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ABSTRACT

In the field of computational fluid dynamics, thimite volume method is dominant over other numérica
techniques like the finite difference and finlement methods because the underlying physicaitigjies
are conserved at the discrete level. In the ptesedy, the finite volume method is used to sa@lmasotropic
transient groundwater flow model to obtain hydmatieads and flow through an aquifer. The objedtvie®
discuss the theory of finite volume method andafiglications in groundwater flow modelling. To sl
this, an orthogonal grid with quadrilateral cohtrolumes has been used to simulate the model usirgd
boundary conditions from Bwaise Ill, a Kampala Suth Results show that flow occurs from regionsigh
hydraulic head to regions of low hydraulic heatllansteady head value is achieved.

Keywords: Groundwater Flow, Finite Volume Method, Mathemalti®lodelling, Discretization

1. INTRODUCTION equation (or a system of equations) that descritme t
physical phenomenon. Such equations are called

The groundwater resources of the earth have fong | governing equations of the specified phenomenonm. Fo
time been subjected to degradation as a resultasfsm groundwater flow, the governing equations are Darcy
increasing utilization of natural resources andlawide  law and the principle of mass balance (conservation
industrialization. Beginning in the 1960s, contaanéal Darcy’s law is an equation that describes the ftdw
aquifers were cleaned up and protected from furtherd fluid through a porous medium. The law was
degradation in various countries around the woedabse ~ formulated in 1856 by French engineer Henry Darcy
government agencies identified groundwater as aapl# ~ While working on a project involving the use of gan
and increasingly important water resource (Batspo to filter the water supply for the city of Dijon in
During this time, it was found that mathematical France. From his experiments (Fitts, 2012; Freeze,
groundwater flow and solute transport modellinglédee ~ 1994), Darcy observed that the rate of flow throagh
used as an efficient and cost-effective tool in the homogeneous sand column of constant cross-sectional
investigation and management of groundwater ressurc @r€a was proportional to both the cross-sectiones a
Since then, mathematical models of groundwater flawe ~ Of the column and the defference in water level
been widely used for a variety of purposes rangiog elevations at the inflow and (_)utflow reservoirstbé
water supply studies to designing contaminant deafihe ~ c0lumn and inversely proportional to the lengtrhitus
availability of computers and the development ditieft column. This equation is usually written as Equatio
computer programs to do the computations involvethe (1) (Bear and Cheng, 2010):
models have also led to an increase in the usaroérical dh
mathematical models in the analysis of groundwidey Qs :_K& 1)
and contaminant transport problems.

Mathematical models are conceptual descriptions onyhere:
approximations that describe the physical systeingus g, = The flow per unit cross-sectional area in dicecs,
mathematical equations. They based on solving anK = The hydraulic conductivity and
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% = The hydraulic gradient

In 3D, Darcy’s
(Fitts, 2012):

oh
=-Kk =
a, o
oh

=k & 2

ay 3y 2
oh
=k =
A, =k,

where, K, K, and K, are the hydraulic conductivity values
in the x, y and z direction respectively. If thedrgulic
conductivity is independent of the direction of si@@ment
at a point in the porous medium, that ig, KK, = K,, the
medium is called isotropic at that point. If thedgulic
conductivity varies with the direction of measuretat a
point in a porous medium, that is, KK, # K,, the medium
is called anisotropic at that point. It should loéed that real

geologic materials are never perfectly homogeneous

(isotropic) but to ease calculations, it's ofteas@nable to
assume that they are (Fitts, 2012).

The law of mass conservation or continuity pringjpl
states that there can be no net change in the ofass
fluid contained in a small volume of an aquifer. yAn

change in mass flowing into the small volume of the
aquifer must be balanced by a corresponding change
mass flux out of the volume, or a change in thesmas g 2 = 390

K ot

stored in the volume, or both. The continuity eqrats
derived by considering a very small part of an fgui
called a control volume having the shape of a reptir
parallel-piped box of dimensionsx, [y, [0z centered at
some point P(x, y, z), as shownHig. 1.

