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ABSTRACT 

The investigation into the summation of two polynomials of the same degree under special given conditions 
results in a polynomial whose solutions follow a pattern that can be easily predicted. In this study, the theory 
of such polynomials is developed for examination of the integral parts of Riemann’s works. The analysis leads 
to a theorem that governs the solutions under certain conditions and applying this theorem to the expanded 
form of the Riemann-Eta function generates expressions that show why the Riemann hypothesis may be true. 
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1. INTRODUCTION 

The use of polynomials within algebraic mathematics 
has a long history dating back through the ages. Egypt, 
Babylon and India are a few countries where 
mathematicians had developed and solved algebraic 
equations such as linear and quadratic polynomials at an 
early stage (Tularam, 2011; 2013). A polynomial is an 
algebraic expression consisting of a number of terms that 
are made up from the product of a constant and a variable 
that is raised to a power of a whole number: 
 

n n 1 n 2
n n 1 n 2

n
2 i

2 1 0 i
i 0

f (x) C x C x C x

C x C x C C x

− −
− −

=

= + +

+ ⋅ ⋅ ⋅ + + + =∑
 

  
The act of reflecting a polynomial function about the 

y-axis is simply done by replacing x with -x: 
 

f (x) f ( x)= −  

  
Solving a polynomial requires finding the values of 

the variables that resolve the polynomial to zero: 

n
i

i
i 0

f (x) C x 0
=

= =∑  

 
The degree of a polynomial is used to describe a 

polynomial. The term within the polynomial with the 
highest power is considered the leading term and its 
power is the degree of the polynomial. The fundamental 
theorem of algebra states that a polynomial of degree n 
has at most n number of solutions when the polynomial 
is resolved to zero if all real, complex and repeated 
solutions are considered (Brenner and Lyndon, 1981). 
These solutions are called roots and can consist of both 
real and complex numbers and can be degenerate as 
stated previously. There exist formulas to solve linear 
(first order) and quadratic (second order) equations. 
Theories to solve polynomials of a higher degree exist 
but the known forms greatly increase in complexity as 
the degree increases. In 1824 however, a Norwegian 
mathematician, Niels Henrik Abel showed that there can 
be no finite formula involving only arithmetic operations 
and radicals for solving polynomials of degree five or 
higher (Agarwal et al., 2012). This shows that solving 
polynomials of higher degrees have been rather problematic 
for even the greatest of mathematicians. While finding the 
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roots of a polynomial can be complicated, this study 
suggests that there is an elegance and simplicity in the 
solutions to certain types of polynomials that are developed 
through the addition of two polynomials under special set of 
conditions. In this study, the application of the theory of 
such polynomials is found within the famously unsolved 
question known as the Riemann hypothesis. The Riemann 
hypothesis has plagued the mathematics community for 
over a century. It deals with the distribution of solutions of 
the Euler-Riemann Zeta function. The Euler-Riemann Zeta 
function is a function of the complex variable s that 

analytically deals with the sum of the infinite series
S

n 1

1

n

∞

=
∑ . 

The Riemann hypothesis states that all non-trivial 
solutions to the Euler-Riemann Zeta function have the 
real part of (Titchmarsh, 1986; Edwards, 2001; Curtis 
and Tularam, 2011). 

While history has shown many insights into how the 
solutions to the Zeta function work, researchers have yet 
to find a definitive answer as why the Zeta function 
solutions should act as conjectured by Riemann. The 
theorem governing operations on two polynomials can 
be used to describe the Zeta functions solutions in a 
fundamental manner. A detailed explanation will be 
provided in the following sections. An indication of 
where this idea arises can be noted in Fig. 1. 

1.1. Definitions and Notation  

This section provides definitions and description of 
the variables, terms and elements used in this study. The 
polynomials used in the investigation throughout this 
study are defined as follows. 

