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Abstract: There is Canonical Correlation Analysis (CCA) as a way to find a 

linear relationship between a pair of random vectors. However, CCA cannot 

find a nonlinear relationship between them since the method maximizes the 

correlation between linear combinations of the vectors. In order to find the 

nonlinear relationship, we convert the vectors through some known 

conversion functions like a kernel function. Then we find the nonlinear 

relationship in the original vectors through the conversion function. 

However, this method has a critical issue in that the maximized correlation 

sometimes becomes 1 even if there is no relationship between the random 

vectors. Some author proposed a penalized method with a penalty 

parameter that avoids this issue when the kernel functions are used for 

conversion. In this method, however, methods have not been proposed for 

optimizing the penalty and other hyper parameters in the conversion 

function, even though the results heavily depend on these parameters. In 

this study, we propose an optimization method for the penalty and other 

parameters, based on the simple cross-validation method. 
 
Keywords: Canonical Correlation Analysis, Cross-Validation, Nonlinear 

Relationship, Penalized Method 
 

Introduction 

Let y and x be q0- and p0-dimensional random vectors. 

Without of generality, we assume E[y] = 
0

0
q
and E[x] = 

0

0
p
where 0ℓ is an ℓ-dimensional vector of zeros. 

Moreover, let Σ = E [(y′, x′)′ (y′, x′)] be a (q0 + p0) × (q0 + 

p0) unknown matrix and 
yy yx

yx xx

 Σ Σ
 Σ =
 ′Σ Σ 

 where Σyy is a 

q0×q0 matrix, Σyx is a q0×p0 matrix and Σxx is a p0×p0 

matrix and we assume det(Σyy) ≠ 0 and det(Σxx) ≠ 0. Note 

that Σyy = Var(y), Σyx = Cov(y, x) and Σxx = Var(x), since 

E[y] = 
0

0
q
 and E[x] = 

0

0
p
. 

As a method for finding the linear relationship between y 

and x, Hotelling (1936) proposed Canonical Correlation 

Analysis (CCA). This method is formulated as follows: 
 

0 0
,

max . . 1 1
q p

yx yy xx

b

a bs t a a and b b

α∈ ∈

′ ′ ′Σ Σ = Σ =

ℝ ℝ

  (1.1) 

 
Usually, using the Lagrange method of undetermined 

multipliers, we can derive the solutions of a and b. More 
details of CCA can be found in Muirhead (1982), Gittins 
(1985), Srivastava (2002) and Weenink (2003). This 

method is currently being used for data analysis (see, 
e.g., Doeswijk et al., 2011). CCA, however, can not 
find a nonlinear relationships between y and x, since 
the maximization term in (1.1) is equivalent to 
Cov(a′y, b′x), which evaluates the linear relationship 
between linear combinations a′y and b′x. 

In order to find a nonlinear relationship between y and x, 
we consider converting them by using some known 
functions like a kernel function. Then, CCA can then find a 
nonlinear relationship between y and x through the 
conversion functions. This method is referred to as a 
Nonlinear Canonical Correlation Analysis (NCCA) and it is 
shown in section 2. Hardoon et al. (2004) pointed out that 
NCCA has a critical issue which is also shown in section 2. 

Using the same idea as is used in the penalized 
nonlinear regression model, Akaho (2000) proposed a 
penalized NCCA when the kernel functions are used for 
the conversion functions. We will refer to the penalized 
NCCA as PNCCA even when it uses any conversion 
functions instead of the kernel function. 

In PNCCA, no criteria have yet been developed for 

optimizing the penalty and other hyper parameters in the 

conversion function. The reason of this problem, it is 

difficult to know how to evaluate the result of PNCCA. In 

particular, determining how to optimize the penalty and 
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other hyper parameters in conversion function is important, 

since the result of PNCCA heavily depends on these 

parameters. Hence, in this study, we create a evaluating 

function for evaluating the estimated value. Based on this 

function and the ordinary Cross-Validation (CV) method, 

we propose the simple form of CV method for optimizing 

these parameters in PNCCA. Details of the proposed 

function and CV method are presented in section 3. 

The remainder of the present paper is organized as 

follows: In section 2, we present more details of CCA, 

NCCA and PNCCA. In section 3, we propose the simple 

CV method for optimizing several parameters in PNCCA. 

In section 4, we use numerical studies to compare CCA, 

NCCA and PNCCA based on the optimized parameters. 

In section 5, we present our conclusions. Using the 

proposed CV method, we can select the variables in y and 

x; we illustrate this method in the Appendix. 

CCA, NCCA and PNCCA 

In this section, we illustrate CCA, NCCA and 

PNCCA. We first illustrate CCA, which is expressed as 

(1.1). Using the Lagrange method of undetermined 

multipliers, since det(Σxx) ≠ 0 and det(Σyy) ≠ 0, CCA is the 

same as solving the following eigenvalue problem: 

 
1 1 2

xx yx yy yx
b bθ

− −

′Σ Σ Σ Σ =ɶ ɶɶ  (2.1) 

 

and 1
/

yy yx
a b θ

−

=Σ Σ ɶ ɶɶ where ' 0.
yx

a bθ = Σ >ɶɶ ɶ Hence, solving the 

eigenvalue problem in (2.1) and using the largest eigenvalue 

and the corresponding eigenvector, we can solve the 

maximization problem under several conditions in (1.1). 

More details of CCA can be found in e.g., Muirhead (1982). 

However, CCA can not find a nonlinear relationship 

between y and x. In order to find a nonlinear 

relationship between them, we convert x as w = ϕ(x) 

where ϕ(.): 0 1
p p
→ℝ ℝ is a known conversion function. 

