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Abstract: This study applies a Bivariate Poisson-Lindley (BPL) distribution for 
modeling dependent and over-dispersed count data. The advantage of using this 
form of BPL distribution is that the correlation coefficient can be positive, zero 
or negative, depending on the multiplicative factor parameter. Several 
properties such as mean, variance and correlation coefficient of the BPL 
distribution are discussed. A numerical example is given and the BPL 

distribution is compared to Bivariate Poisson (BP) and Bivariate Negative 
Binomial (BNB) distributions which also allow the correlation coefficient to be 
positive, zero or negative. The results show that BPL distribution provides the 
smallest Akaike Information Criterion (AIC), indicating that the distribution 
can be used as an alternative for fitting dependent and over-dispersed count 
data, with either negative or positive correlation. 
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Introduction 

Mixed Poisson and mixed negative binomial 
distributions have been considered as alternatives for 
fitting count data with overdispersion. Examples of mixed 
Poisson and mixed negative binomial distributions are 
Negative Binomial (NB) obtained as a mixture of Poisson 
and gamma, Poisson-Lindley (PL) (Sankaran, 1970; 
Ghitany et al., 2008), Poisson-Inverse Gaussian (PIG) 
(Trembley, 1992; Willmot, 1987), Negative Binomial-
Pareto (NBP) (Meng et al., 1999), Negative Binomial-
Inverse Gaussian (NBIG) (Gomez-Deniz et al., 2008), 
negative binomial-Lindley (NBL) (Zamani and Ismail, 
2010; Lord and Geedipally, 2011) and Poisson-Weighted 
Exponential (PWE) (Zamani et al., 2014a) distributions. 

Based on literatures, the mixture approaches have been 
used to derive new families of bivariate distribution. The 
Bivariate Negative Binomial (BNB), Bivariate Poisson-
Lognormal (BPLN), Bivariate Poisson-Inverse Gaussian 
(BPIG) and bivariate Poisson-Lindley (BPL) distributions 
are several examples of classes of mixed distribution which 
are extended from univariate case. For further literatures, 
BNB distribution was studied in Marshall and Olkin (1990) 
and applied in Karlis and Ntzoufras (2003), tests for 
overdispersion and independence in BNB model were 
discussed in (Jung et al., 2009; Cheon et al., 2009), BPIG 
distribution was derived by Stein et al. (1987), BPL 
distribution was proposed by Gomez-Deniz et al. (2012) 
and Bivariate Poisson-Weighted Exponential (BPWE) was 
proposed in Zamani et al. (2014b). 

Besides mixture approach, several bivariate discrete 

distributions have been defined using the method of 

trivariate reduction (Kocherlakota and Kocherlakota, 1999; 

Johnson et al., 1997). The BP distribution from the 

trivariate reduction has been used for modeling 

correlated bivariate count data and several applications 

can be found in (Holgate, 1964; Paul and Ho, 1989). 

Besides BP distribution, the Bivariate Generalized 

Poisson (BGP) distribution from the trivariate reduction has 

been defined and studied in Famoye and Consul (1995), 

where the distribution can be used for modeling 

correlated and under- or overdispersed bivariate count data. 

In this study, we apply the BPL distribution which was 

derived from the product of two PL marginals with a 

multiplicative factor parameter. This BPL distribution can 

be used for bivariate count data with positive, zero or 

negative correlation coefficient. The rest of this study is 

organized as follows. Section 2 provides the univariate 

version of PL distribution. Several properties of the BPL 

distribution, such as mean, variance and correlation 

coefficient, are discussed in section 3. Section 4 discusses 

parameter estimation for the BPL and section 5 provides 

several tests for testing independence. Numerical 

illustration is provided in section 6, where BPL distribution 

is fitted to the bivariate flight aborts count data. The BPL 

distribution is compared to BP (Lakshminarayana et al., 

1999) and BNB (Famoye, 2010) distributions which also 

allow positive, zero or negative correlation. 
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Univariate Poisson-Lindley (PL) Distribution 

The Lindley (θ) distribution has the following p.d.f. 

