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Abstract: There is Canonical Correlation Analysis (CCA) as a way to find a
linear relationship between a pair of random vectors. However, CCA cannot
find a nonlinear relationship between them since the method maximizes the
correlation between linear combinations of the vectors. In order to find the
nonlinear relationship, we convert the vectors through some known
conversion functions like a kernel function. Then we find the nonlinear
relationship in the original vectors through the conversion function.
However, this method has a critical issue in that the maximized correlation
sometimes becomes 1 even if there is no relationship between the random
vectors. Some author proposed a penalized method with a penalty
parameter that avoids this issue when the kernel functions are used for
conversion. In this method, however, methods have not been proposed for
optimizing the penalty and other hyper parameters in the conversion
function, even though the results heavily depend on these parameters. In
this study, we propose an optimization method for the penalty and other
parameters, based on the simple cross-validation method.
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Introduction

Let y and x be go- and po-dimensional random vectors.
Without of generality, we assume E[y] = 0, and E[x] =

0, where 0, is an {-dimensional vector of zeros.
Moreover, let X = E [(), x")' (', x")] be a (go + po) % (o +

Z 72")[ .
po) unknown matrix and Z=[ v ] where X, is a

o Txx
qoxqo matrix, X, is a goXp matrix and X, is a poxpo
matrix and we assume det(Z,,) # 0 and det(Z,,) # 0. Note
that X,, = Var(y), X, = Cov(y, x) and X, = Var(x), since
Ely]=0, and E[x]=0, .

As a method for finding the linear relationship between y

and x, Hotelling (1936) proposed Canonical Correlation
Analysis (CCA). This method is formulated as follows:

max a'% bstad'¥, a=landb'E  b=1

aeR® beR™

(1.1)

Usually, using the Lagrange method of undetermined
multipliers, we can derive the solutions of ¢ and . More
details of CCA can be found in Muirhead (1982), Gittins
(1985), Srivastava (2002) and Weenink (2003). This
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method is currently being used for data analysis (see,
e.g., Doeswijk et al., 2011). CCA, however, can not
find a nonlinear relationships between y and x, since
the maximization term in (1.1) is equivalent to
Cov(a'y, b'x), which evaluates the linear relationship
between linear combinations a'y and b'x.

In order to find a nonlinear relationship between y and x,
we consider converting them by using some known
functions like a kernel function. Then, CCA can then find a
nonlinear relationship between y and x through the
conversion functions. This method is referred to as a
Nonlinear Canonical Correlation Analysis (NCCA) and it is
shown in section 2. Hardoon et al. (2004) pointed out that
NCCA has a critical issue which is also shown in section 2.

Using the same idea as is used in the penalized
nonlinear regression model, Akaho (2000) proposed a
penalized NCCA when the kernel functions are used for
the conversion functions. We will refer to the penalized
NCCA as PNCCA even when it uses any conversion
functions instead of the kernel function.

In PNCCA, no criteria have yet been developed for
optimizing the penalty and other hyper parameters in the
conversion function. The reason of this problem, it is
difficult to know how to evaluate the result of PNCCA. In
particular, determining how to optimize the penalty and
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other hyper parameters in conversion function is important,
since the result of PNCCA heavily depends on these
parameters. Hence, in this study, we create a evaluating
function for evaluating the estimated value. Based on this
function and the ordinary Cross-Validation (CV) method,
we propose the simple form of CV method for optimizing
these parameters in PNCCA. Details of the proposed
function and CV method are presented in section 3.

The remainder of the present paper is organized as
follows: In section 2, we present more details of CCA,
NCCA and PNCCA. In section 3, we propose the simple
CV method for optimizing several parameters in PNCCA.
In section 4, we use numerical studies to compare CCA,
NCCA and PNCCA based on the optimized parameters.
In section 5, we present our conclusions. Using the
proposed CV method, we can select the variables in y and
x; we illustrate this method in the Appendix.

CCA,NCCA and PNCCA

In this section, we illustrate CCA, NCCA and
PNCCA. We first illustrate CCA, which is expressed as
(1.1). Using the Lagrange method of undetermined
multipliers, since det(X,,) # 0 and det(Z,,) # 0, CCA is the
same as solving the following eigenvalue problem:

'Y sty p=6%

xe Ty Ty T

@.1)

and =% b/0Owhere §=a's, b>0.Hence, solving the

eigenvalue problem in (2.1) and using the largest eigenvalue
and the corresponding eigenvector, we can solve the
maximization problem under several conditions in (1.1).
More details of CCA can be found in e.g., Muirhead (1982).