Without of generality, we also assume [ ] 0
1

p
E w = and 

we also assume det (Σww) ≠ 0 where Σww = Var (w). 

When we use CCA for y and w, we can find the 

nonlinear relationship between y and x through ϕ(·). 
This is the NCCA. However, Hardoon et al. (2004) 

pointed out that, even if there is no relationship 

between y and x, the result of NCCA shows there are 
heavily relationship between them. 

In order to avoid this problem, Akaho (2000) proposed 

PNCCA only when we use the kernel functions as 

conversion functions. This is the primary method we 

consider in this study. Since, in our setting, only x is 
converted, PNCCA is expressed as follows: 

 

( )
0 1
,

max ' . . ' 1 ' 1
q p

yw yy ww

d

a d s t a a and d P d

α

λ

∈ ∈

Σ Σ = Σ + =

ℝ ℝ

 (2.2) 

where, Σyw = Cov (y, w), λ is a nonnegative penalty 

parameter and P is a known p1×p1 nonnegative definite 

penalty matrix. Note that λd′Pd is the penalty term in 

(2.2) since λd′Pd≥0 for any 1
p

d∈ℝ . Furthermore, we note 

det (Σww + λP) ≥ det (Σww)>0 since λ≥0 and P is the 

nonnegative definite matrix (see, e.g., Lütkepohl (1996) 

section 4.2.6, (11)). The same as for CCA in (1.1), in 

order to solve the maximization problem under various 

conditions in (2.2), we use the Lagrange method of 

undetermined multipliers as follows: 
 

{ }( , , , , ) ( 1) ( ) 1 ,
2 2

a d
P a d yw yy wwL a d P a d a a d P d

η η
η η λ λ′ ′ ′= Σ − Σ − − Σ + −  

 
where, ηa and ηd are undetermined nonnegative constants. 

Akaho (2000) only showed the above expression without 

(2.2) when the conversion function is the kernel function. 

For the fixed λ, solving the simultaneous equations 

( )

0

1 ,

( , , , , | ) / ( ) 0 , ( , , , , ) / ( )

0 , ( , , , , ) / 0
a a

P a d P a da a q

P a d ad d p

L a d P a L a d P d

L a d P

λ

λ λ
η η

η η λ η η λ

η η λ η

=

= =

∂ ∂ = ∂ ∂

= ∂ ∂ =

ɶ

ɶ ɶ

 and 
,

( , , , , ) / ( ) 0
d d

P a d dL a d P
λ

η η
η η λ η

=

∂ ∂ =
ɶ

 coincides with 

solving the following eigenvalue problem: 
 

( )
1

1 2

ww yw yy yw
P d d

λ λ λ
λ η

−

−

′Σ + Σ Σ Σ =ɶ ɶɶ  (2.3) 

 

and 1
/ ,

yy yw
a d
λ λ λ

η
−

=Σ Σ ɶ ɶɶ where ' 0
yw

a d
λ λ λ

η = Σ >ɶɶ ɶ  and 

, ,a dλ λ λη η η= =ɶ ɶ ɶ . Hence, when the penalty parameter λ is 

given, we can solve (2.2) by using the largest 

eigenvalue and the corresponding eigenvector of the 

above eigenvalue problem. 

However, although it is important, there are no 

optimization methods for λ and other parameters in the 

conversion function ϕ(·). In the next section, we propose 

a simple CV method for optimizing λ and some of the 

parameters in the known conversion function ϕ(·). 

Proposed Method 

In this section, we propose a simple CV method for 

optimizing the penalty and other hyper parameters in the 

conversion function φ(·) which are used in PNCCA. In 

order to propose CV method, we consider evaluating 

function for the results of PNCCA. 

Firstly, since Σww, Σyw and Σyy are unknown matrices, 

we use their unbiased estimators to estimate , ,a
λ λ

ηɶ ɶ  

and d
λ

ɶ . Let S be the ordinary unbiased estimators for Σ 

based on the sample {yi, xi}i = 1,..., n and wi = φ(xi). Then 

we divide S as 
yy yw

yw ww

S S

S S

 
 
 ′ 

 where Syy is a q0×q0 matrix, 

Syw is a q0×p1 matrix and Sww is a p1×p1 matrix. In 
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order to estimate ,a
λ λ

ηɶ ɶ  and d
λ

ɶ , we use Syy, Syw and Sww 

instead of using Σyy, Σyw and Σww in (2.3), respectively. 

Let ( ) ˆˆ ˆ0 , anda d
λ λ λ

η > be the estimators for 
λ

ηɶ , a
λ
ɶ  

and d
λ

ɶ , respectively. Then, 2ˆ
λ

η  and d̂
λ
 are derived as 

the largest eigenvalue and the corresponding 

eigenvector of 1 1
( )

ww yw yy yw
S P S S Sλ

− −

′+  and 

1 ˆ ˆˆ /
yy yw

a S S dλ λ λη
−

= from (2.3). 

We consider creating an objective function in order to 

evaluate a
λ
ɶ and d

λ

ɶ for optimizing several parameters in 

PNCCA that are the penalty parameter and the other 

parameter in the conversion function. Since the purpose of 

PNCCA is maximizing ywa d′Σ  under several conditions, we 

consider the following evaluation function: 

 
* ˆˆ

yw
R E a d

λ λ
 ′= Σ
 

 (3.1) 

 

Maximizing the above function, we can optimize the 

parameters in PNCCA. Here, we note that â
λ
and d̂

λ
 are 

derived from {yi, xi}i=1,...,n. However, Σyw is an unknown 

covariance matrix. We therefore consider using an 

estimator for Σyw that does not depend on {yi, xi}i=1,...,n in 

order to estimate R∗ in (3.1) since we use {yi, xi}i=1,...,n for 

deriving â
λ
and d̂

λ
. 

