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Abstract: This paper study the probability of rainfall occurrence in round 

year in different segment in South Sulawesi region. In this research, rainfall 

occurrence in round year described by one line which has divided into 12 

months. Each one of those months is assumed that the probability of a 

rainfall follow a homogeneous Poisson distribution. To modeling the 

rainfall occurrence in round year, a spatial point process is used. The 

parameter of the model is estimated by Seemingly Unrelated Regression 

(SUR) method and Ordinary Least Square (OLS) method with assume that 

two stations have a correlation in residual model. Results of case study on 

monthly rainfall data indicate that when the residual correlation 

(autocorrelation) on all models is weakly and not significant. Thus, it has 

not good enough to use the SUR method for increase efficiency compared 

with the OLS method. Moreover, results of the parameter estimation of the 

model for two selected stations (Paotere and Mandai) showed that the SUR 

method is more representative than the OLS method. 

 

Keywords: Spatial Point Process, Ordinary Least Square, Seemingly 

Unrelated Regression 

 

Introduction 

Forecasting is a science to predict events in the future 

which can be done by using past data into a 

mathematical model to predict the future of data. In 

forecasting, data that has dependencies on time is used. It 

was taken in a certain time within the same time interval. 

Furthermore, the influence of the location (space) is 

taken into account, or in this case knows as the space-time 

data. Data is measured against several observation sites, so 

in addition to having dependencies on time, the data space 

time also have dependencies on space. Rainfall 

phenomena are occurs in random and has dependencies on 

time. Spatial Point Process is a stochastic model that was 

built on the site of a phenomenon {Si} on the set X. One 

of the simplest models of point process is Poisson process. 

There is extensive literature on the use of Poisson cluster 

processes in the stochastic modeling of rainfall, stemming 

largely from (Rodriguez-Iturbe et al., 1987; Onof et al., 

2000; Cameron et al., 2000). Rainfall modeling can 

generally be classified into four categories (Onof et al., 

2000): (1) Meteorological models involving complex 

sets of differential equations representing the physical 

processes controlling precipitation and other weather 

variables; (2) stochastic multiscale models describing the 

spatial evolution of the rainfall process independently of 

scale; (3) statistical models which can allow for the 

modeling of trends; and (4) stochastic process.  

Some previous researchers have done a study on 
parameter estimation of the model, among others 
(Alaba et al., 2010; Vasco, 2012; Atanlogun et al., 
2014). Alaba et al. (2010) showed the efficiency of 
SUR method compared with OLS method. In other 
research, Vasco (2012) use SUR to predict the carcass 
composition of Lambs. Furthermore, Atanlogun et al. 
(2014) studied the comparison between OLS method 
and SUR method. The result of analysis shows that 
OLS and SUR methods have a standard error and 
coefficient value in simultaneous equation. 

In recent years, the occurrence of rain in parts of 

Indonesia is difficult to predict because of the erratic 

appearance. Rainfall in parts of Indonesia almost 

evenly, but in some areas there is a difference in terms 

of the level/intensity of rainfall. Rainfall in Indonesia 

are generally within the normal range, but in several 

areas including South Sulawesi and surrounding areas, 

the rainfall will exceed the normal limits on certain 

months. Therefore, these phenomena can be modeled 

using a model point process which is reviewed based 

on the location that has the level of rainfall exceeds 
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normal limits. To estimate parameter model, SUR and 

OLS method is used. 

This paper will compare the parameter estimation 

method of point process model between SUR and OLS. 

Both of methods are applied to rainfall data of South 

Sulawesi region during 5 years. The rainfall data used in 

this study is taken from www.ogimet.com. 

 Let rainfall in an area assumed to be constant within 

a period of one year, then the phenomenon of rain events 

Stationary approximated by a Poisson process. Model of 

stationary Poisson is (Daley and Verre Jones, 2003): 
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where, in the equation in accordance with the annual 

rainfall phenomenon which includes 3 important 

things, namely: 

 

• The amount of rainfall in each month (mi, mi+1] 

throughout a given year is Poisson distributed 

• The number of rainfall with very high intensity in 

every disjoint month is a random variable that is 

independent 

• Stationary distributed: Specific for each month 

means only depend on the month bi+1, bi of the total 

months of the year 

 

Notation and Assumptions 

Indonesian territory located in the tropics affect the 

amount of rainfall received. The average rainfall in 

Indonesia is 2.000 mm/year, or about 150-170 mm/month. 