However, CCA can not find a nonlinear relationship
between y and x. In order to find a nonlinear
relationship between them, we convert x as w = @(x)

where ¢(.): R™ —»R” is a known conversion function.
Without of generality, we also assume E[w]=0, and

we also assume det (X,,) # 0 where X,, = Var (w).
When we use CCA for y and w, we can find the
nonlinear relationship between y and x through ¢(-).
This is the NCCA. However, Hardoon et al. (2004)
pointed out that, even if there is no relationship
between y and x, the result of NCCA shows there are
heavily relationship between them.

In order to avoid this problem, Akaho (2000) proposed
PNCCA only when we use the kernel functions as
conversion functions. This is the primary method we
consider in this study. Since, in our setting, only x is
converted, PNCCA is expressed as follows:

X+ AP

ww

max a'X dsta'kX a=1 cmdd'(

acRY ger™

Jd=1  (22)

100

where, X, = Cov (y, w), 4 is a nonnegative penalty
parameter and P is a known p;xp; nonnegative definite
penalty matrix. Note that Ad'Pd is the penalty term in
(2.2) since Ad'Pd>0 for any deR” . Furthermore, we note
det (%, + AP) > det (X,,)>0 since />0 and P is the
nonnegative definite matrix (see, e.g., Liitkepohl (1996)
section 4.2.6, (11)). The same as for CCA in (1.1), in
order to solve the maximization problem under various
conditions in (2.2), we use the Lagrange method of
undetermined multipliers as follows:

L, (,.1,.a.d. /. \P):a'ZWd—% @z, a- 1)—% ld'(=,, +AP)d -1},

where, #, and 7, are undetermined nonnegative constants.
Akaho (2000) only showed the above expression without
(2.2) when the conversion function is the kernel function.
For the fixed /4, solving the simultaneous equations

oL, (1,-11,-a.d. 2| P)/(@a)|, =0, .oL, (,.n,.a.d. 2| P)/ (2d)

a=a,

Py/(on,)

=0

Na=Ta,z

da=a, " Opl 0L, (1,511, 0,d, A

and JLp(n,.14.a.d,2

P)/ (and)‘”d:ﬁd = 0 coincides with

solving the following eigenvalue problem:

(£,,+2P) T, 5%

Jx, d,=id 23)

A

i,=a,x, d,>0 and

and  a,=X% d, /7, where wd;

w
1, =144 =1a., - Hence, when the penalty parameter 4 is
given, we can solve (2.2) by using the largest
eigenvalue and the corresponding eigenvector of the
above eigenvalue problem.

However, although it is important, there are no
optimization methods for A and other parameters in the
conversion function ¢(). In the next section, we propose
a simple CV method for optimizing 4 and some of the
parameters in the known conversion function ¢(-).

Proposed Method

In this section, we propose a simple CV method for
optimizing the penalty and other hyper parameters in the
conversion function ¢(-) which are used in PNCCA. In
order to propose CV method, we consider evaluating
function for the results of PNCCA.

Firstly, since X,,,, Z,, and X,, are unknown matrices,
we use their unbiased estimators to estimate 7,,a,,

and d, . Let S be the ordinary unbiased estimators for X

based on the sample {y;, x;},- 1., and w; = ¢(x;). Then

.. S S
we divide S as §

ww Sww

] where S, is a gy*xqo matrix,

Syw 1S a qo*p; matrix and S,,, is a p;Xp; matrix. In
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Syy» Syw and Sww
instead of using X,,, X,,, and X, in (2.3), respectively.

Let 7,(>0).a,and d, be the estimators for 7,, a,

A

order to estimate77,,d, andd,, we use

andd,, respectively. Then, 7’ and d, are derived as

the largest eigenvalue and the corresponding
eigenvector of (S + AP)‘IS’WS;;SW and
a; =S,)8,,,d, / fi; from (2.3).

We consider creating an objective function in order to
evaluate @,and d,for optimizing several parameters in

PNCCA that are the penalty parameter and the other
parameter in the conversion function. Since the purpose of

PNCCA is maximizing a'Z,,,d under several conditions, we
consider the following evaluation function:

R=E[d%,4d,] (.1)

Maximizing the above function, we can optimize the
parameters in PNCCA. Here, we note that 4, and d, are

deriving 4, and d, .