Then, let y∗ and x∗
 
be new variables that are obtained 

independently from {yi, xi}i=1,...,n and let S∗ be the variance 

and covariance matrix between y∗ and w∗ = φ(x∗). Then, 

letting Sy∗ w∗ be the first q0×p1 matrix in S∗, we can regard 

Sy∗w∗ as an estimator for Σyw. Based on Sy∗w∗, the 

evaluation function R∗
 
in (3.1) is estimated by using the 

average of the following value: 
 

*

* *

ˆˆ ˆ
y w

R a S d
λ λ
′=  (3.2)  

 

Nevertheless, this evaluation function *
R̂  in (3.2) also 

can not be used directly for optimizing the parameters in 

PNCCA since y∗ and w∗ are not obtained. We thus use the 

simple CV method to optimize the penalty parameter and 

other hyper parameter in the conversion function that are in 

PNCCA. As similar as the ordinary CV method for some 

regression model, we divide {yi, xi}i = 1,...,n into two subsets. 

One of them is used for estimation, and other one is used for 

evaluating the estimated value. 

Let V = (v1... vn)′ be n × (q0+p1) matrix, where vi = 

( , )
i i
y w′ ′ ′ , (i = 1,...,n). The essence of the propose 

method is to obtain a matrix that is an alternative to 

Sy∗w∗. The alternative matrix to it can not be derived from 

using only one sample. 

We now use vi and vj, (i ≠  j) to derive an alternative 

matrix to Sy∗w∗, which can be defined as: 

[ ]

( )( )
( )

,

'
ˆ , 1,..., ; 1,...,

4

i j j i

i j

y y w w
S i n j i j

− −

= = = ≠  

 
since (yi + yj)/2 and (wi + wj)/2 are the sample means 

based on vi and vj, (i ≠ j) and the sample covariance 

matrix between yi and wj is derived as (yi − (yi + yj)/2)(wj 

− (wi + wj)/2)′. Note that [ , ] [ , ]
ˆ ˆ
i j j i

S S=  for any i and j, i≠ 

j. Let V 
[−i,−j]

, (i = 1, ..., n; j = 1, ..., n; i≠ j) be obtained 

by deleting v′i and v′j , (i≠ j) from V. Furthermore, let 
[ ] [ ]

,

i j i j

ww yw
S S

− − − −

 and 
[ ]i j

yy
S

− −

be derived by using V 
[−i,−j]

 and 

be based on the ordinary estimation method for 

covariance matrices. Then, if λ is fixed, 
[ ],

ˆ
i j

d
λ

− −

is derived 

as the eigenvector that corresponds to the largest 

eigenvalue of ( ) ( )
1 1

[ ] [ ] [ ] [ ]i j i j i j i j

ww yw yy yw
S P S S Sλ

− −

− − − − − − − −′+ . 

Using 
[ ],

ˆ
i j

d
λ

− −

and the largest eigenvalue [ ]( ) [ ]
2

, ,ˆ ˆ,
i j i j

a
λ λ
θ

− − − −

 is 

obtained as 
[ ] ( ) [ ] [ ]1, , ,[ ] [ ] ˆ ˆˆ /
i j i j i ji j i j

yy yw
a S S d
λ λ λ

θ
−

− − − − − −− − − −

= , 

where 
[ ],ˆ 0
i j

λ
θ

− −

> . Note that [ ],

ˆ
i j

a
λ

− −

and 
[ ],

ˆ
i j

d
λ

− −

are derived 

from V 
[−i,−j]

 and 
[ ],

ˆ
i j

S is derived from vi and vj , (i ≠ j), 

which are not used for deriving [ ],

ˆ
i j

a
λ

− − and 
[ ],

ˆ
i j

d
λ

− −

. Thus, 

we can evaluate [ ],

ˆ
i j

a
λ

− − and 
[ ],

ˆ
i j

d
λ

− −

 based on
[ ],

ˆ
i j

S . In order 

to optimize the penalty parameter λ and the other hyper 

parameters in the conversion function, we use 

i j ij
T c

≠
=Σ where: 

 
[ ]

[ ]
[ ] ( )

, ,

,

ˆˆˆ , 1,..., ; 1,..., ;
i j i j

ij i j
c a S d i n j n i j

λ λ

− − − −′= = = ≠  (3.3) 

 
Thus, for example, the penalty parameter λ and hyper 

parameter ζ in PNCCA and the conversion function can be 

optimized as 
0,

ˆ argmax Tλ ζλ
≥

= . 

When we use more number of rows of V for making the 

alternative matrix for Sy∗w∗, we can extend this simple CV 

method to subset CV method. However, we only focus on 

the simple CV method in order to save the space of paper. 

Numerical Study 

In this section, we compare CCA, NCCA and 

PNCCA optimized with the proposed CV method 

through numerical study. Note that NCCA can be 

defined by the same form as PNCCA in (2.2) when we 

fix λ = 0. Let ∆r(ρ) be an r×r matrix whose (i, j)th 

element is derived as ρ
|i−j|

 The n×p0 matrix X is 

generated from ( )
0

/1 2

p x
X U ρ= ∆ , where U is an n×p0 

matrix whose elements were generated independently 

from the standard normal distribution. Then, Y = (y1,..., 

yn)′ are derived as follows: 
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( )

( )

( )

( )

( )

( )

( )

. 0

2

.3

2

.4

( ) 1 ,

/ max

( ) sin 2 ,

cos 2

/ max

sin 2
( ) ,

cos 2

exp / 4

i i i qo i q

i i ij

i i i i

i i

i i ij

i i

i i

i i

i i

A y x x

x x x

B y x x

x x

x x x

x x
C y

x x

x x

δ ε

δ ε

δ ε

′= +

 ′
 
 ′= +
 
 ′
 

 ′
 
 ′
 = +
 ′
 
 ′− 

 

 

where, ( )
0

, ...,i i1 ipx x   x= ′ is the ith row of the standardized X, 

1r is a r-dimensional vector all of whose elements are 1 and 

εi·r is generated independently from Nr(0r,∆r(0.5)) which 

is a r-dimensional multivariate normal distribution with 

mean 0r and covariance matrix ∆r(0.5). Here, δ controls 

the scale of the nonlinear relationship part. 