Assuming l and m to be real numbers and allow two 
polynomials to be expressed in the following form: 
 

n

1 2 3 n j
j 1

1 2 3 n

n

j
j 1

p(x) (x l )(x l )(x l ) (x l ) (x l ),

q(x) (x m )(x m )(x m ) (x m )

(x m ),w(x) p(x) q(x)

=

=

= − − − ⋅ ⋅ ⋅ − = −

= + + + ⋅ ⋅ ⋅ +

= + = +

∏

∏  

 The function w(x) is simply the addition of p(x) and 
q(x) and so is itself a polynomial. The solutions to p(x) = 
0 occur when x = -lj (where j = 1,2,3,4,…,n); and the 
solutions to q(x) = 0 occur when x =-mj (where  j = 
1,2,3,4,…,n). Assuming that the following set of 
conditions: 
 

j jl 0, j 1,2,3,4, ,n; m 0, j 1,2,3,4, ,n;> = ⋅⋅ ⋅ > = ⋅ ⋅ ⋅  

j j 1

j j 1

l l , j 1,2,3,4, ,n 1

m m , j 1,2,3,4, ,n 1;

+

+

< = ⋅ ⋅ ⋅ −

< = ⋅ ⋅ ⋅ −
 

 
where the polynomial q(x) is defined to be the reflected 
form of the polynomial p(x) about an axis of symmetry 
that occurs parallel to the y axis. The axis of symmetry 
for p(x) and q(x) is x = xs and is governed by: -m1 < xs < 
l1 where –ll and –m1 are the first solutions to p(x) = 0 and 
q(x) = 0 respectfully. If p(x) and q(x) are reflected 
polynomials and if h represents the shift that q(x) 
undergoes after it is reflected on the vertical axis then the 
following is true: 
 

q(x) p(( x) 2h) p( (x 2h))= − + = − −  
 

A special case exists when h = 0 and since xs = 0 as 
well, the axis of symmetry is the y axis itself. For all 
cases h = xs Equation (1): 
 

sq(x) p( (x 2x ))= − −  (1) 

 
Cases other than h = 0 will be considered in the 

following sections. 

1.2. Development of Theorem 1: Addition of two 
Polynomials 

The addition of two polynomials will result in a 
polynomial whose solutions can be partially predicted if 
the original polynomials follow the conditions stated in 
the previous section. 

Figure 2 shows an example of the case of two 
polynomials of the form q(x) and p(x). It should be noted 
that the two polynomials will intersect at the axis of 
symmetry (defined by the dashed line). The point of 
intersection is defined to be S (this occurs when x = xs): 
p(xs) = q(xs). 

s s s sw(x ) p(x ) q(x ) 2p(x )∴ = + = ; the point will be 

conjectured to be the minimum value of the singular 
turning point of the resulting polynomial (w(x)).  

The values w(x) at a distance d from the y axis can be 
represented as w(xs + d): i.e.: 
 

s s sw(x d) p(x d) q(x d).+ = + + +  

 

Also, if: 
 
• p(xs+d)+q(xs+d) = 2p(xs) then w(xs+d) = w(xs) 
• p(xs+d)+q(xs+d) < 2p(xs) then w(xs+d) < w(xs) 
• p(xs+d)+q(xs+d) >2p(xs) then w(xs+d) > w(xs) 
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Fig. 1. Two polynomials with different roots added to form a third polynomial, p(x) = (x+5) (x+7) (x+9) (x+11) q (x) = (x-2) (x-4) 

(x-6); w(x) = p(x) + q (x) = 2x4 +12x3 +514x2 +1488x+3849 
 

 
 
Fig. 2. Two polynomials with different roots added to form a third polynomial, S’ depicts intersection point for p(x) and q(x) and S 

depicts the turning point for w(x) = p(x) + q(x): 
4 3 2

p(x) (x 5)(x 7)(x 9)(x 11), q(x)

(x 2)(x 4)(x 6)(x 8) and

p(x) q(x) 2x 12x 514x 1488x 3849

= + + + +
= − − − −

+ = + + + +

 

 
For the case where p(xs + d) +q(xs + d) > 2p(xs) for all 

real values of d the resulting polynomial will have a 
singular turning point at the minimum value w(xs). 
Importantly, if w(xs) >0 the solutions top(x) + q(x) will be 
of the form xs + iβj for j = 1,2,3,4,…,n  (where βj ∈ℜ). 