Then, let y* and x*be new variables that are obtained
and covariance matrix between y* and w* = ¢(x*). Then,
letting S, be the first go*p; matrix in S*, we can regard
Sy« as an estimator for X,,. Based on S,.. the
evaluation function R*in (3.1) is estimated by using the
average of the following value:

R'=d,S,..d, (3.2)

Nevertheless, this evaluation function R* in (3.2) also

can not be used directly for optimizing the parameters in
PNCCA since y* and w* are not obtained. We thus use the
simple CV method to optimize the penalty parameter and
other hyper parameter in the conversion function that are in
PNCCA. As similar as the ordinary CV method for some
regression model, we divide {y,, x;}; - _, into two subsets.
One of them is used for estimation, and other one is used for
evaluating the estimated value.

Let V' = (vi... v,)' be n X (q¢tp;) matrix, where v, =
v ,w ), (i = 1..,n). The essence of the propose
method is to obtain a matrix that is an alternative to
S, =« The alternative matrix to it can not be derived from
using only one sample.

We now use v; and v, (i # j) to derive an alternative
matrix to S, which can be defined as:

101

(yf —yj)(wj—w,)'

4

Sin= (i=loers j=1oi# )
since (y; + ;)2 and (w; + w))/2 are the sample means

based on v; and v, (i # /) and the sample covariance

matrix between y; and w; is derived as (y; — (v; + y)2)(w;

— (w; + w)/2)". Note that S, , =5,
JoLet VU (i=1,.., nj=1,.., n i=j) be obtained
by deleting v'; and v/, , (i=j) from V. Furthermore, let

[-i-j1 Ql-i-j] [-i-j] : : il
S, .8, and S/ be derived by using V' " /" and

ww w

for any 7/ and j, i#

be based on the ordinary estimation method for
covariance matrices. Then, if A is fixed, d, " is derived
as the eigenvector that corresponds to the largest

. -1 . . -1 .
[-i-j] [=i-j1 ( Ql-i-Jj] [-i-j]
S+ AP) S (S s

eigenvalue of (
Using c?:ﬂ] and the largest eigenvalue (éﬁ""’])z, a7 s
&E{’v*i] — (S,[v;iii] )_l 5;1’7‘116}/[17”7'/] /é/[{if_/] i

obtained as

A e N X

where 6’/[1 150 Note that a"and d,  are derived

from ¥ 171 and 5[17]] is derived from v; and v; , (i #)),
. . . N Al

which are not used for deriving al"'and 4, . Thus,

Al ~
we can evaluate 4, 'and d,  based on Sp-In order

to optimize the penalty parameter 1 and the other hyper

parameters in the conversion function, we use
T =%,,,|c,| where:
ey =a S, jdt I (i=Lm =L i ) (3.3)

Thus, for example, the penalty parameter 4 and hyper
parameter ¢ in PNCCA and the conversion function can be

optimized as J=argmax aso0c T

When we use more number of rows of ¥ for making the
alternative matrix for S,.,. we can extend this simple CV
method to subset CV method. However, we only focus on
the simple CV method in order to save the space of paper.

Numerical Study

In this section, we compare CCA, NCCA and
PNCCA optimized with the proposed CV method
through numerical study. Note that NCCA can be
defined by the same form as PNCCA in (2.2) when we
fix 2 = 0. Let A(p) be an rxr matrix whose (i, j)th
element is derived as p'’/ The nxp, matrix X is

generated from X =UA, (p.)"”, where U is an nxp,
matrix whose elements were generated independently

from the standard normal distribution. Then, Y = (yy,...,
y,)" are derived as follows:
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(A) ¥, =0x] x1,,+& 4,
X x, /max(x;)
(B) y, =5 sin(2x] x,)

cos(2x,’ X, )

+&5,

x X, /max(xj)
sin(2x,’ X, )
cos(2xl' X, )
exp(—x,’ X,/ 4)

<)y, =0 +£,,

where, x, = (xl JR. ) is the ith row of the standardized X

1, is a r-dimensional vector all of whose elements are 1 and
&;, is generated independently from N,(0,,A,(0.5)) which
is a r-dimensional multivariate normal distribution with
mean 0, and covariance matrix A.0.5). Here, J controls
the scale of the nonlinear relationship part.

Since NCCA and PNCCA need the converted values that

are expressed as w, = (w,,, ~~-’W1p0)'=¢(x,)’(i= I .., n),we

set w;

U-=exp{—x;/(2h)} and W =(w...w,) Then, W is
standardized. We choose /# by comparing the maximized
correlation for each value {0.05, 0.1, 0.5, 1, 2, 5} in each

repetition. In PNCCA, ¢ P is set to P = K'K, where
K=(kl, ...,kprz)’ is a (p—2) %X po matrix and
)(j ,—2) - (More details of K

can be found in Green and Silverman (1994).) Since the ‘arg
max’ operator is equivalent to the ‘arg min’ operator with the
reversed sign, we select 1 by using ‘fminbnd’ function in
Matlab which is ‘fminsearch’ in Matlab with a specified
region and we restrict the region to 1 to exp(20) in order to
shorten the computation time. Furthermore, in order to
reduce computational tasks, we calculate ¢; in (3.3) for i =
l,.n—landj=i+I.

