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Introduction  

In the theory of difference equations the existence of 

periodic solutions plays an important role. Applications of 

these classical existence theorems are well known now. 

Recently, these theorems have been generalized. For 

detail, see the research papers (Hou et al., 2012; 

Papaschinopoulos et al., 2007; Stevic, 2007; Zhang et al., 

2000). In this study we present some definitions from 

discrete dynamical systems and introduce new some 

definitions and theories. One aspect of this study is to 

study the existence of fixed points and points having finite 

period of certain systems. Further, we find solutions for 

some difficult equations.  

Han and Cheng (2012) considered the following 

nonlinear difference equation: 

 

2 1
( )

n n n
x ax bf x c

λ− −
= + +  (1) 

 

where, the function fλ is a piece-wise defined function 

as follows: 
 

( ) 1 (0, )

( ) 0 ( , )

x

x
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λ

λ

= ∈

= ∈ ∞

 

 
They studied cases when the sequence is periodic 

or unbounded. This difference equation is equivalent 

to the system: 
 

1 1 1
( )

n n n n n
u y y au bf y c

λ− − −
= = + +  (2) 

 

Using the notation: 

,
1 1

c b c
p q

a a

+

= =

− −

 

 
They found: 

 

• If 0<λ<p, then all solutions of the system converge 

to the point (p; p). 

• If λ = p, then all solutions of the system such that u0, y0 

∈ (p, ∝) converge to (p; p) and for the remaining start 

values converges to the limit 2-cycle (p; q) , (q; p) 
• If p<λ<q, then all solutions of the system converge 

to the limit 2-cycle (p; q) , (q; p) 

• If λ = q, then all solutions of the system such that u0, 

y0 ∈ Φ a specific subset of R
2 
converge to (q; q) and 

for the remaining start values converges to the limit 

2-cycle (p; q), (q; p) 

• If λ>q, then all solutions of the system converge to 

(q; q) 
 

Al-Ashhab and Guyker (2012) started in 2011 

research on a new type of nonlinear difference equations. 

They considered a hand side of the difference equations, 

which consists of a piecewise defined function in two 

ways. This function is linear in the two ways. This made 

things easier to treat. Some results were proven, while 

other results are just conjectured. This is a new approach 

of dealing with difference equations, which posses 

periodic solutions. Qena et al. (2012) took further steps 

in the direction of considering nonlinear equations. They 

have a right hand side of the difference equations, which 

consists of a piece-wise defined function in two ways. 

But, this function is nonlinear in one of the two ways. 

The theory developed in (Qena et al., 2012) is more 
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difficult to understand than in (Al-Ashhab and Guyker, 

2012) and uses more complicated mathematical 

techniques. In (Qena et al., 2012; Sabra and Al-Ashhab, 

2015a; 2015b) and (Al-Ashhab and Sabra, 2015) we find 

cases, in which unbounded solutions exists. The researchers 

did not explore all possible cases when the piece-wise 

defined function consists of linear branches. They left some 

room for research in this direction. Also, in the case that the 

function is nonlinear in one of the two branches we see only 

quadratic terms. Of course, quadratic equations are in a 

natural sense the next step when we want to have nonlinear 

terms and provide more room for proving theorems rather 

that cubic or higher order equations. 

General Sequences 

In this study we introduce the sequence defined as 

follows: 

 

1 1

1 1

, , 1,2,...

,

k k

k

k k

hL L v for k
L

hL j L v

τ

θ

− −

− −

 ≤ =
= 

− >
 

 

The numbers: 

 

0
, , , , ,L h j v τ θ  

 

Are determined according to certain specifications. 

This type of sequences was studied by the authors in 

other papers (Al-Ashhab and Sabra, 2015). 

Sequences with τ = -1 

The number τ is set to minus one. We can see that in 

some cases the sequences is not well-defined. For 

example, if we set: 

 

0
2, 1, 4, 1h v j L= = = =  

 

Then we obtain: 

 

1 2 3
2, 2* 2 4 0,

1

h
L L L undefined= = = − = =  

 

In case when the generated sequence continues well-

defined to infinity we encounter different behavior types. 

In some cases we obtain simple periodic behavior as we 

shall show now: 

Proposition 1: Let h ≥ 2 and n ≥ 3. If we choose: 

 

1

2 1 2

1

( 1)( 1)
,

1

 1
1 ,

1

n

n

n n

n

h h
j

h

h h h
v

h

−

− −

−

− −

=

−

− + −

< <

−

 

Then we obtain the sequence: 

 

2
1,  , ,....,  1

n
h L L =  

 

Proof: We note first that: 

 
1 2

1

 1

1

n n n

n

h h h
h

h

− −

−

− + −
≤

−

 (3) 

 

Since: 

 
1 2
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1

1

n n n n

n n

h h h h h

h h h
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− −

− + − < − ⇔

− + >

 

 

Which is true according to our choice of h and n. 