Proof of Theorem 1: 

The difficulty in determining if the third case is the 
one that occurs becomes simple if the two polynomials 
are shifted so that the axis of symmetry aligns itself with 
the y axis. Therefore there is a need to define two new 
transformed polynomials such as P(x) and Q(x): 
 

s s 1 s 2 s 3

s n 1 2 3 n

Q(x) q(x x ) (x x m )(x x m )(x x m )

(x x m ) (x r )(x r )(x r ) (x r )

= + = + + + + + +
⋅ ⋅ ⋅ + + = + + + ⋅ ⋅ ⋅ +

 

where, rj >0 for j = 1,2,3,4,…,n  because mj>0 for j = 
1,2,3,4,…,n and xs > - m1 from xs + m1>0. Upon 
expanding Q(x) the following form of Q(x) is obtained: 
 

n n 1
n 1 1 0Q(x) x A x A x A−

−= + + ⋅ ⋅ ⋅ + +  

 
where, Aj >0 for = 1,2,3,4,…,n -1. This is because each 
A j value is simply a product of a combination of rj values 
that are all positive, therefore all Aj values will also be 
positive. This leads to an important discovery for x<0 
(i.e., x<0 and so x = -d, for d>0): 
1. For even n: 
 

n n 1
n 1 1 0Q( d) d A d A d A−

−− = − + ⋅ ⋅ ⋅ − +
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And where,x d= − : 

 

( ) n n 1
n 1 1 0Q d Q(d) d A d A d A−

−− = = + + ⋅ ⋅ ⋅ + +  

 
 The axis of symmetry occurs for P(0) and Q(0) and the 

fact that the axis of symmetry is at the y axis, Q(-x) = P(x): 
 

n n 1
n 1 1 0 0

n
1

2
n 2i

2i
i 1

Q(0) (0) A (0) A (0) A A

P(d) Q(d) 2Q(0)Q( d) Q(d) 2Q(0)

Q( d) Q(0) Q(0) Q(d)2d 2A d 0

−
−

−

=

= + + ⋅ ⋅ ⋅ + + =
+ > − + >

− − > − + >∑

 (2) 

 
Since Aj >0 and d>0, Equation (2) is true for even 

values of n. This also means that P(d) + Q(d) >2Q(0) and 
hence p(xs + d) + q(xs + d) >2p(xs) for even values of n. 

2. For odd n: 
 

n n 1
n 1 1 0Q( d) d A d A d A−

−− = − + − ⋅ ⋅ ⋅ − +  

 
And where x d= − : 

 
n n 1

n 1 1 0Q( d ) Q(d) d A d A d A−
−− = = + + ⋅ ⋅ ⋅ + +  

 
Since the axis of symmetry occurs for P(0) and Q(0) 

(at the y axis),Q(-x) = P(x): 

 
n n 1

n 1 1 0 0

n 1

2
2i

2i
i 1

Q(0) (0) A (0) A (0) A A

P(d) Q(d) 2Q(0)Q( d) Q(d) 2Q(0)

Q( d) Q(0) Q(0) Q(d) 2A d 0

−
−

−

=

= + + ⋅⋅ ⋅ + + =
+ > − + >

− − > − >∑

 (3) 

 
Since Aj >0

 
and d >0, Equation (3) is true for odd n 

values and this means that P(d)+Q(d) >2Q(0) and hence 
p(xs + d) + q(xs + d) >2p(xs) for all odd n. Finally, this 
means that w(xs + d) >w(xs) for d >0 and all n values. 
Therefore, the resulting polynomial will have a singular 
turning point at the minimum value: w(xs). This is an 
important case because if w(xs) >0 the solutions to w(xs) 
= 0 will be of the form xs + iβj  for j = 1,2,3,4,…,n  
(where βj ∈ ℜ).