In order to derive R*in (3.1), since we need .. Zynx
s s AN X5, We set n = 10, 000 and generate X for
each p, and p, and standardize them. Then, from each
transformation function (A), (B) and (C) and each parameter
o and ¢, we obtain Y, which we also standardized.

Note that go = 3 when the transformation function is in
(B) and gy = 4 when the transformation function is in (C).
In CCA, X4 Xy and ... can be derived as the sample
variance matrix of the standardized Y, the sample
covariance matrix of the standardized Y and X and the
sample variance matrix of the standardized X,
respectively. In NCCA and PNCCA, we convert X as
above for each / and standardize the converted values.
The results of conversion is derived as W. Then, X,.,. and
X, can be derived as the sample covariance matrix of
standardized Y and W and the sample variance matrix of
the standardized W, respectively. Using these matrices,
we evaluated the results of each method.

aaaaaa

k= (012,10’

po-j-2

102

In order to evaluate these methods, we fixed X and
generated Y for 1, 000 repetitions. We wused the
standardized X, Y and W in each repetition. For each
repetition with CCA, we obtain S,,, S,, and S,,. On the
other hand, for each repetition with NCCA and PNCCA,
we obtain S),, S,, and S,,,,.

For each repetition with CCA in (1.1), we calculated the
maximized correlation under certain conditions by using Sy,

S, and S, instead of X, X,, and X, respectively. We
denote the maximized correlation as 67, the eigenvector
that corresponds to the largest eigenvalue of S_'S'.S7'S,

o Sy Py o

-1 n A . ~
wSybe 10 s derived where 6>0 .

For each repetition with NCCA which can be defined as
(2.2) with 4 = 0, we calculated the maximized correlation
under certain conditions and the optimized 4, for which
we used S,,, S,, and S,, instead of X%,,, X, and X,,,
respectively. We denote the maximized correlation as 7; ,

as b. and then a, =S

the eigenvector that corresponds to the largest eigenvalue

of S, S, S, S,,as d, and then &,=5,'S

derived where 7, >0. For each repetition with PNCCA in

w dAN / ﬁ 0 is
(2.2), we calculated the maximized correlation under certain
conditions by using the optimized A and optimized / and we
used Sy, S,y and S,,,, instead of X,,, X,, and Z,,,,, respectively.
We denote the maximized correlation as #; and the

eigenvector that corresponds to the largest eigenvalue of

3 py—1 or -1
(S +AP) ' S}, S1 S,

penalty parameter based on the proposed CV method and
then a,=8,'S,,d, /5, is derived where 7.>0

yyomow

Note that we considered the evaluating function in
(3.1) in order to optimize A based on the predictive values.
Thus we also compared these methods by using the

average values of a.X .. b..a\2,..dy, and &, . .d,

and then we denoted the average value of each value

asR., R, and R, in Table 1-5. The reason of using

as élp, where A is the optimized

YEwE

Ryand R,is that the purposes of the corresponding

method are finding the nonlinear relationship. In Table 1
to 5, the bold and italic faces mean the biggest and second
biggest values, respectively, in each situation.

First, we consider the results when using pattern (A),
which are presented in Table 1-3. When p, becomes
large, the result values of CCA become small, the results
of PNCCA become large and the result values of NCCA
also become large except when (n, py) = (30, 5) and (n,
po) = (30, 8).

The result values of each method become large in
almost all cases when J becomes large except when (n,
po) = (100, 3). In this pattern, we can change go. Thus,
next, we consider the result values when ¢, changes.
When ¢, changes from 3 to 8, the result values of NCCA
become large in almost cases. When ¢, becomes large, the
result values of PNCCA become large in almost situations
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in (n, po, 0) = (30, 3, 1), (n, po, 9) = (50, 3, 1) and (n, p, 0)
= (100, 3, 1) and that of PNCCA become small in almost
situations in (7, po, d) = (30, 3, 3), (1, po) = (30, 5) and (n,
po) = (30, 8). Next, we consider the results when p,
becomes large. In » = 50 and n = 100, the result values of
NCCA and PNCCA become large when p, becomes
large. The result values of PNCCA also become large
when »n = 30 and p, becomes large. In this connection, we
focus on the results when » becomes large.