The category of medium rainfall is 100-300 mm/month. 

The occurrence of erratic rains throughout the year but the 

chances of rain events with a category of rainfall intensity 

with very high category (>400 mm/month) are very small. 

Therefore, the incidence of rain with very high intensity 

can be approximated to the Poisson model. Rainfall in 

Indonesia are generally within the normal range, but in 

several areas including South Sulawesi and surrounding 

areas, the rainfall will exceed the normal limits on 

certain months. Therefore, these phenomena can be 

modeled using a model point process which is reviewed 

based on the location that has the level of rainfall 

exceeds normal limits. The model for a nearby location 

is assumed to have cross-correlated error. 

In this study, the phenomenon in question is a rain 

event and the set X is a subset of R, because every 

month will be represented by intervals of real numbers. 

In this study, the time interval of one year consider as a 

line. It was divided into twelve months and each month 

drawn into a stationary Poisson process.  

SUR and OLS Method 

SUR is a generalization of a linear regression 

model that consists of several regression equations, 

each having its own dependent variable and 

potentially different sets of exogenous explanatory 

variables. The model can be estimated equation-by-

equation using standard Ordinary Least Squares 

(OLS). Such estimates are consistent, however 

generally not as efficient as the SUR method, which 

amounts to feasible generalized least squares with a 

specific form of the variance-covariance matrix. 

Intensity of Rainfall Occurrence 

Rainfall event within one month bi is the time of the 

beginning of each month, MB is the total months and 

lambda is a parameter of the Poisson distribution. 

Intensity of rainfall in one month was defined as 

density, which in this study is the average rainfall per 

month. This is consistent with the parameters of the 

Poisson distribution, as follows: 
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Consider that the intensity λ in each month (bi,bi+1] 

tends to a constant value. The value of λ is a constant can 

be interpreted as the average rate or the average density of 

events in the process. A constant λ value also means that 

the rain event is an example of a complete spatial 

randomness, or in other words that the whole year (bi,bi+1] 

have the same opportunities to the occurrence of rain. 

Mean µ(bi,bi+1] and Variance V(bi,bi+1] of the number 

of rain which occur in (bi,bi+1] is defined by: 
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Equation 3 shows that process that occurs in one 

month is homogeneous-stationary Poisson process. To 

review the process that occurs in the whole month of 

the year is used non homogeneous Poisson process, 

where every month has a function of spatial location. 

In other words, the intensity of a non homogeneous 

Poisson process can vary. From Equation 1, we 

obtained quantity as follows: 
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Based on Equation 4, we know that Poisson 

parameter λ is constant in every year but it is different 

for each month. 

The months are prone to high intensity rainfall can be 

identified through the decomposition of the multiplication 
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of the scene at the time of the point intensity rainfall 

events, in this case is the estimate of the intensity at each 

location of the overall chances of rain events. The time 

period is divided into day and night with the assumption 

that the rate of accidents between day and night was 

different. In order to obtain a Poisson distribution of rain 

intensity for non homogeneous case are as follows: 
 

( 1
( ) ; , , ,

ji j rain i i
x P X b b j station I station IIλ λ

+
= ∈ =  (5) 

 
The overall intensity of the rain is the amount of rain 

per month divided by the total of rain event in a year. It 

is not relevant to the case in which the intensity of each 

month will be influenced by the amount of rainfall 

events that occurred in the previous month. Based on 

that, we need to be evaluated against λji. 

Results 

Estimating Parameter of Spatial Point Process 

Model with SUR and OLS 

To evaluate λji together in one system, we used 

models Seemingly Unrelated Regression (SUR). SUR 

models used to calculate the effect of the errors that are 

correlated in a system of equations. 