 
 

To prove w(xs) > 0, the q(x) polynomial will is 
translated by shifting the polynomial to the right by a 
value of  -m1. This allows for m1 = 0: 

1 1 1 1 2 1 3

1 n 1 2 n 1

Q(x) q(x m ) (x m m )(x m m )(x m m )

(x m m ) (x)(x s )(x s ) (x s )−

= − = − + − + − +
⋅ ⋅ ⋅ − + = + + ⋅ ⋅ ⋅ +  

 
where, sj >0 for j = 1,2,3,4,…,n-1, because |mj|<|mj+1| for 
j = 1,2,3,4,…,n-1. Expanding Q(x) leads to:  
 

1 2 n 1

n n 1
n 1 1 0

Q(x) (x)(x s )(x s )...(x S )

Q(x) x B x B x B
−

−
−

= + + + =>

= + + ⋅ ⋅ ⋅ + +
 

 
where, Bj >0 for j = 1,2,3,4,…,n-1, because each Bj is 
simply a product of a combination of sj, which are 
positive; therefore Bj will also be positive for all j. This 
means that Q(x) > 0 for x >0. Hence, if Q(x) >0 for x >0 
then Q(x+m1) > 0 for x > -m1: 
 

1 1 1 1 1 2 1

n 1 1 2 3 n

Q(x m ) (x m )(x m s )(x m s )...(x m

S ) (x m )(x m )(x m ) (x m ) q(x)−

+ = + + + + + +

+ = + + + ⋅ ⋅ ⋅ + =
 

  
This means q(x) >0 for x > -m1. By definition xs > -

m1that implies q(xs) >0. Using w(xs) = 2q(xs) leads to the 
condition that w(xs) >0. The above proves theorem 1. 

Summary of Theorem 1: 

Defining p(x) and q(x) as the polynomials governed by 
the conditions and the proofs set out in the previous section 
leads to the following theorem; 

The sum of two polynomials p(x) and q(x) under 
certain conditions will result in a polynomial that has 
solutions (i.e. roots) of the form a + iβj for j = 
1,2,3,4,…,n (βj ∈ ℜ ). 

1.3. Application of Theorem 1: Application to 
the Riemann Hypothesis 

The Riemann hypothesis deals with the functional 
equation of the following form Curtis and Tularam (2011): 
 

( ) ( ) ( ) ( )
s 1 s

2 2
s 1 s

1 (s) 1 (1 s)
2 2

−− −−   − π ζ = − π ζ −   
   

∏ ∏
  

Since there are a number of different proofs of this 
equation the derivation or proof will be left up to the 
readers. Riemann used the functional equation above to 
define an analytic function that is defined for all values 
of s. Another form of Riemann’s original function more 
commonly used is given in Equation (4): 
 

( )( ) ( )
s

2
s

(s) s 1 (s)
2

− ξ = − π ζ 
 

∏   (4) 



Mathew Curtis and Gurudeo Anand Tularam / Journal of Mathematics and Statistics 10 (1): 73-79, 2014 

 
77 Science Publications

 
JMSS 

Riemann derived an equation (Equation 5) for ξ(s) to 
determine values of that would firstly solve ξ(s) = 0; and 
ς(s) = 0 then, (Edwards, 2001): 
 

s s 1
1

2 2

1

1 s(1 s)
(s) (x) x x dx

2 2

∞ +− − −ξ = − ψ + 
 

∫   (5) 

 

where, 
200 ( n x)

n 1
(x) e −π

=
Ψ =∑  

The integral in Equation (5) can be evaluated using 
integration by parts method to arrive at a function for 
ξ(s). It is well known that the real part for each solution 
to ξ(s) = 0 lie in the region 0 ≤ Re(ξ(s)) ≤ 1with the 
exception of the trivial poles and the two poles at s = 1 
and s = 0 (Edwards, 2001). The objective of this section 
of the study is to evaluate Equation (5) in the same 
fashion as Riemann’s original idea but in reverse and 
continually. That is to evaluate the integral part within 
Equation (5) repeatedly to define a variety of expressions 
that can be governed by Theorem 1. A number of 
functions presented below are important for the process: 
 