The quantity of water in the control volume canrge

when groundwater enters or leaves the control velum

through the sides. A mass balance is obtained ewéter
flowing in and out of this control volume.
That is Equation (3):

M _ inf low —outflow 3)
ot
and can be expressed as Equation (4) (Delleur,)2010

-n9=5 (4)

where, $ is the specific storage coefficient and q =

(G Gy» Go)-
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law is given as Equation (2) D(KDh)=SS@
T ot

93

Combining Darcy’'s law (2) and the continuity
Equation 4 gives Equation (5):

(®)

Which is most universal form of the saturated flow
equation, allowing flow in all three directionsamsient

row[?iO}, heterogeneous  conductivities  (for

example K = f(x)) and anisotropic hydraulic
conductivities. Other less general forms of theirsdéd
flow equation can be derived from Equation (5) by
making the following simplifying assumptions:

If the hydraulic conductivities are assumed to be
homogeneous (KK,,K, are independent of x, y, z), then:

0.(K.Oh) = KO%h

and the general Equation 5 becomes:

-
K= (6)

This can be simplified further by making the asstiomp
that the porous medium is homogeneous and isotryait
is, Ky = K, = K, = K and Equation 6 becomes:

()

If the flow is steady stat{%zoj, the right-hand

side of Equation 5-7 all become zero, that is Eiquat
(8-10):

0.(K.Oh)=0 (8)
K.0’h=0 )
0%h=0 (10)

Equation 10 is the Laplace and has a large nuntber o
applications in many branches of the physical and
engineering sciences including fluid flow, heat aaction
electrostatics and so on. There exists a vast numbe
known solutions to the Laplace equation many ofciwhi
apply directly to common groundwater flow condigon
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Fig. 1. Mass conservation in an elementary control volume

In many applications, groundwater is modelled as hydrogeological conditions (aquifer boundaries tiahi

two-dimensional in the horizontal plane. This isdese
most aquifers have an aspect ratio like a thin pkac
with horizontal dimensions that are hundreds ofem
greater than their vertical thickness (Fitts, 201&¥0,
the bulk of resistance encountered along a tydloa

and transient conditions and sources or sinkshddffor
the modelled area.

2. MATERIALSAND METHODS

In this study, we consider the second-order tramsie

path is resistance to horizontal flow. Thus, the groundwater flow Equation (13):

groundwater hydrologist can assume the aquiferetofb
constant thickness b and the flow to be horizofitathe
x-y plane). Hence, the flow equation for an isoicop
homogeneous porous medium is given as:

8%h

2
le_{_ > +7Sﬂ] (11)
0x° o0y® bK ot

where, S = b§is the storativity. The product bK is
called the transmissivity and Equation (11) is ofte
written as Equation (12):

0°h , 9°*h _ Soh

gryen_»out 12
ox? ady? Tt (12)

_son

O0h==
T ot

(13)

And carry out a finite-volume simulation of the plem
based on the boundary and initial conditions frétargog,
2007) for Bwaise Il parish in Kawempe Division, idpala
District, Uganda. From (Herzog, 2007), the studgaais
bordered to the north by Nabweru road, to the bgst
Bombo road, to the south by the Bwaise-Nsooba algain
channel and the west by the Nakamiro drainage ehaas
shown inFig. 2. It is 6.65 ha large.