 All factors can be taken into account including 

variable proxy (whether vulnerable segments of the 

month as well as the number of rain). Then location was 

divided into two stations that each station modeled into a 

regression equation in which every equation has a 

parameter that can be found with the usual OLS method. 

Due to the correlation between the errors that occurs 

resulting parameters are obtained in theory does not 

possess Best Linear Unbiased Estimator (BLUE). To 

obtain the parameters that have the properties of both 

BLUE, the system can be expressed into a set of 

equations and estimated parameters in one settlement. 

Station I: 
 

1 1 1 1 1 1

11 11 1 12 2 112 12 11

1 1 1 1 1 1

12 21 1 22 2 212 12 12

1 1 1 1 1 1

13 31 1 32 2 312 12 13

...

...

...

X X X

X X X

X X X

λ β β β ε

λ β β β ε

λ β β β ε

= + + + +

= + + + +

= + + + +

⋮
 

 

Station II: 
 

1 1 1 1 1 1

21 11 1 12 2 112 12 21

1 1 1 1 1 1

22 21 1 22 2 212 12 22

1 1 1 1 1 1

25 51 1 52 2 512 12 55

...

...

...

X X X

X X X

X X X

λ β β β ε

λ β β β ε

λ β β β ε

= + + + +

= + + + +

= + + + +

⋮
 (6) 

 

Equation 6 can be written as follows (Hill at al., 2012): 
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Equation 7 can be written in regression model as 

follows: 

 

Xλ β ε= +  (8) 

 

Next, we will be sought estimator to estimate a 

parameter β in the above model by minimizing the error: 
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Or: 
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That can be minimized by finding the first partial 

derivatives of the function S against β and equating to zero: 
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We have: 
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Besides that: 
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Because of Ω
-1
=C′C, so Equation 8 can be written by: 

 
1 1ˆX X Xβ λ

− −
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By multiply Equation 9 with (X′Ω
-1
X)

-1
, we have 

SUR estimator for β as follows: 
 

( ) ( )
1 1

1 1 1 1ˆX X X X X X Xβ λ
− −

− − − −

′ ′ ′ ′Ω Ω = Ω Ω  (10) 
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we have: 
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Vector of disturbances Ω in equation (10) is assumed 

as follows: 

 

[ ] 1 1 1

2 2 2

, 0 0Var Var E

 ′         ∈ ∈ ∈   ∈ = = − −         ∈ ∈ ∈                 

 

 

We know that 1

2

0E

  ∈
=  

∈    
, so that: 

 

[ ]

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

,

, ,

, ,

, ,
,

, ,

n n

n n

n n

Var

E E

E E

co X X I co X X I

co X X I co X X I

co X X co X X

I I

co X X co X X

υ υ

υ υ

υ υ

υ υ

 ′ ′ ∈ ∈ ∈ ∈
∈ =   

′ ′∈ ∈ ∈ ∈    

  ′ ′   ∈ ∈ ∈∈     =
  ′ ′   ∈ ∈ ∈ ∈     

 
 =
 
 

 
 = ⊗ Ω = ⊗
 
 

∑

 (11) 

 

where, I is identity E(∈nj∈jt) = coυ (Xn, Xj) for t = 1,2. 

Inverse for Equation 11 as follows: 
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So that estimator SUR for β in Equation 10 can be 

denoted by: 
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In case of variance-covariance matrix is unknown, so 

we have to estimate the value of entry matrix in vector 

disturbances Ω  in Equation 10: 
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for t = 1,2; n is the number of data. Inverse of 

disturbances vector is: 
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Thus, SUR estimator for variance covariance matrix 

that unknown is: 
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Discussion 

Intensity of rainfall from January 2010 until 

December 2014 at both of Paotere and Mandai stations 

given in Table 1. In this table, we know that there are dry 

months for two stations during 2011 until 2015, such as 

June, July, August, September, October. 

Generally, intensity of rainfall in June-October both 

on the Mandai and Paotere stations indicates a value of 

0. In other words there is no high rainfall in those 

months, so it cannot be used in modeling rainfall data. 