Since the function: 

 
1( ) for 1x xf x h h x−

= − >  

 

Is decreasing, we get: 

 
2 1 2 2 1

1 1

1 1

1 1

for all 2,..., 1

n n m m

n n

h h h h h h
v

h h

m n

− − −

− −

− + − − + −
< ≤

− −

= −

 (4) 

 

Now, we compute the terms of the sequence based on 

(3) and (4) as follows: 
 

2

0 1 2

1 2

2

1 1

2

1

1 , ,

( 1)( 1) ( 1)( 1)
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1

1

n n n

n n

n

n
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h h h
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Similarly, we can show that: 
 

1

1

1
 for all 2,..., 1

1

n m m

m n

h h h
L v m n

h

−

−

− + −

= > = −

−

 (5) 

 
Thus, we obtain from (5): 

 
1

1

1
1

1

n n n

n n

h h h
L

h

−

−

− + −

= = •

−

 

 
We consider a complementary case for v. 

Proposition 2: Let h ≥ 2 and n ≥ 3. If we choose: 
 

2 1 2

1

 1
1,

1

n n

n

h h h
v max

h

− −

−

 − + −
>  

− 
 

 
Then we obtain for all values of j the sequence: 

 
1, , 1 h  
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Proof: As in proof of Proposition 1 we know that: 

 
1 2

1

 1

1

n n n

n

h h h
h

h

− −

−

− + −
≤

−

 (6) 

 

Now, we compute the terms as follows: 

 

0 1 2
1 , , 1

h
L v L h v L

h
= < = < = = •  

 

Sequences with τ = -2 

In this section we set the value of τ as minus two. We 

introduce the sequence: 

  

4 1
4 , 1, 2,3

3

i

i

i
f i

−

= − =  

 

Proposition 3: Let h ≥ 2, i ≥ 1, τ ≥ -2 and θ = 1. If 

we choose: 

 
1 1

0
, (0, ) ,i i i

f f f
L h j h h v h

+ +

= ∈ ≤ <  

 

Then we get an unbounded sequence. 

Proof: We note first that: 

 

1

1

3

1 0 1 2

3

2 3 2 1

1
3, ,

1
,

f

f

h
f L h h v L

h h

h v L h h v L h v
h

−

= = < ≤ = =

< ≤ = = ≤ = < ≤

 (7)  

 
1 2

4 2

4

f f
L h h h

−

= =  

 

We continue in this manner till we reach : 

 
1 1 1 1

2 2 2 3
, 2i i i i

f f f f

i i
L h v L hh j h j h v+ + + +

+ +
= > = − ≥ − > >  (8) 

 

We denote by: 

 
1 0i

f
D h j+

= − >  

 

Now we prove by induction that: 

 

2 2
2 , 1,2
k

i kL D j v k
+ +

≥ + > =  

 

We take as basis step: 

 
1

2 2 1 2 3
2 2 i

f

i iL L D j h j+

+ + +
= ≥ + = −  

 
We suppose now that for some k we have: 

 

2 2
2
k

i k
L D j v

+ +
≥ + >  

Hence: 

 
1

2 2 1 2 2
2(2 ) 2k k

i k i k
L h L j D j j D j+

+ + + + +
= − ≥ + − = +  

 

Since 2
k
 D < 2

k+1
 D we obtain: 

 
1

2 2 1
2
k

i k
L D j v

+

+ + +
> + =  (9) 

 

Equation (9) represents the induction step. 

Proposition 4: Let h ≥ 2, i ≥ 1, τ = -2 and θ = 1. If 

we choose: 

 

{ }1 1
1

0
, ,  1 , , ,  ....,i i

f ff
L h j h a a h h h+

+

= = − ∈  

 

Then we obtain a periodic sequence. 

Proof: We start like this: 

 

1

1 1

0 1 2 2

2 1 2 2 2 32

1
, , ,  ...,   ,

,

i

i i

i

ff

i

f f

i i if

L h L L h L h
h

h
L L h v L hh j a

h
+ +

+ + +

= = = =

= = > = − =

 

 

But a is an element of the set {L0, L2, L4,…,L2i}. 