When n changes from 30 to 50, the result values of
CCA almost all become small in (pg, go) = (3, 5) and (p,,
qo) = (3, 8), the result values of NCCA become large and
the result values of PNCCA become large when p, = 3
and po = 5. When (po, qo) = (8, 5) and (po, q0) = (8, 8) and
n changes from 30 to 50, the result values of PNCCA
almost all become small. The result values of NCCA also
become small when # changes from 30 to 50 in almost all
situations when (po, p,) = (8, 0.8).

Table 1. Average values of Ry (CCA), Ry (NCCA)and R, (PNCCA) for n =30 and (A)

po=3 Po=35 po=38
o 0 A R Ry Ry R Ry Ry R Ry Ry
3 1 0.5 0.0055 1.0848  1.0888  0.0028  1.0723  1.2443 0.0070  1.4206 1.6244
0.8 0.0029 1.6265 16713 0.0017  1.6642  2.4493 0.0020  1.5904 3.5193
0.95  0.0021 23404 22292 0.0007  0.8485 3.6166 0.0010  0.5696 5.8488
3 0.5 0.0156 11349 1.1383  0.0033  1.0898 1.2380 0.0063  1.4944 1.6558
0.8 0.0019 1.6746  1.6993  0.0027  1.6857  2.4588 0.0032  1.6175 3.5545
0.95  0.0012 24598 22841  0.0014  0.8380  3.6303 0.0006  0.5747 5.9185
5 1 0.5 0.0101 1.0912  1.0904  0.0040  1.0728 12353 0.0048  1.4135 1.6298
0.8 0.0027 1.6389 16753  0.0026  1.6435 24555 0.0024  1.5689 3.4765
0.95  0.0013 23832 22656  0.0009  0.8670  3.5930 0.0006  0.5830 5.7756
3 0.5 0.0075 11186 1.1206  0.0041 1.0938 12437 0.0049  1.4588 1.6316
0.8 0.0052 1.6788 17040  0.0024  1.6680  2.4355 0.0022  1.6021 3.5511
0.95  0.0010 24589 23020 0.0007  0.8388  3.5998 0.0009  0.5777 5.8660
81 0.5 0.0068 1.0992  1.0367  0.0051 1.0519 12061 0.0052  1.3710 1.5844
0.8 0.0055 1.6640  1.6981  0.0032  1.6006  2.4153 0.0032  1.5513 3.4621
0.95  0.0017 23961 22814  0.0008  0.8437  3.5642 0.0007  0.5925 5.6960
3 0.5 0.0065 1.1145  1.0829  0.0045  1.0623 12186 0.0052  1.3998 1.5976
0.8 0.0037 1.6753  1.6990  0.0024  1.6347 24313 0.0024  1.5424 3.4618
0.95  0.0020 24499 22716  0.0008  0.8474  3.5708 0.0005  0.5795 5.7208
Table 2. Average values of R~ (CCA), Ry (NCCA)and R, (PNCCA) for n =50 and (A)
Po=3 Po=5 po=38
9 0 p R Ry Ry R Ry Ry R Ry Ry
3 0.5 0.0046  1.1368  1.1325  0.0055 1.3697 1.3605  0.0042 1.5363 1.5706
0.8 0.0028 1.8384  1.8374  0.0020  2.6066  2.6390  0.0025 3.4349 3.5174
0.95  0.0025 24768  2.4821  0.0007  3.5793  4.0919  0.0006 5.1110 6.2173
3 0.5  0.0070  1.1820  1.1759  0.0037 13715 1.3574  0.0061 1.5809 1.6030
0.8 0.0042 1.8803  1.8716  0.0038  2.6648  2.6590  0.0019 3.5191 3.5492
0.95  0.0011 25765 25221  0.0007 37883  4.1181  0.0004 5.4452 6.2972
5 1 05 0.0069  1.1455  1.1404  0.0055 1.3621 1.3533  0.0045 1.5577 1.5855
0.8 0.0032 1.8480  1.8430  0.0025  2.6401 2.6667  0.0021 3.4211 3.4885
0.95  0.0013 25102 25123  0.0009 35909  4.1073  0.0005 5.1608 6.2080
305 0.0074 11671 1.1607  0.0047 1.3896 1.3751  0.0053 1.5632 1.5857
0.8 0.0041 1.8859  1.8769  0.0032  2.6548  2.6521  0.0019 3.5276 3.5593
0.95  0.0013 25805  2.5345  0.0007  3.7451 41177 0.0006 5.4121 6.2852
8 105 00060  1.1588  1.1532  0.0076 1.3608 1.3512 0.0051 1.5440 1.5711
0.8 0.0043 1.8764  1.8695  0.0028  2.6122  2.6418  0.0024 3.4513 3.5162
0.95  0.0016 25381 25289  0.0008  3.563 4.0960  0.0006 5.1504 6.2035
305 0.0063 1.1669  1.1596  0.0057 1.3798 1.3646  0.0052 1.5522 1.5769
0.8 0.0039  1.8831 1.8726  0.0028  2.6527  2.6566  0.0023 3.4788 3.5145
0.95  0.0018 25776  2.5306 0.0008 37039  4.1246  0.0005 5.3411 6.2406