The aquifer in the study area was divided into two
layers: Top layer A and bottom layer B and the hwlic
conductivity varies remarkably in the study areaduse
of area buildings. The conductivity of the firsiydal is

The Groundwater flow models are used to calculateshown inFig. 3 and the value for layer B was set to
the rate and direction of movement of groundwater0:017 m/d (meters per day). The bottom of the aquif

through aquifers and confining units in the submscef
These calculations are referred to as simulatidie
outputs from the model simulations are the hydcauli
heads and flow rates which are in equilibrium wtitle
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was defined as impermeable. The aquifer has a dadpth
15 m meeting the bedrock that is impermeable. A
simplified cross-section illustrating the grounderalow
system is shown iRig. 4.
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Fig. 2. Bwaise Il study area (Herzog, 2007)
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Fig. 3. Subdivision of the study area with similar hydiaaonductivities of the top layer (Herzog, 2007)
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considered to be impermeable after 15 m

Fig. 4. An idealized cross-section of the study area, flitv system (Herzog, 2007)

The main flow enters the system from the eastedh an  In this study, we assume an isotropic study area
northern borders. The groundwater leaves the system with hydraulic conductivity K given by the average
western and southern directions. This assumption isvalue of the hydraulic conductivities of the twayéas.
supported by the direction of flow of flood surfasater Thus, the parameters for Bwaise Il study area used
after rainfall events. Since the northern and easteles  for our simulation are:
of the study area experience inflow, the arcs dalimg
those boundaries were assigned to be specifieddread _5+8+10+ 0.017_ _

Specified head boundary conditions make it posdible K= 4 =5.76m/d= 3.9% 10 m/
adjust the head at the boundary. In the first giteto
create a simulation, the specified head was sémat | _ 0.56,a = 10° m&kg™, B = 4x10* m&kg?, p =

below the ground surface, uniformly along the %000 kg/mi and g = 9.8 mfsand aquifer thickness b =

bognd?ry. Tlhe he?ﬁ IS assi%_ned at the nodes an 5m. The specific storage coefficient Ss is given a
varies linearly over the connecting arc. Equation (14):

The drainage channels that form the western and
southern boundaries will act as sinks, i.e., remogger _ _
from the aquifer, as long as the groundwater table S =pgl+ 1B )= 9.8 1000

above the elevation of the drain. The drain wilé@o  x(10°+0.56« (4 10° )= 2.294 (14)
effect if the groundwater level falls below the toot

elevation of the drain. The rate of flow from thguder o i ; .

to the drain is proportional to the difference ieight The Storativity S is given as Equation (15):
between the groundwater table and the drain bofldra. e

constant of this proportionality is the conductant¢he S=bS =15 22947 3442 (15)

fill material surrounding the drain. In the wet sea, the S ]

runoff drainage channels tend to flow full, witretivater ~ @nd the transmissivity T as Equation (16):

levels exceeding the groundwater table. Thus inwtee

months, the conductance of the drain is set veny to T =Kb=3.99x10°x 15= 0.0598 (16)
simulate the absence of flow from the groundwatéw i

the drain. This ensures that groundwater does lnat f Thus, we carry out a finite volume simulation
into the drain considering that flow from the dréio using quadrilateral control volumes and orthogonal
the groundwater is most likely (Herzog, 2007). mesh of the problem Equation (17):
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O0h =$%1’(X’y)m[0]30¢x[ 0,30}) » (17) Applying the divergence theorem yields:

, - . _ [.Oh.nds= | Sohyy (20)
with boundary and initial conditions Equation (18): s VT ot
h(300,y,t)= h(x,300,t¢ 1. where, S is the surface of the control volume and n
nOh=0:x= 0,y= 0 (18) represents the outward unit normal to the surface.

Using quadrilateral control volumes on a uniform
cartesian meshr{g. 5), the surface integral in Equation (20)
where, n is the outward unit normal to the boundary " be split into the sum of the four surface irtisgover
This model describes transient flow in a two- the cell fa(;es Jc=e wn, .S) of the co.ntrol.volume, such
dimensional homogeneous isotropic conned aquifer ofthat Equation 20 can be equivalently written inftien:
constant thickness b. Soh