Since NCCA and PNCCA need the converted values that 

are expressed as ( ) ( ) ( )
0

, ..., , , ...,i i1 ip iw  w  w x i  1   nϕ= ′ = = , we 

set { }2exp / (2 )ij ijw x h= −  and '

1
( ,..., )

n
W w w=  Then, W is 

standardized. We choose h by comparing the maximized 

correlation for each value {0.05, 0.1, 0.5, 1, 2, 5} in each 

repetition. In PNCCA, c P is set to P = K′K, where 

( )
0

1 2
, ...,

p
K k  k

−

= ′  is a (p0−2) × p0 matrix and 

( ) ( )
0

1 02
0 ,1, 2,1,0 ', 1,..., 2

j j p j
k j p

−
− −

′ ′= − = − . (More details of K 

can be found in Green and Silverman (1994).) Since the ‘arg 

max’ operator is equivalent to the ‘arg min’ operator with the 

reversed sign, we select λ by using ‘fminbnd’ function in 

Matlab which is ‘fminsearch’ in Matlab with a specified 

region and we restrict the region to 1 to exp(20) in order to 

shorten the computation time. Furthermore, in order to 

reduce computational tasks, we calculate cij in (3.3) for i = 

1,...n−1 and j = i +1. 
In order to derive R∗ in (3.1), since we need Σy∗y∗, Σy∗x∗, 

Σx∗x∗, Σy∗w∗ and Σw∗w∗, we set n = 10, 000 and generate X for 
each p0 and ρx and standardize them. Then, from each 
transformation function (A), (B) and (C) and each parameter 
δ and q0, we obtain Y, which we also standardized. 

Note that q0 = 3 when the transformation function is in 
(B) and q0 = 4 when the transformation function is in (C). 
In CCA, Σy∗y∗, Σy∗x∗ and Σx∗x∗ can be derived as the sample 
variance matrix of the standardized Y, the sample 

covariance matrix of the standardized Y and X and the 
sample variance matrix of the standardized X, 
respectively. In NCCA and PNCCA, we convert X as 
above for each h and standardize the converted values. 
The results of conversion is derived as W. Then, Σy∗w∗ and 
Σw∗w∗ can be derived as the sample covariance matrix of 

standardized Y and W and the sample variance matrix of 
the standardized W, respectively. Using these matrices, 
we evaluated the results of each method. 

In order to evaluate these methods, we fixed X and 
generated Y for 1, 000 repetitions. We used the 
standardized X, Y and W in each repetition. For each 
repetition with CCA, we obtain Syx, Syy and Sxx. On the 
other hand, for each repetition with NCCA and PNCCA, 
we obtain Syw, Syy and Sww. 

For each repetition with CCA in (1.1), we calculated the 

maximized correlation under certain conditions by using Syx, 

Syy and Sxx instead of Σyx, Σyy and Σxx, respectively. We 

denote the maximized correlation as 2
θ̂ , the eigenvector 

that corresponds to the largest eigenvalue of 1 1

xx yx yy yx
S S S S

− −

′ , 

as ˆ
C
b  and then 1 ˆ ˆˆ /

c yy yx c
a S S b θ

−

=  is derived where ˆ 0θ > . 

For each repetition with NCCA which can be defined as 

(2.2) with λ = 0, we calculated the maximized correlation 

under certain conditions and the optimized h, for which 

we used Syw, Syy and Sww instead of Σyw, Σyy and Σww, 

respectively. We denote the maximized correlation as 2

0
η̂ , 

the eigenvector that corresponds to the largest eigenvalue 

of 1 1

ww yw yy yw
S S S S
− −

′ as ˆ
N

d  and then 1

0

ˆ ˆˆ /N yy yw Na S S d η
−

= is 

derived where 
0
ˆ 0η > . For each repetition with PNCCA in 

(2.2), we calculated the maximized correlation under certain 

conditions by using the optimized λ and optimized h and we 

used Syw, Syy and Sww instead of Σyw, Σyy and Σww, respectively. 

We denote the maximized correlation as 2

ˆ
ˆ
λ

η and the 

eigenvector that corresponds to the largest eigenvalue of 
1 1ˆ( )

ww yw yy yw
S P S S Sλ

− −

′+  as ˆ
pd , where λ̂  is the optimized 

penalty parameter based on the proposed CV method and 

then 1

ˆ

ˆ ˆˆ /P yy yw Pa S S d
λ

η
−

=  is derived where 
ˆ
ˆ 0
λ

η >   

Note that we considered the evaluating function in 

(3.1) in order to optimize λ based on the predictive values. 

Thus we also compared these methods by using the 

average values of 
* * * *

ˆ ˆˆ ˆ, ,C y x C N y w Na b a d′ ′Σ Σ  and 
* *

ˆˆ
P y w Pa d′ Σ  

and then we denoted the average value of each value 

as *

C
R , *

N
R  and *

P
R  in Table 1-5. The reason of using 

*

N
R and *

P
R is that the purposes of the corresponding 

method are finding the nonlinear relationship. In Table 1 

to 5, the bold and italic faces mean the biggest and second 

biggest values, respectively, in each situation. 