103
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Table 3. Average values of R (CCA), Ry (NCCA)and R, (PNCCA) for n =100 and (A)

po=3 Po=5 po=38

9o é Px Re Ry Rp Re Ry Rp Re Ry Rp
3 1 0.5 0.0055 1.2018 12057 0.0032  1.5306  1.5352  0.0041 1.5487 1.5695
0.8 0.0029 1.9092 1.9138  0.0021  2.8659  2.8950  0.0023 3.2276 3.2883
0.95 0.0021 2.5552 2539 60.0007 3.9258  4.2784  0.0007 5.5941 6.0614
3 0.5 0.0067 1.2531 12561  0.0043  1.5357  1.5381  0.0065 1.5865 1.6023
0.8 0.0045 1.9513 1.9497  0.0029  2.9057 29187  0.0023 3.2731 3.3141
0.95 0.0014 2.6314 25962 0.0006  4.0318  4.3034  0.0005 5.7878 6.1337
5 1 0.5 0.0062 1.2067 1.2105  0.0047  1.5263  1.5302  0.0051 1.5673 1.5850
0.8 0.0033 1.9120 1.9155  0.0024  2.9000  2.9256  0.0021 3.2101 3.2612
0.95 0.0015 2.5791 25716  0.0008  3.9569  4.2926  0.0005 5.6221 6.0548
3 0.5 0.0068 1.2363 1.2393  0.0042  1.5575  1.5604  0.0055 1.5703 1.5851
0.8 0.0034 1.9561 1.9548  0.0028  2.9022 29150  0.0019 3.2823 3.3243
0.95 0.0017 2.6327 2.6061  0.0007  4.0373 43078  0.0007 5.7813 6.1237
8 1 0.5 0.0062 1.2187 1.2221  0.0061  1.5266  1.5304  0.0053 1.5545 1.5720
0.8 0.0041 1.9385 1.9404  0.0027  2.8822  2.9037  0.0024 3.2381 3.2901
0.95 0.0020 2.5963 2.5784  0.0008  3.9735  4.2905  0.0006 5.6429 6.0518
3 0.5 0.0060 1.2348 12378 0.0056  1.5482  1.5508  0.0048 1.5607 1.5771
0.8 0.0043 1.9512 1.9502  0.0029  2.9138 29264  0.0024 3.2405 3.2813
0.95 0.0016 2.6274 2.5991  0.0009  4.0515 43232 0.0005 5.7381 6.0822

Table 4. Average values of R~ (CCA), Ry (NCCA)and R, (PNCCA) for (B)
po=3 po=3 po=38

n.o 9 px R Ry Rp Re Ry Rp Re Ry Rp
30 1 05  0.0050  0.1803 0.1924  0.0060 0.1426 02362 0.0042 0.1415 0.3359
0.8  0.0029  0.3026 0.3593  0.0017 0.1841 0.5203  0.0020 0.2017 1.0257
0.95 0.0027  0.570 0.7467  0.0014 0.2478 13996 0.0005 0.1366 2.7816
3 0.5  0.0088  0.5705 0.5645  0.0025 0.5279 0.6730  0.0049 0.8081 1.0558
0.8  0.0015 09216 0.9264  0.0036 0.8489 15573 0.0026 0.9735 2.3869
0.95 0.0038  1.5283 1.5091  0.0025 0.6209 25992 0.0007 0.3815 4.4913
50 1 0.5 0.0051  0.1904 0.1936  0.0048 0.1715 0.2568  0.0051 0.2230 0.3839
0.8  0.0032 03164 0.4315  0.0020 0.3590 0.6171  0.0021 0.5467 1.1514
0.95  0.0023  0.4452 0.8387  0.0011 0.6805 1.7296  0.0005 0.6244 3.3308
3 0.5  0.0053  0.6274 0.6285  0.0027 0.6998 0.7309  0.0033 0.9603 1.0420
0.8  0.0025  1.0326 1.1067  0.0060 1.5704 1.7519  0.0012 2.1235 2.4541
0.95 0.0011  [.4164 1.6434  0.0010 2.2205 2.9867  0.0005 2.8972 5.0905
100 1 0.5  0.0051  0.2578 0.2644  0.0075 0.2691 0.3349  0.0037 0.2601 0.3816
0.8  0.0030  0.4277 0.5193  0.0014 0.4836 0.7042  0.0019 0.6373 1.0948
0.95 0.0014  0.5038 0.9007  0.0007 0.8114 1.7327  0.0005 0.9769 3.3225
3 0.5  0.0044  0.6661 0.6800  0.0030 0.7958 0.8217  0.0029 0.9588 1.0304
0.8 00017  [1.1146 1.1567  0.0022 1.8378 1.9598  0.0017 2.0936 23122
0.95 0.0010  1.3845 1.6391  0.0006 2.4001 3.1127  0.0005 3.3980 4.9799

