,...,

3 1 1
k

U x U x

U x U x
k

α α

α α

= =
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= =
Γ + Γ +

 

 

Thus, the approximate solution can be obtained by: 

 

( ) ( )
( )

( ) ( )
2 3

1
, 1 sin

1

1 1
...

2 1 3 1

u x t x T

T T

α

α α

= + +
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+ + +
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The inverse RDTM is given by: 

 

( ) ( )
( )

( ) ( )

( )
( )

2 3

0

1
, 1 sin

1

1 1
...

2 1 3 1

1
sin

2 1

k
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Consequently, the reduced inverse transformed of 

Uk(x) follows the closed form solution. Setting α = 1, the 

exact solution is: 

 

( ) ( ), sin
t

u x t x e= +  

 

To demonstrate the efficiency of the present method, 

we compare the FRDT approximation with the Implicit 

Runge-Kutta (IRK) method for α = 1. Figure 1 shows 

the phase portrait of solutions for Example 4.1 using the 

FRDTM and IRKM for t ∈[0,0.8] and x ∈[0,4]. The 

numerical results for different time levels of � are 

presented in Fig. 2. Here, we note that the approximate 

FRDT are efficiency for time-fractional KGE and very 

closed to the IRK solutions. 

Example 4.2 

We consider the nonlinear Klein-Gordon fractional 

model in the form: 

 

( ) ( )
( )

2

2

2

, ,
, 0,0 1

u x t u x t

u x t

t x

α

α

α

∂ ∂
− + = < ≤
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 (16) 

 

with initial condition: 

 

( ) ( ),0 1 sinu x x= +  

 

Applying the transformation (Li and He, 2010), we 

have: 
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( ) ( )
( )
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By using the FRDTM, we have the recurrence 

relation formula: 
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With RDTM of initial condition: 

 

( ) ( )0
1 sinU x x= +  

Following recurrence relation (17), the sequences 

components Uk(x), k = 1,2,3,…, were computed using 

the Mathematica package, can be successively given by: 
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⋮

 

 

        
 (a) (b) 

 

Fig. 1. Comparison of phase plot for u(x,t) of Example 4.1 at α = 1, x ∈[0,4] and t∈ 0,0.8: (a) the FRDTM; (b) implicit 

Runge-Kutta method 

 

      
 (a) (b) 

 

Fig. 2. Phase plot of the solution u(x,t) of Example 4.1 using the FRDTM for x ∈[0,4] and t ∈[0,0.8]: (a) at α = 0.7; (b) at α = 0.1 
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The approximate form solution is given by: 
 

( ) ( ) ( ) ( ) ( )2 3

1 2 3
, 1 sin ...u x t x U x T U x T U x T= + + + + +  

 

Accordingly, the inverse RDT is given by: 
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+
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The series solution of � follows closed form solution. 
The geometric behaviors of the solution for Example 

4.2 are studied by drawing the 3-dimensional space 

figures of the FRDT approximate solution together with 
its corresponding IRK solution. Figure 3 shows the 
comparison between the FRDT approximate solution and 
IRK solution at α = 1 for x ∈[−2,2] and t ∈[0,0.01]. 
Whileas, Fig. 4 shows the solution behavior of the 
nonlinear FKGE for different specific cases of � in the 
domain x ∈[−2,2] and t ∈[0,0.01]. The performance errors 
analysis are obtained by the FRDTM at x = 2 and 
summarized in Table 1. Numerically, it is showed that the 
RDT method is effective and accurate. 

Example 4.3 

We consider the nonlinear Klein-Gordon fractional 
model in the form: 
 

( ) ( )
( ) ( )

2

3

2

, ,
, , 0,0 1

u x t u x t
u x t u x t

t x

α

α

α

∂ ∂
− + − = < ≤

∂ ∂
 (18) 

 
with initial condition: 
 

( ) ( ),0 secu x h x= −  

 

      
 (a) (b) 

 
Fig. 3. Comparison of phase plot for u(x,t) of Example 4.2 at α = 1, x ∈[−2,2] and t ∈ 0,0.01 : (a) the FRDTM; (b) implicit RKM 
 

    
 (a) (b) 