First, we consider the results when using pattern (A), 

which are presented in Table 1-3. When ρx becomes 

large, the result values of CCA become small, the results 

of PNCCA become large and the result values of NCCA 

also become large except when (n, p0) = (30, 5) and (n, 

p0) = (30, 8). 

The result values of each method become large in 

almost all cases when δ becomes large except when (n, 

p0) = (100, 3). In this pattern, we can change q0. Thus, 

next, we consider the result values when q0 changes. 

When q0 changes from 3 to 8, the result values of NCCA 

become large in almost cases. When q0 becomes large, the 

result values of PNCCA become large in almost situations 
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in (n, p0, δ) = (30, 3, 1), (n, p0, δ) = (50, 3, 1) and (n, p0, δ) 

= (100, 3, 1) and that of PNCCA become small in almost 

situations in (n, p0, δ) = (30, 3, 3), (n, p0) = (30, 5) and (n, 

p0) = (30, 8). Next, we consider the results when p0 

becomes large. In n = 50 and n = 100, the result values of 

NCCA and PNCCA become large when p0 becomes 

large. The result values of PNCCA also become large 

when n = 30 and p0 becomes large. In this connection, we 

focus on the results when n becomes large. 

When n changes from 30 to 50, the result values of 
CCA almost all become small in (p0, q0) = (3, 5) and (p0, 
q0) = (3, 8), the result values of NCCA become large and 
the result values of PNCCA become large when p0 = 3 

and p0 = 5. When (p0, q0) = (8, 5) and (p0, q0) = (8, 8) and 
n changes from 30 to 50, the result values of PNCCA 
almost all become small. The result values of NCCA also 
become small when n changes from 30 to 50 in almost all 
situations when (p0, ρx) = (8, 0.8). 

 

Table 1. Average values of *

CR  (CCA), *

N
R  (NCCA) and *

PR  (PNCCA) for n = 30 and (A) 

    p0 = 3   p0 = 5   p0 = 8 

   ------------------------------------------ --------------------------------------- -------------------------------------------- 

q0 δ ρ
x
  *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  

3 1 0.5 0.0055 1.0848 1.0888 0.0028 1.0723 1.2443 0.0070 1.4206 1.6244 

  0.8 0.0029 1.6265 1.6713 0.0017 1.6642 2.4493 0.0020 1.5904 3.5193 

  0.95 0.0021 2.3404 2.2292 0.0007 0.8485 3.6166 0.0010 0.5696 5.8488 

 3  0.5 0.0156 1.1349 1.1383 0.0033 1.0898 1.2380 0.0063 1.4944 1.6558 

  0.8 0.0019 1.6746 1.6993 0.0027 1.6857 2.4588 0.0032 1.6175 3.5545 

  0.95 0.0012 2.4598 2.2841 0.0014 0.8380 3.6303 0.0006 0.5747 5.9185 

5 1 0.5 0.0101 1.0912 1.0904 0.0040 1.0728 1.2353 0.0048 1.4135 1.6298 

  0.8 0.0027 1.6389 1.6753 0.0026 1.6435 2.4555 0.0024 1.5689 3.4765 

  0.95 0.0013 2.3832 2.2656 0.0009 0.8670 3.5930 0.0006 0.5830 5.7756 

 3 0.5 0.0075 1.1186 1.1206 0.0041 1.0938 1.2437 0.0049 1.4588 1.6316 

  0.8 0.0052 1.6788 1.7040 0.0024 1.6680 2.4355 0.0022 1.6021 3.5511 

  0.95 0.0010 2.4589 2.3020 0.0007 0.8388 3.5998 0.0009 0.5777 5.8660 

8 1  0.5 0.0068 1.0992 1.0367 0.0051 1.0519 1.2061 0.0052 1.3710 1.5844 

  0.8 0.0055 1.6640 1.6981 0.0032 1.6006 2.4153 0.0032 1.5513 3.4621 

  0.95 0.0017 2.3961 2.2814 0.0008 0.8437 3.5642 0.0007 0.5925 5.6960 

 3 0.5 0.0065 1.1145 1.0829 0.0045 1.0623 1.2186 0.0052 1.3998 1.5976 

  0.8 0.0037 1.6753 1.6990 0.0024 1.6347 2.4313 0.0024 1.5424 3.4618 

  0.95 0.0020 2.4499 2.2716 0.0008 0.8474 3.5708 0.0005 0.5795 5.7208 
 

Table 2. Average values of *

CR  (CCA), *

N
R  (NCCA) and *

PR  (PNCCA) for n = 50 and (A)  

   p0 = 3    p0 = 5    p0 = 8 

   ---------------------------------------- ------------------------------------- ------------------------------------------ 