Y[ ohndg=[ ordv (21)

h(x,y,0)=5

2.1. Finite Volume Discretization

solution approach is used to solve the coupled a”dapproximated by the average values at the midpoints

nonlinear set of equations that characterize flilidyv the faces and at the center of the control volume
problems (Noorbehesht and Ghaseminejad, 2013). Theqyation (22) (Schafer, 2006):

dominant numerical technique in computational fluid
dynamics is the finite volume method. The basic sSaoh an

methodology of the method involves three steps: [ Ohnds=$@©hY .n)an o O ?S(Ej ' (22)
p

 The domain is subdivided into a number of finite- o i ) )
sized sub domains called control volumes and each  Substituting in Equation (21) yields Equation (23)

control volume is represented by a finite number of

grid points (Causost al., 2011) ZSC (@hy" n, ):§(ﬂ‘j Vv (23)
» Integration of the governing differential equation - Tiat s

over each control volume and applying the

divergence theorem Where:

. Consideration of a profile assumption for the < m=The length o_fthe cqntrol volume f.ace,_
dependent variable to approximate the derivative (Oh)] = The hydraulic gradient at the midpoint of the

terms resulting in a set of algebraic equationg on control volume face
for each control volume ah
(—j = The time derivative at the center of the control
Theorem 3.1 ot Jp
(Divergence Theorem) Let V be a simply volume and V is the volume (area in 2D) of the
connected region in the xy-plane enclosed by a control volume
piecewise smooth curvedV. Let n be the unit Using a first order forward difference in time and
outward-pointing normal téV. Then: using the fact that S= S, =Ay , S, = S =Axand V =
AxAy, Equation (23) can be written as Equation (24):
[,0Fdv=[  F.ndx
_ . 0.(Oh)y.n, +(Oh) .+ 0, (@ hE
where, dV is the element of area and dX is the elgm S Ht - K (24)
of length. +(Oh)".n, )= PAXAY

Applying the methodology onto model Equation 17, T A

we can average Equation (17) by integrating it cer

arbitrary control volume V as Equation (19): Note, for example, that Equation (25):

Sah W _(oh ah\m __ (gh\m
[, 0.(Ohydv = jv?adv (19) A ((Ah)n, _(ax ‘ay] o (0.1= [ay] 0 (25)
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Fig. 5. Schematic view of a finite-volume quadrilaterdl sgstem

Thus, Equation 24 can be simplified to Equation)(26 The time level at which these derivatives are cdetpu
determines whether the scheme is explicit (k), icipl
. ((ah)]m_[[ah] m]+ (k+1) or Crank-Nicholson (mixture of both previoasd
“ay” Jn ay)s new time levels). Using an implicit scheme and Stultig
oh\m (ah\m)_ SH™- H (26) (27) into (26), we get the following Equation (28):
&wje[ij'T A

hk+1 _ hk+l hk+1_ hsk+1
AX N P ___N +
The main challenge of the FVM is the approximation [ Ay Ay ]
of the gradients (or uxes) at the cell faces. T¢wu@cy R T S 1
; o : Ayl e e e T lw |- = AXD:
of a control volume discretization depends heaoiiythe Y( Ax A J T A Y
approximation of the ux at the midpoint of the eoht
volume faces and many methods have been proposed to
approximate the gradient along a control volumdager ~ which can be simplified to:
for different computational fluid dynamics appliceats
(Loudyi et al., 2007; Jayantha and Turner, 2001; 2003). Rl _ R p T - ol D S
To calculate the gradients at the midpoint of tied ¢ = — (Ah")z A, (A)Hf’)z i A
faces, an approximate distribution of propertiesvben y
nodal points is used (Versteeg and Malalaseker@5)19
The simplest and most obvious technique is the r@ent Using the (i, j) notation, Equation 29 becomes
Dierencing Scheme (CDS) which which assumes thgt h - gquation (30):
a linear function between any two node points and a
second order approximation for the gradients isemiv

(28)

(s -hE) (29)

Equation (27) (Schafer, 2006): hia = 205"+ BFS
(By)* (30)
[@]mLE‘ha:L‘ Moand ONM = o7y P 2N A =5 (hiopy)
ox)e X.—X, Ax ay)n Ly (Ax)? Tagy
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which is the FVM equation at the interior node R ari,

j< N-1. Note that this equation is common to both the

cell-centered FDM and the FVM.