Table 5. Average values of R~ (CCA), Ry (NCCA)and R, (PNCCA) for (C)
po=13 Po=3 po=38

) Px Re Ry Rp R Ry Rp R Ry Rp
30 1 05 0.0074 0.2507 0.2479 0.0047  0.1690  0.2528 _ 0.0050 0.1576 0.4187
0.8 0.0063 0.3503 0.4134 0.0016  0.1914  0.5353  0.0032 0.2065 1.1178
0.95  0.0016 0.5057 0.6864 0.0012  0.2715 14164  0.0005 0.1110 2.3199
3 0.5 0.0082 0.6628 0.6571 0.0069  0.6211  0.7752  0.0046 0.8311 1.0931
0.8 0.0023 1.1161 1.1373 0.0028  0.8099 14641  0.0019 0.9546 2.3910
0.95  0.0012 1.4540 1.4771 0.0011  0.6674  2.5052  0.0006 0.3961 4.7958
50 1 0.5 0.0064 0.3006 0.2786  0.0051 02095 03011  0.0045 0.2809 0.4944
0.8 0.0049 0.3943 0.5459 0.0028  0.4/95  0.7251  0.0018 0.6204 1.2818
0.95  0.0012 0.4479 0.8000 0.0020  0.6926  1.7492  0.0005 0.5374 2.7939
3 0.5 0.0067 0.7499 0.7488 0.0053  0.8343  0.8708  0.0027 0.9939 1.0766
0.8 0.0029 1.3193 1.3724 0.0029  1.5655 17197  0.0019 2.1370 2.4582
0.95  0.0009 1.5079 1.7138 0.0008 22223 29143  0.0004 3.1285 5.4998
100 1 0.5 0.0057 0.3862 0.3951 0.0053  0.3/93 03888  0.0051 0.3464 0.5038
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Table 5. Continue

0.8 0.0044 0.5380 0.6380 0.0015 0.6137 0.8462 0.0023 0.7448 1.2510
0.95 0.0013 0.5335 0.8878 0.0007 0.8215 1.8003 0.0005 0.8568  2.8302
3 0.5 0.0083 0.8072 0.8198 0.0062 0.9455 0.9823 0.0036 1.0074 1.0798
0.8 0.0025 1.3925 1.4396 0.0029 1.7927 1.8991 0.0012 2.1214  2.3359
0.95 0.0008 1.6185 1.7614 0.0006 2.4415 3.0633 0.0004 3.8614 5.3736

When n changes from 50 to 100 and p, = 8, the
result values of PNCCA almost always become small.
The result values of PNCCA also become small when
n changes from 30 to 100 except when (po, px) = (8,
0.95). The result values of NCCA become large when
n changes from 30 to 100. Next, we consider the
results when using pattern (B), which are presented in
Table 4. When p, becomes large, the result values of
CCA become small when (py, 6) = (5, 1), po = 8
except when (n, J, po) = (30, 3, 3). When p, becomes
large, the result values of NCCA become large when p,
=3, (n, po) = (100, 8) and (n, J, po) = (50, 3, 8) but not
when (n, J, po) = (30, 1, 5). The result values of
PNCCA become large when p, becomes large. The
result values of NCCA and PNCCA become large when
0 becomes large. When J becomes large, the result
values of CCA also become large When (n, po) = (30,
8) and that of CCA become small when (#, po) = (50, 8)
and (n, py) = (100, 8).