q0  δ  ρ
x
  *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  

3 1 0.5 0.0046 1.1368 1.1325 0.0055 1.3697 1.3605 0.0042 1.5363 1.5706 

  0.8 0.0028 1.8384 1.8374 0.0020 2.6066 2.6390 0.0025 3.4349 3.5174 

  0.95 0.0025 2.4768 2.4821 0.0007 3.5793 4.0919 0.0006 5.1110 6.2173 

 3  0.5 0.0070 1.1820 1.1759 0.0037 1.3715 1.3574 0.0061 1.5809 1.6030 

  0.8 0.0042 1.8803 1.8716 0.0038 2.6648 2.6590 0.0019 3.5191 3.5492 

  0.95 0.0011 2.5765 2.5221 0.0007 3.7883 4.1181 0.0004 5.4452 6.2972 

5 1  0.5 0.0069 1.1455 1.1404 0.0055 1.3621 1.3533 0.0045 1.5577 1.5855 

  0.8 0.0032 1.8480 1.8430 0.0025 2.6401 2.6667 0.0021 3.4211 3.4885 

  0.95 0.0013 2.5102 2.5123 0.0009 3.5909 4.1073 0.0005 5.1608 6.2080 

 3  0.5 0.0074 1.1671 1.1607 0.0047 1.3896 1.3751 0.0053 1.5632 1.5857 

  0.8 0.0041 1.8859 1.8769 0.0032 2.6548 2.6521 0.0019 3.5276 3.5593 

  0.95 0.0013 2.5805 2.5345 0.0007 3.7451 4.1177 0.0006 5.4121 6.2852 

8  1  0.5 0.0060 1.1588 1.1532 0.0076 1.3608 1.3512 0.0051 1.5440 1.5711 

  0.8 0.0043 1.8764 1.8695 0.0028 2.6122 2.6418 0.0024 3.4513 3.5162 

  0.95 0.0016 2.5381 2.5289 0.0008 3.563  4.0960 0.0006 5.1504 6.2035 

 3  0.5 0.0063 1.1669 1.1596 0.0057 1.3798 1.3646 0.0052 1.5522 1.5769 

  0.8 0.0039 1.8831 1.8726 0.0028 2.6527 2.6566 0.0023 3.4788 3.5145 

  0.95 0.0018 2.5776 2.5306 0.0008 3.7039 4.1246 0.0005 5.3411 6.2406 
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Table 3. Average values of *

CR  (CCA), *

N
R  (NCCA) and *

PR  (PNCCA) for n = 100 and (A) 

   p0= 3   p0 =5   p0 = 8 

   ------------------------------------------ ------------------------------------- ------------------------------------------ 

q0 δ ρ
x
 *

CR  

*

N
R  

*

PR  

*

CR  

*

N
R  

*

PR  

*

CR  

*

N
R  

*

PR  

3 1 0.5 0.0055 1.2018 1.2057 0.0032 1.5306 1.5352 0.0041 1.5487 1.5695 
  0.8 0.0029 1.9092 1.9138 0.0021 2.8659 2.8950 0.0023 3.2276 3.2883 
  0.95 0.0021 2.5552 2.539 60.0007 3.9258 4.2784 0.0007 5.5941 6.0614 
 3 0.5 0.0067 1.2531 1.2561 0.0043 1.5357 1.5381 0.0065 1.5865 1.6023 
  0.8 0.0045 1.9513 1.9497 0.0029 2.9057 2.9187 0.0023 3.2731 3.3141 
  0.95 0.0014 2.6314 2.5962 0.0006 4.0318 4.3034 0.0005 5.7878 6.1337 
5 1 0.5 0.0062 1.2067 1.2105 0.0047 1.5263 1.5302 0.0051 1.5673 1.5850 
  0.8 0.0033 1.9120 1.9155 0.0024 2.9000 2.9256 0.0021 3.2101 3.2612 
  0.95 0.0015 2.5791 2.5716 0.0008 3.9569 4.2926 0.0005 5.6221 6.0548 
 3 0.5 0.0068 1.2363 1.2393 0.0042 1.5575 1.5604 0.0055 1.5703 1.5851 
  0.8 0.0034 1.9561 1.9548 0.0028 2.9022 2.9150 0.0019 3.2823 3.3243 
  0.95 0.0017 2.6327 2.6061 0.0007 4.0373 4.3078 0.0007 5.7813 6.1237 
8 1 0.5 0.0062 1.2187 1.2221 0.0061 1.5266 1.5304 0.0053 1.5545 1.5720 
  0.8 0.0041 1.9385 1.9404 0.0027 2.8822 2.9037 0.0024 3.2381 3.2901 
  0.95 0.0020 2.5963 2.5784 0.0008 3.9735 4.2905 0.0006 5.6429 6.0518 
 3 0.5 0.0060 1.2348 1.2378 0.0056 1.5482 1.5508 0.0048 1.5607 1.5771 
  0.8 0.0043 1.9512 1.9502 0.0029 2.9138 2.9264 0.0024 3.2405 3.2813 
  0.95 0.0016 2.6274 2.5991 0.0009 4.0515 4.3232 0.0005 5.7381 6.0822 

 

Table 4. Average values of *

CR  (CCA), *

N
R  (NCCA) and *

PR  (PNCCA) for (B) 

   p0 = 3   p0 = 5   p0 = 8 

   ----------------------------------------- ------------------------------------------ ---------------------------------------- 