Similarly, hs1j =
If we let Ay =
Equation (36):

24-h;.
Ax, then scheme (30) becomes

To complete the scheme (30) we needed to update

the formula also for the boundary cell nodes i #4.1,
=Nandj=

ghostcellsi=0,j=0,i=N+1andj=N + hieh
were located just outside the domaiRig, 6). The

N. These were derived by taking the
boundary conditions (18) into account. We introdlice

k+l
+1,j

(a )ZS(

TAt

hk+1

i,j+1

hlkj+_11 4hk+1 hﬁu_ H;) (36)

Rearranging terms with k+1 on the left and terms

boundary conditions were used to Il these cellshwit With k on the right hand side gives Equation (37):

values By, ho, hy+1j and Rn.,, based on the values;h

in the interior cells. The same sheme (30) was thenhk+1 +hL 4+ et -

used alsoforl,j=1and|,j=
Consider the Neumann boundary conditi%:‘? =0 at

x =0 and y = 0. We formally extend the definitiohthe
solution h for (x; y) <0, that is, outside the dama
At x = 0 Equation (31):

oh _ ah ah dh
Or h,(t,0,y) = 0. Now Equation (32):
0=h, (0,y,5="CY: 0" N0 Y. 0, 5 55 )
AX (32)

Dropping the O @x)* term, we got an expression
for hy; in terms of h; Equation (33):

(33)

Similarly hy(x, 0,t) =0) o = h 1.

The Dirichlet boundary conditions h (300, vy, t) =
h(x, 300, t) = 0:5 can be approximated to secorntdior
by taking the average of two cells to approximadte t
value in between Equation (34):

h(x,yy, )+ h(x,% + 1,t)

12= h(x, 300t )

— (34)
o+ N
+0((ay)) = =172+ O((ayY )
Leading to the approximation Equation (35):
hl NS =24~ hN (35)

////A Science Publications
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k+1

-1 +1,j

— 4+(AX7)S hik_+1 (AX) h (37)
TAL )M Tar
With M = (A_I_X) S , Equation 37 becomes:
hiTha + hiS% + WS - HSS - (4 MR =— MR (38)

The star in the middle dfig. 6 is called the 5-point
stencil of Equation 38, because it connects all fihe
values of h present in Equation 38. Equation 3&ttoay
with the boundary conditions defines a set of n*Jiméar
equations in the n unknowng for 1<i, j<N.

The n equations represented by Equation 38 can be
expressed as a single matrix equation*"At= b by
writing the unknowns fiin a single long n-by-1 vector.
This required choosing an order for them and aatiiyr
numbering them as shown kig. 7 row-wise from the
lower left to the upper right.

For example when N = 3, Equation 38 in matrix
format gave the following matrix of coefficients:

-2+M) 1 010
1 -B@+M) 101
01 -(4+M) 0 0 1
-(3+M) 1 0
1 -4+ M) 1
01-(B+M) 00
100-(#M 1
0101-GM 1
0010 1-( M

0
0

O 0o oo ok
©O o ook O
o o okr © O

The solution vector h was given by Equation (39):
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Fig. 6. Discretized domain
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°
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Fig. 7. Numbering of the unknowns
hl = hl,l hl 0
h, = hy, h, 0
h3 = h3,1 h3 24
h, = h, h, 0
h=|h = h, (39) b=-M/h;| -0 (40)
hy = hy, s 24
h 24
h7 = h13 v
' h 24
h, = h 8
s 2.3 h 48
hy = hy, k+1 *
and the right hand side vector b as Equation (40): where, k and k + 1 are time levels.
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The value of the parametefsx, At, S and T were 4. DISCUSSION