(Lindley, 1958): 
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Assuming the conditional random variable YΛ 
follows Poisson distribution with p.m.f: 
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The random variable Λ is distributed as Lindley (θ), 

the marginal distribution of the random variable Y is 

distributed as PL (θ,ξ) which is: 
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Bivariate Poisson-Lindley (BPL) Distribution 

By setting ξ = 1 in (2), the p.m.f. of PL (θ) 
distribution which is obtained in Sankaran (1970) is: 
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In this study, we use the BPL distribution which was 

derived by Gomez-Deniz et al. (2012), who used the 

methodology proposed by Lee (1996) and ideas 

suggested in Sarmanov (1966). The same approach was 

also used by Lakshminarayana et al. (1999) for deriving 

BP distribution. The joint p.m.f. of BP (λ1, λ1, α) 

distribution, which was derived from the product of two 

Poisson marginals with a multiplicative factor parameter, 

is defined as (Lakshminarayana et al., 1999): 
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where, g1(y1) and g2(y2) are bounded functions in y1 and y1 

respectively. The value of {.} in (4) is non-negative when 
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In a similar manner, the joint p.m.f. of BPL (θ1, θ2, α) 

distribution is defined as:  
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Where:  
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We obtain ( )
YtE e

−  in (6) by letting 1z = −  in m.g.f. 

(3). When α = 0, random variables Y1 and Y2 are 

independent, each is distributed as a marginal PL. 

Therefore, α is the parameter of independence. 

The first five moments of BPL (θ1, θ2, α) 

distribution are: 
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And:  

 

21 2 11 1 1 22 2
( , ) ( )( )Cov Y Y c c c cα µ µ= − −  (7) 

 

where, ( ),   1,2
Yt

tt tc E Y e t
−

= = differentiating m.g.f. in (3) 

with respect to z and letting 1z = − , we have 

1

( ) ( )Y

Y

z

M z E Ye
z

−

=−

∂
=

∂
. Thus, 

2 1 2 1

1 3

3
,   1,2

1 ( 1)

t t

tt

t t

e e e
c t

e

θ θ

θ θ

− − −

−

− +

= =

+ − +

. 

 

Using the variance and covariance in (7), the 

correlation coefficient is: 
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From (8), Y1 and Y2 are independent when α = 0 and 
have positive and negative correlations when α>0 and 
α<0 respectively. 

Parameter Estimation 

The moment estimates of BPL (θ1, θ2, α) 

distribution can be obtained by equating the mean and 

covariance in (7) with the sample moments 
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Following Sankaran (1970), the unique moment 

estimate of θt is 
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The log likelihood function for BPL (θ1, θ2, α) 
distribution is: 
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The log likelihood estimates of BPL (θ1, θ2, α) can 

be obtained by maximizing the log likelihood in (9). 

The Fisher Information matrix can be obtained using 

the negative expectation of the second derivatives of 

log likelihood. 

Several Tests 

As mentioned previously, when α = 0, random 

variables Y1 and Y1 are independent, each is distributed as a 

marginal PL. For testing independence, we can test H0: α = 

0 against H1: α ≠ 0 and the test can be performed using 

Likelihood Ratio Test (LRT),
1 0

2(ln ln )T L L= − , where 

1
ln L  and 

0
ln L  are the models’ log likelihood under their 

respective hypothesis. The statistic is approximately 

distributed as a chi-square with one degree of freedom. 

The test of independence can also be performed using 

Wald statistic which is,
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second derivatives of log likelihood. 
As another alternative, we can also use a score statistic, 

which is further discussed in Cox and Hinkley (1979). For 
the score test, we need the score function, U (θ1, θ2, α = 0) 
and the expected information matrix, I (θ1, θ2, α = 0), which 
can be obtained from the log likelihood. 

The score statistic for testing H0: α = 0 against H1: 
α ≠ 0 is: 
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When several models are available, one can compare 

the models’ performance based on several likelihood 

measures. A regularly used measure is Akaike 

Information Criteria (AIC) which penalizes a model with 

larger number of parameters and is defined as 

AIC 2ln 2L p= − + , where ln L  denotes the fitted log 

likelihood and p the number of parameters. 