Hence we obtain a periodic sequence. 

Proposition 5: Let h ≥ 2, i ≥2, τ = -2 and θ = 1. If 

we choose: 

 
1 1

2

0
, ,i i i

f f f
L h j h h v h+ += > ≤ <  

 

Then we get an unbounded sequence. 

Proof: As before we reach: 

 
1 1 1

1 1 2

2 3
0i i i

f f f

i
L h j h h v+ + +

+ +

+
= − < − < <  

 

Now we use the notation: 

 
1 3

, 2i
f

x h h h+= > ≥  

 
This allows us to write the following expression: 

 

1 1

2

2 3

2 4 2 2 6 3

1 14 4 4

2 3

2 5 2

0

0 1
( ) ( )

( ) ( )i i

i

i

f f

i
i

L hx x

h h
L v

x x h h h h

hL h j j h
L

h h h

+ +

+

+

+ +

+

+

< − <

< < ≤ ≤ <

− −

− −
= = ≥

 

 

According to our assumptions: 

 
1

1 6
, , 2i

f
h h j j h h+

+

< > ≥  

 

Hence: 
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4

2 5

( )
i

j h j
L j

h
+

−
≥ >  

Since: 
 

4 3.5 2 3 3 2.5 4 2 4 3 3.5

2 3 5 2.5 4 2 4 2

4 6 4

6

j hj h j h j h j j h j

h j h j h j h j hj

− + − + > −

+ − + > >

 

 
Since j > v we conclude that L2i+6 = hL2i+5 - j ≥ 2L2i+5 

– j > L2i+5. 
We use the notation D = L2i+6 –L2i+5 > 0. We prove 

by induction that: 

 
6

2
2
k

i k
L D j v

−

+
≥ + >  (10) 

 

for k = 6,7,…. 
As basis step we take k = 6. This yields L2i+6 ≥ 2D+j. 

But: 

 

2 6 2 5i i
L L D j D v

+ +
= + > + >  

 
We turn attention now to induction step: Suppose that 

for some k ≥ 6 the following relation holds: 
 

6

2
2
k

i k
L D j v

−

+
≥ + >  

 

Hence, according to definition: 
 

2 1 2 2

6 1 6

2 2

(2 ) 2

i k i k i k

k k

L hL j L j

D j j D j v

+ + + +

− + −

= − ≥ − ≥

+ − = + >

 

 
From (1) we deduce that the limit of Ln is infinite. 
In some cases there will be periodic behavior of the 

sequence. For example, the setting: 
 

122 2 2 4094 [8,2047)h j v= = − = ∈  

 
Generates the sequence: 

 
1 1

2, , 8, ,2048
2 32

 

 
We can prove the following. 
Proposition 6: Let h ≥ 2 and θ ≥ 1. If we choose: 

 
4

3 0

0 01
, , [ , ]

L
h v h j L L h v

h

θ

θ −
≤ < = ± ∈  

 
Then we get the sequence:. 

 

0 1 2 3 1
, , , ,L L L L L  

 
Proof: We note that: 

 
3

30 0

0 0 01

L L
j L hL L C

h

θ

θ

θ −
= ± ≥ ± ≥  

Since: 
 

0
L v≤  

We obtain: 
 

4 4

30

1 22 2

0 1

4 4

0 0

3 2 0 4 11 2

0

1
, ,

( ) ,h

h h L h
L h v L h v

L h L h h

L L h
L hL j h j j L L L

h h L

θ

θ θ

θ −

= ≤ < ≤ = = ≥ = >

= − = − = − = ± = =

 

 

Conclusion 

We developed theory for the new introduced concept 

of nonlinear piecewise-defined sequences, which are 

different than in the references. We determined some 

conditions under which the sequences have some 

periodic behavior. But, the sequence becomes sometimes 

unbounded. There are still open problems to solve in this 

direction. Actually, our observations using the computer 

lead us to the guess that the bounded sequences are such 

these sequences, which we considered here. 

 In this paper we pave a way how to start a 

bifurcation analysis with respect to some parameters like 

j or v since the sequences changes behavior for different 

settings. For example, when we consider: 

 
1 1

0
, (0, ) ,i i i

f f f
L h j h h v h

+ +

= ∈ ≤ <  
 

We obtain an unbounded sequence. While the choice: 
 

{ }1 1
1

0
, ,  1 , , ,....,i i

f ff
L h j h a a h h h+

+

= = − ∈  

 

Leads to a periodic sequence. But, we cannot till now 

state what happens for the other cases of j. 
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