n δ ρ
x
 *

CR  

*

N
R  

*

PR  

*

CR  

*

N
R  

*

PR  

*

CR  

*

N
R  

*

PR  

30 1 0.5 0.0050 0.1803 0.1924 0.0060 0.1426 0.2362 0.0042 0.1415 0.3359 
  0.8 0.0029 0.3026 0.3593 0.0017 0.1841 0.5203 0.0020 0.2017 1.0257 
  0.95 0.0027 0.570  0.7467 0.0014 0.2478 1.3996 0.0005 0.1366 2.7816 
 3 0.5 0.0088 0.5705 0.5645 0.0025 0.5279  0.6730 0.0049 0.8081 1.0558 
  0.8 0.0015 0.9216 0.9264 0.0036 0.8489 1.5573 0.0026 0.9735 2.3869 
  0.95 0.0038 1.5283 1.5091 0.0025 0.6209 2.5992 0.0007 0.3815 4.4913 
50 1 0.5 0.0051 0.1904 0.1936 0.0048 0.1715 0.2568 0.0051 0.2230 0.3839 
  0.8 0.0032 0.3164 0.4315 0.0020 0.3590  0.6171 0.0021 0.5467 1.1514 
  0.95 0.0023 0.4452 0.8387 0.0011 0.6805 1.7296 0.0005 0.6244 3.3308 
 3 0.5 0.0053 0.6274 0.6285 0.0027 0.6998 0.7309 0.0033 0.9603 1.0420 
  0.8 0.0025 1.0326 1.1067 0.0060 1.5704 1.7519 0.0012 2.1235 2.4541 
  0.95 0.0011 1.4164 1.6434 0.0010 2.2205 2.9867 0.0005 2.8972 5.0905 
100 1 0.5 0.0051 0.2578 0.2644 0.0075 0.2691 0.3349 0.0037 0.2601 0.3816 
  0.8 0.0030 0.4277 0.5193 0.0014 0.4836 0.7042 0.0019 0.6373 1.0948 
  0.95 0.0014 0.5038 0.9007 0.0007 0.8114 1.7327 0.0005 0.9769 3.3225 
 3 0.5 0.0044 0.6661 0.6800 0.0030 0.7958 0.8217 0.0029 0.9588 1.0304 
  0.8 0.0017 1.1146 1.1567 0.0022 1.8378 1.9598 0.0017 2.0936 2.3122 
  0.95 0.0010 1.3845 1.6391 0.0006 2.4001 3.1127 0.0005 3.3980 4.9799 

 

Table 5. Average values of *

CR  (CCA), *

N
R  (NCCA) and *

PR  (PNCCA) for (C) 

   p0 = 3   p0 = 5   p0 = 8 

   ------------------------------------------- ---------------------------------------- ----------------------------------------- 

n δ ρ
x
 *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  *

CR  *

N
R  *

PR  

30 1 0.5 0.0074 0.2507 0.2479 0.0047 0.1690 0.2528 0.0050 0.1576 0.4187 
  0.8 0.0063 0.3503 0.4134 0.0016 0.1914 0.5353 0.0032 0.2065 1.1178 
  0.95 0.0016 0.5057 0.6864 0.0012 0.2715 1.4164 0.0005 0.1110 2.3199 
 3 0.5 0.0082 0.6628 0.6571 0.0069 0.6211 0.7752 0.0046 0.8311 1.0931 
  0.8 0.0023 1.1161 1.1373 0.0028 0.8099 1.4641 0.0019 0.9546 2.3910 
  0.95 0.0012 1.4540 1.4771 0.0011 0.6674 2.5052 0.0006 0.3961 4.7958 
50 1 0.5 0.0064 0.3006 0.2786 0.0051 0.2095 0.3011 0.0045 0.2809 0.4944 
  0.8 0.0049 0.3943 0.5459 0.0028 0.4195 0.7251 0.0018 0.6204 1.2818 
  0.95 0.0012 0.4479 0.8000 0.0020 0.6926 1.7492 0.0005 0.5374 2.7939 
 3 0.5 0.0067 0.7499 0.7488 0.0053 0.8343 0.8708 0.0027 0.9939 1.0766 
  0.8 0.0029 1.3193 1.3724 0.0029 1.5655 1.7197 0.0019 2.1370 2.4582 
  0.95 0.0009 1.5079 1.7138 0.0008 2.2223 2.9143 0.0004 3.1285 5.4998 
100 1 0.5 0.0057 0.3862 0.3951 0.0053 0.3193 0.3888 0.0051 0.3464 0.5038 
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Table 5. Continue 

  0.8 0.0044 0.5380 0.6380 0.0015 0.6137 0.8462 0.0023 0.7448 1.2510 
  0.95 0.0013 0.5335 0.8878 0.0007 0.8215 1.8003 0.0005 0.8568 2.8302 
 3 0.5 0.0083 0.8072 0.8198 0.0062 0.9455 0.9823 0.0036 1.0074 1.0798 
  0.8 0.0025 1.3925 1.4396 0.0029 1.7927 1.8991 0.0012 2.1214 2.3359 
  0.95 0.0008 1.6185 1.7614 0.0006 2.4415 3.0633 0.0004 3.8614 5.3736 
 

When n changes from 50 to 100 and p0 = 8, the 
result values of PNCCA almost always become small. 
The result values of PNCCA also become small when 
n changes from 30 to 100 except when (p0, ρx) = (8, 
0.95). The result values of NCCA become large when 
n changes from 30 to 100. Next, we consider the 
results when using pattern (B), which are presented in 
Table 4. When ρx becomes large, the result values of 
CCA become small when (p0, δ) = (5, 1), p0 = 8 
except when (n, δ, p0) = (30, 3, 3). When ρx becomes 
large, the result values of NCCA become large when p0 
= 3, (n, p0) = (100, 8) and (n, δ, p0) = (50, 3, 8) but not 
when (n, δ, p0) = (30, 1, 5). The result values of 
PNCCA become large when ρx becomes large. The 
result values of NCCA and PNCCA become large when 
δ becomes large. When δ becomes large, the result 
values of CCA also become large When (n, p0) = (30, 
8) and that of CCA become small when (n, p0) = (50, 8) 
and (n, p0) = (100, 8). 