known as is the value of the hydraulic hea, The set
of equations were solved simultaneously at eacte im . '€ refsuAFshprﬁsgnte? Sr?o"‘c’j that flow occur]:s 1I‘rom
inql t of initial conditions vy, is regions of high hydraulic head to regions of low
iteP’ st?rtlng” rom a sed dina th h th'] pe hydraulic head until a steady head value is achliegas
?ownk(_)rlaz (:L) J) and proceeding throug €aM  shown in Fig. 8, 12, 14 and 18. This agrees with
Steps, k=1, 2, 9,..... Darcy’s conclusion that hydraulic head decreasetién
direction of flow. The would be infow northern and
3.RESULTS esatern borders would also act as outflow borddtey
. are at a lower hydraulic head than the other poimtee
Presented here are the results from the simulation  5qyifer. Thus the major determinant of groundwéitew
the modelFigure 8-13 present results obtained when the girection is hydraulic gradient.
western and southern boundaries are impermeable whi When the western and southern borders were
Fig. 14-20 present the results when an outflow of impermeable, a steady head value equal to theHhgtic
50nt/day is allowed through the western and southernboundary condition at the northern and easterddysr

boundaries. is achieved.

; ]
+—Point near origin at (5_ 3}
-—Pointat (295, 3
Point at (3,
» Point at (255, 295
~—Interior point at {
Interior point at (130,73} ||

—
—

—
=

Nl

Hydraulic head (m)

1 ] 1 ] L L 1 1
0 100 200 300 400 500 600 700 800 900 1000
Time (days)

Fig. 8. Variation of hydraulic head with time starting wén initial condition of h(x, y, 0) = 5.0

300

[T
{
I.

|

150 |

Fig. 9. Groundwater flow direction after 100 days wheiahicondition is h(x, y, 0) =5.0 m
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Fig. 10. Groundwater head distribution starting with h(xQy = 5.0 at different times
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Fig. 12. Variation of hydraulic head with time starting wén initial condition h(x, y, 0) = 15.0 m
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Fig. 13. Groundwater head distribution starting with h(xQy= 15.0 at different times
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Fig. 14. Variation of hydraulic head with time when init@ndition is h (0, x, y) =5.0 m
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Fig. 16. Groundwater head distribution at different timesting with h (0, X, y) = 5.0 m and having a Nemmdoundary condition-

? =50.0n7 /day at the western and southern borders
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Fig. 17. Groundwater flow direction after 100 days whetiahicondition is h(0, x, y) = 15.0 m
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Fig. 18. Variation of hydraulic head with time starting win initial condition of h(x, y, 0) = 15.0 m
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Fig. 20. Groundwater head distribution at differéimes starting with h(x, y, 0) = 15.0m and havinjeumann boundary condition

L =50.0nt = day at the western and southern borders
The rate at which points in the aquifer attainsteady head 5. CONCLUSION
value depends on how close they are to the irfflorders.
Points nearer the inflow borders_ attain stedaye dtaster An orthogonal grid finite volume scheme applied to
than those farther away from the inflow borders. an isotropic transient groundwater flow model hasrb

When an outflow of 50 ffday was allowed through  described in this study. We have used quadrilateral
the western and southern borders, water flows ioubof control volumes with nodes at the centers of thetrod
the aquifer until a steady head value, which is tiEise is  yolume and assumed that h varies linearly betwesn a
at some points below the Dirichlet head boundalyesat  two nodal points. We have also seen that in the FVM
the northern and eastern borders, is attainedclbiser a  scheme, conservation is guaranteed for each oglttas
point is to the outflow borders, the lower its wdtvel is ensures that both local and global conservation are
below the steady Dirichlet head value of 12 m. guaranteed no matter how coarse the mesh. A fully