( )2 2

1

n x n x
1 2

n 1 n 11

1
(x) e dx e

i

∞ ∞ ∞
−π −π

= =

−
ψ = =

π∑ ∑∫
 

 

( ) 2

2

n x
2 1 2 4

n 11

1
(x) (x)dx e

i

∞ ∞
−π

=

−
ψ = ψ =

π∑∫
 

( ) 2

3

n x
3 2 3 6

n 11

1
(x) (x)dx e and

i

∞ ∞
−π

=

−
ψ = ψ =

π∑∫  

 

( ) 2

n

n x
n n 1 n 2n

n 11

1
(x) (x)dx e

i

∞ ∞
−π

−
=

−
ψ = ψ =

π∑∫  

 
where, Ψk (s) has a convergent summation for all k 
(Edwards, 2001). Allowing the integral to be passed 
within the summation itself and evaluating the 
exponential function leads to the following. 

First evaluation of Equation (5): 
 

( )

( )

1 1
(s 2) (s 1)

2 2
1

1

1 1
(s 4) (s 3)

2 2
1

1

1 1
(s) s 1 s (x) x x

2 2

1 1
s 1 s (x) (s 2)x ( (s 1))x dx

2 2

∞
− − +

∞ − − +

  
 ξ = − − ψ + 
   

  
− − − ψ − + − +  

   
∫

 

 
while the kth (even) evaluation: 

( )

( )

1 1
(s 2) (s 1)

2 2
1

1

j 1 1j 1
(s 2 j)

2
jj 1k m 1

1j 1j 2 (s (2 j 1))
2

m 1
1

k

m 1

kk

1 1
(s) s 1 s (x) x x

2 2

1
(x) (s 2m) x

2

( (s (2m 1))) x

(s 2m)
1

(x)
2

∞
− − +

∞− − −

−
=

−= − + −

=

=

  
ξ = − − ψ + 
  

  −    ψ − +      +  
   
 − + −        

 −
+ ψ

∏
∑

∏

∏
1

(s 2(k 1))
2

1k (s 2k 1)1 2

m 1

x

dx

( (s (2m 1))) x

− +

∞

− + +

=

 
  

  
    + − + −      

∫
∏

 

 
k+1th (odd) evaluation: 

 

( )
1 1

(s 2) (s 1)
2 2

1

1

1 1
(s) s 1 s (x) x x

2 2

∞
− − +  

ξ = − − ψ + 
  

 

( ) j 1 1j 1
(s 2 j)

2
jj 1k 1 m 1

1j 1j 2 (s (2 j 1))
2

m 1
1

1
(x) (s 2m) x

2

( (s (2m 1))) x

∞− − −

−+ =

−= − + −

=

  −    ψ − +     +  
   
 − + −        

∏
∑

∏  

1k 1 (s 2(k 2))
2

m 1

k 1k 1 1k 1 (s 2k 3)1 2

m 1

(s 2m) x
1

(x) dx
2

( (s (2m 1))) x

+ − +

∞
=

++ + − + +

=

  −   
   + ψ     + − + −      

∏
∫

∏  

 
Therefore the nth (even) evaluation: 

 

( )

( )

1 1
(s 2) (s 1)

2 2
1

1

j 1 1j 1
(s 2 j)

2
jj 1n m 1

1j 1j 2 (s (2 j 1))
2

m 1
1

n

m 1

nn

1 1
(s) s 1 s (x) x x

2 2

1
(x) (s 2m) x

2

( (s (2m 1))) x

(s 2m)
1

(x)
2

∞
− − +

∞− − −

−
=

−= − + −

=

=

  
ξ = − − ψ + 
  

  −    ψ − +      +  
   
 − + −        

 −
+ ψ

∏
∑

∏

∏
1

(s 2(n 1))
2

1n (s 2n 1)1 2

m 1

x

dx

( (s (2m 1))) x

− +

∞

− + +

=

 
  