 
Fig. 4. Phase plot of the solution u(x,t) of Example 4.2 using the FRDTM for x ∈[−2,2] and t ∈[0,0.01]: (a) at α = 0.4; (b) at α = 0.1 
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Table 1. The error analysis for Example 4.2 when α = 1 with x = 2 

t RDTM IRKM Absolute error Relative error 

0.000  1.909297426825682  1.909297426825682  0.00000 0.00000 

0.001  1.904742712734773  1.904743294464910  5.81730×10−7 3.05411×10−7 

0.002  1.900187998643864  1.900189162104138  1.16346×10−6 6.12287×10−7 

0.003  1.895633284552955  1.895635029743366  1.74519×10−6  9.20636×10−7 

0.004  1.891078570462046  1.891080897382594  2.32692×10−6  1.23047×10−6 

0.005  1.886523856371138  1.886526765021823  2.90865×10−6  1.54180×10−6 

0.006  1.881969142280229  1.881972632661051  3.49038×10−6  1.85464×10−6 

0.007  1.877414428189319  1.877418500300279  4.07211×10−6  2.16899×10−6 

0.008  1.872859714098411  1.872864367939507  4.65384×10−6  2.48488×10−6 

0.009  1.868305000007502  1.868310235578735  5.23557×10−6  2.80230×10−6 

0.010  1.863750285916593  1.863756103217964  5.81730×10−6  3.12128×10−6 

 

Applying the transformation (Li and He, 2010), we 
have: 

 

( ) ( )
( ) ( )

2

3

2

, ,

, ,

u x t u x t
u x t u x t

T x

∂ ∂
= − +

∂ ∂
 

 

By using the FRDTM, we have the recurrence 

relation formula: 

 

( )
( )

( )( )

( ) ( )

( ) ( )

2

2

1

0 0

1

1 1

k k

k k r

i k r

r i

U x U x
k x

U x
k

U x U x

α
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+

−

= =

 ∂
− Γ + ∂ =

 Γ + +
+ 
 
∑∑

 (19) 

 

with RDT of initial condition: 

 

( ) ( )0
secU x h x= −  

 

Following recurrence relation (19), the sequences 

components Uk(x), k = 1,2,3,…, were computed using 

the Mathematica 9.0 package, can be successively 

given by: 

 

( )
( )

( )
( )( )

( )
( )

( )
( )( ) ( )(

( )
( )

( )( ) ( )
( )( )

( )

( )

( )( ) ( ) ( )

3

1

5

2

7

3 2

2

sec ,
2

sec 4cosh 2 5 ,
3

123 112cosh 2

8cosh 4sec ,
2 4

2 3 3

U x h x

U x h x x

x

xU x h x

and soon

α

α

α

α

α

α α

α α α

Γ  =   Γ

Γ  = −  Γ

   −
   Γ  +  =  
  Γ Γ

  Γ Γ Γ  

⋮

 

 

By taking the inverse RDT of ( ){ }
0

n

k
k

U x
=

, we have: 
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⋯

 

 

Figure 5 and 6 show the solution behavior for the 

nonlinear time-fractional KGE in Example 4.3 by using 

the RDTM and IRKM at x ∈[−2,2] and t ∈ 0,0.01 for 

different particular values of �. 

Example 4.4 

We consider the nonlinear Klein-Gordon fractional 

model in the from: 

 

( ) ( )
( )

2 2

2

2 2

, ,
, 0,1 2

u x t u x t

u x t

t x

α

α

α

∂ ∂
− + = < ≤

∂ ∂
 (20) 

 

with initial conditions: 

 

( ) ( ) ( ),0 1 sin , ,0 0u x x u x

t

∂
= + =

∂
 (21) 

 

Using the transformation (Li and He, 2010), we have: 

 

( ) ( )
( )

2

2

2

, ,

,

u x t u x t
u x t

T x

∂ ∂
= −
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By using the FRDTM, we obtain the recurrence 

relations formula as: 
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 (22) 

 

with RDT of initial condition: 

 

( ) ( ) ( )0 1
1 sin , 0U x x U x= + =  

 

Following recurrence relation (22) and by 

straightforward iterative steps, yields: 
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⋮