///// Science Publications 109 JMSS



Muyinda, N. et al. / Journal of Mathematics andiStias 10 (1): 92-110, 2014

implicit scheme has been used to approximate theDelleur, J.W., 2010. The Handbook of Groundwater
derivatives. The spatial truncation error is &)¢) and Engineering. 2nd Edn., CRC Press, ISBN-10:
the temporal truncation error is MY, that is, the fully 1420006002.

implicit scheme is second order accurate in spack a Fitts, C.R., 2012. Groundwater Science. 2nd Edn.,
first-order accurate in time. The scheme is also  Academic Press, Oxford, New York, ISBN-10:

unconditionally stable. We have used direct methods 0123847060, pp: 692.

solve the discretized system. Freeze, R.A., 1994. Henry darcy and the fountaihs o
It has been observed that water flows from dijon. ~ Groundwater, ~ 32:  23-30. DOL

regions at higher hydraulic head to regions atelow 10.1111/j.1745-6584.1994.tb00606.x

hydraulic heads. More accurate solutions would beHerzog, A., 2007. Transient groundwater modellmgeri--
obtained when a much finer mesh is used. The mesult ~ urban kampala, Uganda. MSc Thesis. Royal Institute

obtained from our simulations also seem to agreh wi of Technology. _
the simulations obtained when we use the finite Jayantha, P.A. and I.W. Turner, 2001. A comparisbn
element PDEtool in MATLAB. gradient approximations for use in finite-volume

In the study, we assumed that the study area was computational models for two-dimensional diffusion
isotropic which in reality is not the case. We also equations. Numerical Heat Transfer, 40: 367-390.
assumed a fixed h value at the inflow borders wiiich DOI: 10.1080/104077901753243179
nature is almost impossible. The inflow into oundst Jayantha, P.A. and I.W. Turner, 2003. A second rorde
area depends on whether its rainy season or dry finite volume technique for simulating transport in
season and there are always variations in thevnéb anisotropic media. Int. J. Numerical Methods Heat
water depending on the season of the year. Further Fluid Flow, 13: 3156. DOl
research would focus on using an anisotropic model ~ 10.1108/09615530310456750
and also using time dependent boundary conditionsLoudyi, D., R.A. Falconer and B. Lin, 2007.

An error analysis of our model would also be Mathematical development and verication of a non-
interesting to look at in future work. orthogonal finite volume model for groundwater
flow applications. Adv. Water Resources, 30: 29-42.
6. ACKNOWLEDGEMENT DOI: 10.1016/j.advwatres.2006.02.010
Noorbehesht, N. and P. Ghaseminejad, 2013. Nunherica
The researcher express their gratitude for theiabnc simulation of the transient flow in natural gas
support from the International Science Program XISP transmission lines using a computational fluid
based at Uppsala University in Sweden. dynamic method. Am. J. Applied Sci., 10: 24-34.
DOI: 10.3844/ajassp.2013.24.34
7. REFERENCES Schafer, M., 2006. Computational Engineering:

_ Introduction to Numerical Methods. 1st Edn.,
Batu, V., 2005. Applied Flow and Solute Transport  Springer,Berlin, New York, ISBN-10: 3540306862,
Modeling in Aquifers: Fundamental Principles and pp: 331.

Analytical and Numerical Methods. 1st Edn., CRC Versteeg, H.K. and W. Malalasekera, 1995. An

Press, ISBN-10: 1420037471, pp: 696. Introduction to Computational Fluid Dynamics the
Bear, J. and A.H. Cheng, 2010. Modeling groundwater  Finite Volume Method. 1st Edn., Pearson Education

flow and contaminant transport. Theory Applic. India, Harlow, England, ISBN-10: 8131720489, pp:

Transport Porous Media. DO10.1007/978-1-4020- 257.

6682-5

Causon, D.M., C.G. Mingham and L. Qian, 2011.
Introductory Finite Volume Methods for PDEs. 1st
Edn., Bookboon, ISBN-1@776818829.

////A Science Publications 110 JMSS