  
    + − + −      

∫
∏

 

 
Noting that an arbitrary lth term can be represented as: 
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1 1l 1 l 1(s 2l) (s 2l 1)
2 2

l
m 1 m 1 1

l 1 l 1

l
m 1 m 1

(x) (s 2m)x ( (s (2m 1)))x

(1) (s 2m) ( (s (2m 1)))

∞
− −− − + −

= =

− −

= =

 
ψ − + − + − 

 

 = −ψ − + − + − 
 

∏ ∏

∏ ∏  

 
Ψ1(∞) converges rapidly to zero for I ≥ 1 even when 

compared with any power of x function (Edwards, 2001). 
Therefore, defining Equation (6) as follows aids the 
process: 
 

( )

( ) j j 1 j 1n 1

1 jj 1
j 2 m 1 m 1

1 1
(s) s 1 s

2 2

1
(1) (1) (s 2m) ( (s (2m 1)))

2

− −−

−
= = =

ξ = − −

  −  
  −ψ + ψ − + − + −     

∑ ∏ ∏
 

1n (s 2(n 1))
2

m 1

nn 1n (s 2n 1)1 2

m 1

(s 2m) x
1

(x) dx
2

( (s (2m 1))) x

− +

∞
=

− + +

=

  −   
   + ψ     + − + −      

∏
∫

∏
  (6) 

 
Also, defining Equation (7): 

 

 ( )

( ) j

jj 1

j 1n

1
j 2 m 1

j 1

m 1

1
(1)

2

1 1
g(s) s 1 s (1) (s 2m)

2 2

( (s (2m 1)))

−

−

= =

−

=

  −  ψ
  
  

  = − − −ψ + − +    
  

− + −   
  

∑ ∏

∏

 (7) 

 
Rearranging for simplicity leads to the following 

Equation 7.1: 
 

( )

( )

1 2

j

jj 1n

j 1 j 1
j 3

m 1 m 1

1 1 3
g(s) s 1 s (1) (1)

2 2 2

1
(1)

2

(s 2m) ( 1)(s (2m 1))

−

− −
=

= =

  = − − − ψ + ψ 
 

 −
 ψ
 +   
 − + − + −    

∑
∏ ∏

 (7.1) 

 
Essentially, Equation 7.1 includes polynomial terms 

that are governed by Theorem 1. The terms in Equation 
7.1 that include even degree polynomials will be the first 
focus of applying Theorem 1. Assuming n to be even the 
following may be written: 

n

m 1

p(s) (s 2m)
=

= −∏   (8) 

 
n

m 1

q(s) (s (2m 1))
=

= + −∏   (9) 

 
It is now necessary to show that Equation (8 and 9) 

can be expressed in the manner shown in Equation 
(1): That will prove that Theorem 1 can be applied (ss 
will simply be the s value where the axis of symmetry 
occurs). This value s will represent some constant. 

It should be noted that both p(s) and q(s) are even 
degree polynomials with n real roots and so will have an 
even degree of product terms when in factored form: 
 

n n

m 1 m 1

p(s) (s 2m) (2m s)
= =

∴ = − = −∏ ∏  

 
Now substituting in: -(s-1) for all s values into p(s): 

 
n

m 1

n n

m 1 m 1

p( (s 1)) (2m ( (s 1)))

(2m s 1) (s (2m 1)) q(s)

=

= =

− − = − − −

= + − = + − =

∏

∏ ∏
 

 
 Noting that this is Equation (1) where s =  ½ thus 

Theorem 1 may now be applied to the terms in Equation 
7.1 that include even degree polynomials. The resulting 
polynomials will be of the following form: 
 

n

m
m 1

1
w(s) (s i )