 

 
Table 2. Numerical results of u when x = 2 for Example 4.4 

t          α = 1.25         α = 1.5         α = 1.75           α = 2 

0.00  1.9092974268257  1.9092974268257  1.9092974268257 1.9092974268257 

0.02  1.8577557126584  1.8953639720340  1.9056740630824 1.9083864840075 

0.04  1.7867098804114  1.8698876653513  1.8971099324942 1.9056536555530 

0.06  1.7057992950300  1.8368970719530  1.8845189771575 1.9010989414620 

0.08  1.6177334620125  1.7978297884919  1.8683037456485 1.8947223417348 

0.10  1.5239332295153  1.7535166664471  1.8487201924577 1.8865238563711 

0.12  1.4252945743833  1.7045182992625  1.8259529888198 1.8765034853711 

0.14  1.3224416173263  1.6512462328457  1.8001449727689 1.8646612287348 

0.16  1.2158375439572  1.5940193350310  1.7714116686258 1.8509970864620 

0.18  1.1058416180037  1.5330941474492  1.7398494741889 1.8355110585530 

0.20  0.9927417362082  1.4686828986574  1.7055407099216 1.8182031450075 
 
Table 3. The numerical results for Example 4.4 when α = 2 with x = 2.  

t         FRDTM          IRKM  Absolute error  Relative error 

0.00  1.90929742682568  1.90929742682568  0.00000  0.00000  

0.02  1.90838648400750  1.90838660035353  1.16346×10−7 6.09656×10−8 

0.04  1.90565365555296  1.90565412093706  4.65384×10−6  2.44212×10−7 

0.06  1.90109894146205  1.90109998857629  1.04711×10−6  5.50794×10−7 

0.08  1.89472234173477  1.89472420327121  1.86154×10−6  9.82484×10−7 

0.10  1.88652385637114  1.88652676502182  2.90865×10−6  1.54180×10−6 

0.12  1.87650348537114  1.87650767382812  4.18846×10−6  2.23205×10−6 

0.14  1.86466122873478  1.86466692969012  5.70096×10−6  3.05736×10−6 

0.16  1.85099708646205  1.85100453260780  7.44615×10−6  4.02276×10−6 

0.18  1.83551105855296  1.83552048258118  9.42403×10−6  5.13425×10−6 

0.20  1.81820314500750  1.81821477961024  1.16346×10−5  6.39892×10−6 
 

 
 (a) (b) 
 
Fig. 5. Comparison of phase plot for u(x,t) of Example 4.3 at α = 1, x ∈[−2,2] and t ∈ [0,0.01]: (a) the FRDTM; (b) implicit 

Runge-Kutta method 
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 (a) (b) 

 
Fig. 6. Phase plot of the solution u(x,t) of Example 4.2 using the FRDTM for x ∈[−2,2] and t∈[0,0.01]: (a) at α = 0.4; (b) at α 

= 0.1 

 

The approximate form solution is obtained by: 
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Consequently, the reduced inverse DT of Uk(x) will 

be given by: 
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4α +⋯

 

 

In Table 2, we summarized numerical values for 

the solution of Equation 20 when α = 1.25,1.5,1.75 

and α = 2 with x = 2. Also numerical results using our 

approximation and the implicit Runge-Kutta method 

for α = 2 are summarized in Table 3. From these 

tables, it is easier to observe that the numerical 

approximations are in agreement with each other’s 

and with the IRK method. Also, they have same 

behavior as those obtained using the implicit Runge-

Kutta method. 

Concluding Remarks 

In this study, we present numerical algorithm for 

finding approximate form solutions of a class of Klein-

Gordon fractional model based upon FRDTM. This 

method was used directly without employing linearization 

and perturbation. The efficiency and capability of the 

present algorithm have been checked via several 

illustrated examples. The results reveal the complete 

reliability of this method with a great potential in scientific 

applications. Finally, we conclude that the FRDTM is 

very powerful, straightforward and effective to obtain 

analytical numerical solutions of a wide variety problems 

related to fractional PDEs applied in mathematics, physics 

and engineering. Computations of this paper have been 

carried out by using the computer package of 

Mathematica 9. 
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