When p, = 5 and J becomes large, the result values of
CCA also almost all become small, except when p, =
0.8. Next, we compare the result values when p, and n
both become large. When p, becomes large, the result
values of PNCCA become large. The result values of
CCA become small when p, changes from 3 to 5 except
when (6, p,) = (3, 0.8). When p, changes from 3 to 8, the
result values of CCA almost all become small. The result
values of NCCA become large when p, changes from 3
to 5 in (n, 0) = (50, 3) and (n, J) = (100, 3) and when p,
changes from 3 to 8 in » = 50 and » = 100. When pg
changes from 5 to 8 and 6 = 3, the result values of
NCCA almost all become large. In contrast to this, the
result values of CCA become small when p, changes
from 3 to 5 in n = 30. Moreover, when »n changes from
50 to 100 and py = 3 and it changes from 30 to 100
and p, = 8, the result values of CCA become small.
The result values of NCCA become large except when
(po, pr) = (3, 0.95) and (po, J) = (8, 3), when n changes
from 50 to 100. The result values of PNCCA almost
always become large when n becomes large and po = 3
and po = 5. When (p,, 6) = (8, 1) and » changes from
30 to 50 and 30 to 100, the result values of PNCCA
also become large. When » changes from 50 to 100
and p, = 8, the result values of PNCCA become small.

Finally, we consider the results with pattern (C),
which are in Table 5. When p, becomes large, the result
values of CCA and PNCCA become small and large,
respectively. When p, becomes large, the result values of
NCCA almost always become large in py = 3, po = 5, (n,
Do, 0) = (50, 8, 3) and (#, po) = (100, 8). When 6 becomes
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large, the result values of NCCA and PNCCA become
large. When 6 becomes large, the result values of CCA
become small when (#, py) = (100, 8) and p, = 3, but not
when (po, py) = (3, 0.5). Next, we compare the results
when p, becomes large and n becomes large. When p,
becomes large, the result values of PNCCA almost
always become large. The result values of NCCA
become small when p, changes from 3 to 5 and » = 30.
Moreover, when n becomes large, the result values of
NCCA and PNCCA almost always become large.

Based on these results, we recommend using PNCCA
with the proposed optimization method in order to find a
nonlinear relationship.

Conclusion

In the present paper, we considered finding a
nonlinear relationship between random vectors. CCA
(Hotelling, 1936) can find only a linear relationship
between random vectors, based on the correlation
between linear combinations of them. The use of
conversion functions allows a nonlinear relationship to
be found by using CCA on the converted variables.
Hardoon et al. (2004) pointed out that this method has a
critical issue and, to avoid this, Akaho (2000) proposed
PNCCA when the conversion functions are the kernel
functions. Although the result of PNCCA heavily
depends on the penalty and other hyper parameters in the
conversion function, there has been no optimization
methods proposed for them until the present paper. The
reason for this is that the evaluation method for the
covariance matrix is not defined.

In order to optimize the penalty and other parameters
in PNCCA, we considered the evaluating function in
(3.1) and proposed using the simple CV method in
Section 3. Using the two samples {y;, w;! and {y;, w;},

where i = j, we define 5[17]] for all i and j, (i # j). On the

other hands, for the fixed parameters, the results of
PNCCA are derived based on the remains datum. Using

S’[U] and the results of PNCCA for each 7 and j, (i #j), we

then proposed the optimization method for the penalty
and other hyper parameters in the conversion function
based on the sum of evaluation (3.3). We can easily
extend this method for subset CV method. Our
numerical studies showed that PNCCA is almost
always the best of the three we tested. Thus, we
recommend using PNCCA, optimized by using the
proposed simple CV method.
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Appendix: Using Proposed CV Method to
Select Variables in y and x

Using the optimized penalty parameter i, the
maximized value of a'T d in(2.2) is estimated by using

17; » which coincides with the square root of the largest

eigenvalue of (SW+/1P)7l S Sy S -

In this section, we

illustrate the variable selection method.

Let y!"! and x"! be subsets of y and x, respectively and
wi = y(x"), where (") is any known conversion function
that does not need to correspond with ¢(-). Let Sy »
Sy and SyP 111 be the sample variance and covariance
matrices of w!', 1" and wt' and y!", respectively and let
P be some known nonnegative penalty matrix. Based on
the proposed simple CV method, the optimized penalty

n 2
parameter AWis derived. We can then obtain (77[:[]]) ,

which is the estimator of the maximized correlation

between the linear combinations of "' and w!'.

2
Next, (nﬂ) is derived using the same procedure as

in PNCCA and the above procedure based on y™* and
x where y*! and x' are also subsets of y and x but are

not the same as y!" and x!" If it holds that ﬁg'[],] >ﬁ£jz]],

where 7l >0 and 4l >0, we select y!"! and x!'); ' and

21 are selected if it does not hold.

Since we evaluate the covariance matrix by using the
subset CV method, we conjecture that we may select
another statistical estimation method based on the
covariance matrix.

X
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