When p0 = 5 and δ becomes large, the result values of 

CCA also almost all become small, except when ρx = 

0.8. Next, we compare the result values when p0 and n 

both become large. When p0 becomes large, the result 

values of PNCCA become large. The result values of 

CCA become small when p0 changes from 3 to 5 except 

when (δ, ρx) = (3, 0.8). When p0 changes from 3 to 8, the 

result values of CCA almost all become small. The result 

values of NCCA become large when p0 changes from 3 

to 5 in (n, δ) = (50, 3) and (n, δ) = (100, 3) and when p0 

changes from 3 to 8 in n = 50 and n = 100. When p0 

changes from 5 to 8 and δ = 3, the result values of 

NCCA almost all become large. In contrast to this, the 

result values of CCA become small when p0 changes 

from 3 to 5 in n = 30. Moreover, when n changes from 

50 to 100 and p0 = 3 and it changes from 30 to 100 

and p0 = 8, the result values of CCA become small. 

The result values of NCCA become large except when 

(p0, ρx) = (3, 0.95) and (p0, δ) = (8, 3), when n changes 

from 50 to 100. The result values of PNCCA almost 

always become large when n becomes large and p0 = 3 

and p0 = 5. When (p0, δ) = (8, 1) and n changes from 

30 to 50 and 30 to 100, the result values of PNCCA 

also become large. When n changes from 50 to 100 

and p0 = 8, the result values of PNCCA become small. 

Finally, we consider the results with pattern (C), 

which are in Table 5. When ρx becomes large, the result 

values of CCA and PNCCA become small and large, 

respectively. When ρx becomes large, the result values of 

NCCA almost always become large in p0 = 3, p0 = 5, (n, 

p0, δ) = (50, 8, 3) and (n, p0) = (100, 8). When δ becomes 

large, the result values of NCCA and PNCCA become 

large. When δ becomes large, the result values of CCA 

become small when (n, p0) = (100, 8) and p0 = 3, but not 

when (p0, ρx) = (3, 0.5). Next, we compare the results 

when p0 becomes large and n becomes large. When ρx 

becomes large, the result values of PNCCA almost 

always become large. The result values of NCCA 

become small when p0 changes from 3 to 5 and n = 30. 

Moreover, when n becomes large, the result values of 

NCCA and PNCCA almost always become large. 

Based on these results, we recommend using PNCCA 

with the proposed optimization method in order to find a 

nonlinear relationship. 

Conclusion 

In the present paper, we considered finding a 

nonlinear relationship between random vectors. CCA 

(Hotelling, 1936) can find only a linear relationship 

between random vectors, based on the correlation 

between linear combinations of them. The use of 

conversion functions allows a nonlinear relationship to 

be found by using CCA on the converted variables. 

Hardoon et al. (2004) pointed out that this method has a 

critical issue and, to avoid this, Akaho (2000) proposed 

PNCCA when the conversion functions are the kernel 

functions. Although the result of PNCCA heavily 

depends on the penalty and other hyper parameters in the 

conversion function, there has been no optimization 

methods proposed for them until the present paper. The 

reason for this is that the evaluation method for the 

covariance matrix is not defined. 

In order to optimize the penalty and other parameters 

in PNCCA, we considered the evaluating function in 

(3.1) and proposed using the simple CV method in 

Section 3. Using the two samples {yi, wi} and {yj, wj}, 

where i ≠  j, we define  
[ ],

ˆ
i j

S  for all i and j, (i ≠  j). On the 

other hands, for the fixed parameters, the results of 

PNCCA are derived based on the remains datum. Using 

[ ],

ˆ
i j

S and the results of PNCCA for each i and j, (i ≠ j), we 

then proposed the optimization method for the penalty 

and other hyper parameters in the conversion function 

based on the sum of evaluation (3.3). We can easily 

extend this method for subset CV method. Our 

numerical studies showed that PNCCA is almost 

always the best of the three we tested. Thus, we 

recommend using PNCCA, optimized by using the 

proposed simple CV method. 
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Appendix: Using Proposed CV Method to 

Select Variables in y and x 

Using the optimized penalty parameter λ̂ , the 

maximized value of '
yw

a dΣ in (2.2) is estimated by using 

ˆ
ˆ
λ

η , which coincides with the square root of the largest 

eigenvalue of ( )
1

1ˆ
ww yw yy yw

S P S S Sλ
−

−

′+ . In this section, we 

illustrate the variable selection method. 

Let y
[1]
 and x

[1]
 be subsets of y and x, respectively and 

w
[1]
 = ψ(x

[1]
), where ψ(·) is any known conversion function 

that does not need to correspond with φ(·). Let Sw[1]w[1] , 

Sy[1]w[1] and Sy[1]y[1] be the sample variance and covariance 

matrices of w
[1]
, y

[1]
 and w

[1]
 and y

[1]
, respectively and let 

P
[1]
 be some known nonnegative penalty matrix. Based on 

the proposed simple CV method, the optimized penalty 

parameter [ ]1
λ̂ is derived. We can then obtain [ ]

[ ]( )1

2

1

ˆ
ˆ
λ

η , 

which is the estimator of the maximized correlation 

between the linear combinations of y
[1]
 and w

[1]
. 

Next, [ ]

[ ]( )2

2

2

ˆ
ˆ
λ

η is derived using the same procedure as 

in PNCCA and the above procedure based on y
[2]
 and 

x
[2]
, where y

[2]
 and x

[2]
 are also subsets of y and x but are 

not the same as y
[1]
 and x

[1]
. If it holds that [ ]

[ ]
[ ]

[ ]
1 2

1 2

ˆ ˆ
ˆ ˆ
λ λ

η η> , 

where [ ]

[ ]
1

1

ˆ
ˆ 0
λ

η >  and [ ]

[ ]
2

2

ˆ
ˆ 0
λ

η > , we select y
[1]
 and x

[1]
; y

[2]
 and 

x
[2]
 are selected if it does not hold. 

Since we evaluate the covariance matrix by using the 

subset CV method, we conjecture that we may select 

another statistical estimation method based on the 

covariance matrix. 
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