The data used in the modeling of precipitation data 

above is data during November-May. Correlation 

between the residual error in the first and second 

models on rainfall data is 0.85836. It shows that this 

value indicates there is a high auto correlation between 

the two models so that the relationship between the 

residual correlation models could be improving the 

efficiency of estimation theoretically. Thus, parameter 

estimation using the SUR method appropriate to use 

this model. The results of parameter estimations for 

two models are given in Table 2. The negative sign on 

the auto correlation coefficients above shows the 

relation that is not the same direction for both models. 

In other words an increase in the value of the first 

model error will be accompanied by a decrease of error 

in the second model and vice versa. 
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The Table 3 shows standard deviation and correlation 

of model using SUR method is better than OLS method. 

It can be seen that deviation standard of model using 

SUR method is less than SUR method. 

 
Table 1. Intensity of rainfall in Paotere and Mandai Stations 

for 5 years 

Intensity (mm)  Intensity (mm) 

----------------------------------- ------------------------------------- 

 Paotere Mandai   Paotere Mandai 

Jan 0.16129 0.22581 July 0.03226 0.03226 

 0.12903 0.12903  0.00000 0.00000 

 0.12903 0.09677  0.00000 0.00000 

 0.19354 0.29033  0.00000 0.06452 

 0.09677 0.12903  0.00000 0.00000 

Feb 0.07142 0.10714 Aug 0.03226 0.00000 

 0.07142 0.10714  0.00000 0.00000 

 0.10345 0.06897  0.00000 0.00000 

 0.07143 0.14286  0.00000 0.00000

 0.07143 0.10714  0.00000 0.00000 

Mar 0.06452 0.00000 Sept 0.06667 0.06667 

 0.25806 0.03226  0.00000 0.00000 

 0.22581 0.12903  0.00000 0.00000 

 0.03226 0.03226  0.00000 0.00000 

 0.03229 0.03226  0.00000 0.00000 

Apr 0.03333 0.03333 Okt 0.03226 0.00000 

 0.10000 0.03333  0.00000 0.00000 

 0.00000 0.03333  0.00000 0.00000 

 0.10000 0.06667  0.00000 0.00000 

 0.03333 0.06667  0.00000 0.00000 

May 0.03226 0.03226 Nov 0.06667 0.03333 

 0.00000 0.00000  0.03333 0.06667 

 0.03226 0.03226  0.00000 0.00000 

 0.03226 0.00000  0.03333 0.06667 

 0.00000 0.00000  0.03333 0.00000 

June 0.03333 0.00000 Dec 0.16129 0.06452 

 0.00000 0.00000  0.19354 0.16129 

 0.00000 0.00000  0.09677 0.03226 

 0.03333 0.00000  0.19355 0.29032 

 0.03333 0.00000  0.12903 0.19355 

 
Table 2. The result of parameter estimation with SUR and 

OLS methods 

βSUR (1) βSUR (2) βOLS (1) βOLS (2) 

-0.04877 -0.01819 0.20024 0.01922 

0.51183 0.99887 -0.00051 0.16597 

0.06288 0.07436 0.04264 0.13998 

-0.21569 -0.05627 0.37745 0.18283 

1.26147 -0.39065 -0.84429 -0.22967 

0.10601 -0.00936 0.14318 0.13083 

0.56294 1.90591 0.00248 0.08867 

0.62263 1.48729 -0.01293 -0.08329 

 

Table 3. Deviation Standard and Correlation for SUR and 

OLS methods 

 SUR(1) SUR(2) OLS(1) OLS(2) 

Deviation 0.02107 0.02424 0.06875 0.02569 

standard 

Correlation 0.98831 0.99182 0.91785 0.99628 

Conclusion 

Modeling of rainfall intensity into a spatial point 

process models using data from two adjacent stations can 

be denoted as a system represented by the Seemingly 

Unrelated Regression Equation model. This is done with 

the assumption that there is a residual correlation 

between adjacent locations. Results of the parameter 

estimation of the model for two selected stations 

(Paotere and Mandai) showed that the SUR method is 

better than the OLS method. Therefore, SUR method is 

more representative than OLS method to estimate 

parameters model of rainfall for both of Paotere and 

Mandai stations. This is because both of the monitoring 

stations have a location that is not far apart. 
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