2=

= − + β∏  

 
These resulting polynomials all have solutions to 

w(s) = 0 that will lie on the real line: s = ½.  
The same process will now be applied to the terms in 

Equation (7.1) that include odd degree polynomials. 
Considering n to be odd the following may be written 
Equation (10 and 11): 
 

n

m 1

p(s) (s 2m)
=

= −∏   (10) 

 
n

m 1

q(s) (s (2m 1))
=

= + −∏   (11) 

 
Equation (7.1) shows that all the terms with odd degree 

polynomials will be of the general form; C(p(s)-q(s)), 
where C is simply the constant represented in Equation 
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(7.1). In the case where p(s) and q(s) are both odd degree 
polynomials with n real roots, there will be an odd degree 
of product terms when in factored form such as: 
 

n n

m 1 m 1

p(s) (s 2m) (2m s)
= =

∴ = − = − −∏ ∏
  

Finally we need to show that:-q(s) = p(-(s-2ss))
 
to 

prove Theorem 1 can be applied. 
Substituting in: -(s-1) for all s values into p(s) gives: 

 
n

m 1

n n

m 1 m 1

p( (s 1)) (2m ( (s 1)))

(2m s 1) (s (2m 1)) q(s)

=

= =

− − = − − − − =

− + − = − + − = −

∏

∏ ∏  

 
Therefore, the general forms of the odd degree 

polynomial terms in Equation (7.1) become: 
 

( )C p(s) p( (s 1))+ − −  
 

That is simply the addition of two polynomials, under 
the conditions prescribed in Theorem 1. Applying 
Theorem 1 where s = ½ from Equation (1), the terms in 
Equation (7.1) that include odd degree polynomials will 
result in a polynomial whose general form is w(s): 
 

n

m
m 1

1
w(s) s i

2=

 = − + β 
 

∏
  

W(s) = 0 has all its solutions that will lie on the real 
line s =  ½. 

There have been numerous successful and 
unsuccessful studies in the effort in proving 
Riemann’s hypothesis but very little work has been 
done in regards to why the hypothesis should or 
should not be true; this study is a step forward in this 
regard by suggesting that there may be a sound reason 
why the Riemann hypothesis should be correct. 

The above application of Theorem 1 to the Riemann 
hypothesis merely allows for a new look at Riemann’s 
eta function. It has simplified Equation 7.1 in such a way 
that the terms, excluding the first term ½, are now 
polynomials of increasing degree with rather interesting 
solutions when set to zero. The multiplying factor of 
½s(1-s) means that each polynomial term will have two 
solutions when set to zero, s = 0 and s = 1. All other 
solutions if any exist will lie on the real line of  ½. This 
is closely related to Riemann’s original hypothesis where 
the zeta functions solutions when set to zero will all lie 
on the real line of ½. 

2. CONCLUSION 

The arguments presented in this study provides very 
sound basis to conclude that the Riemann Hypothesis is 
true. There are a number of implications that will develop 
this idea more generally. For example, assuming the 
integral term and first term  ½. of Equation 6 can be 
ignored, based on Theorem 1, all that is left are 
polynomial terms of increasing degree. Then if we go 
further by making the assumption that summing two 
polynomials of any degree where both polynomials have 
roots that lie on the real line of  ½., results in a polynomial 
whose roots also lie on the real line of  ½. will help 
simplify Equation 6 into a single polynomial with all its 
roots lying on the real line of  ½.. The final assumption is 
that the resulting polynomial can be taken to an ‘infinite’ 
degree. Making these four assumptions will result in a 
polynomial of infinite degree whose roots (excluding the 
trivial roots) all lie on the real line of  ½.. This is where the 
arguments and theorem of this study can be taken but this 
was not the overall aim of the study. The aim was to 
provide sound reasons why the Riemann hypothesis 
should be correct. The simplification of the integral form 
of the eta function using the new theorem on the 
summation of two polynomials has done just that. 
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