Application 

Table 1 provides the flight aborts count data from 

109 aircrafts, where random variables Y1 and Y2 

respectively represent the number of flight aborts in the 

first and second consecutive six months of a one-year 

period (Mitchell and Paulson, 1981). Most observed 

frequencies provide (y1, 0) and (0, y2) data, indicating 

negative correlation between y1 and y2. Therefore, we fit 

BP (Lakshminarayana et al., 1999), BNB (Famoye, 

2010) and BPL (Gomez-Deniz et al., 2012) distributions 

to the data since these distributions can be fitted to 

bivariate data with positive, zero or negative correlation. 

The joint p.m.f. of BP (θ1, θ2, α) distribution is 

(Lakshminarayana et al., 1999): 
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Table 1. Observed and fitted values (flight aborts count data) 

                        Observed data                                                Fitted data 

                    --------------------------------------               ------------------------------------------- ------------------------------------------------ 

(y1, y2) BP BNB BPL 

(0,0) 34 25.80 33.77 34.31 

(0,1) 20 22.30 20.18 18.24 

(0,2) 4 8.46 8.71 8.17 

(0,3) 6 2.06 3.35 3.42 

(0,4) 4 0.37 1.22 1.38 

(1,0) 17 19.61 15.48 16.85 

(1,1) 7 11.67 6.09 5.91 

(1,2) 0 3.85 2.23 2.26 

(1,3) 0 0.89 0.81 0.89 

(1,4) 0 0.16 0.29 0.35 

(2,0) 6 6.44 6.43 6.91 

(2,1) 4 3.35 2.16 2.08 

(2,2) 1 1.03 0.73 0.72 

(2,3) 0 0.23 0.25 0.27 

(2,4) 0 0.04 0.09 0.11 

(3,0) 0 1.35 2.59 2.64 

(3,1) 4 0.67 0.82 0.75 

(3,2) 0 0.20 0.27 0.25 

(3,3) 0 0.04 0.09 0.09 

(3,4) 0 0.01 0.03 0.04 

(4,0) 0 0.21 1.04 0.97 

(4,1) 0 0.10 0.32 0.27 

(4,2) 0 0.03 0.10 0.09 

(4,3) 0 0.01 0.03 0.03 

(4,4) 0 0.00 0.01 0.01 

(5,0) 2 0.03 0.42 0.35 

(5,1) 0 0.01 0.13 0.10 

(5,2) 0 0.00 0.04 0.03 

(5,3) 0 0.00 0.01 0.01 

(5,4) 0 0.00 0.00 0.00 
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Table 2. Estimated parameters and AIC of BP, BNB and 

BPL distributions 

Parameters BP BNB BPL 

θ1 0.6129 0.4045 2.1165 

θ2 0.7131 0.3138 1.8607 

a1 - 1.0977 - 

a2 - 0.6305 - 

α -0.9290 -1.1109 -1.0363 

Log L -254.99 -244.27 -244.62 

AIC 515.99 498.54 495.24 
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Therefore, the correlation coefficient for BP, BNB and 

BPL distributions can be positive, zero or negative, 

depending on the value of multiplicative factor parameter, 

α. For comparison purpose, Table 1 also provides the 

fitted values from BP, BNB and BPL distributions. 

Table 2 provides the estimated parameters, log 

likelihood and AIC for BP, BNB and BPL 

distributions. It can be seen that all distributions 

provide negative value for α, indicating negative 

correlation. Even though both BNB and BPL 

distributions produce similar log likelihood, the 

number of parameters for BPL distribution is less and 

thus, producing smaller AIC. Based on AIC, BPL 

distribution provides the best fit for the data. 

Conclusion 

In this study, BPL distribution has been fitted to a 

sample of bivariate count data. Based on the results, BPL 

distribution provides better fit than BP and BNB 

distributions, indicating that the distribution can be used 

as an alternative for fitting dependent and over-dispersed 

count data, with either positive or negative correlation. 
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