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Introduction Due to the forming and the installation of the

) ) . ) generators in the heat exchanger channel are very
The installation of the vortex generators is widely important factors for industrial system, thus, the

use in heat exchanger channel to improve the thermap,qifieq generators for comfortable to install had
performance.. The V-shaped vortex generator_s al€heen investigated. The gaps which decreased the
usually applied in the heat system, because it canpermg) performance and heat transfer rate weradou
create the impinging jet over the channel leadh® t | 1o using the generators placed on the channel

augmenting heat transfer rate and also increasiag t \\2is The new designs of the generators which

thermal performance. However, the uses of thej,qerted diagonally in the square channel are

generators are remained the problems, such as; thfnteresting.
installation method, the forming and the optimized The major research objectives are as follows:
generators shape, etc.

The investigations on the generators had been
reported on both experimental and numerical. The® To obtain numerical solutions for the heat exchange
numerical results can explain the phenomena of the  channel with Reformed-V (RV) and Reformed-
flow structure that the way to develop the genemato Double-V (RDV) vortex generators
for occurring the maximum point of thermal ® To explain the mechanism of heat transfer
enhancement factor. Therefore, this work is focused  augmentation and flow visualization in square
on the investigation with the numerical method. The  channel for the laminar forced convection regime
Table 1 shows the numerical study of the vortex® To evaluate the thermal performance by using the

generators in heat transfer system. RV and RDV generators
//// Science © 2014 The Withada Jedsadaratanachai and AmnartlBiodhis open access article is distributed ural@reative
/4 Publications Commons Attribution (CC-BY) 3.0 license
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Table 1. The investigations of the vortex genestadth numerical method

Authors Studied cases Nu/Nug flfo TEF

Jedsadaratanacheti al. 30 inclined baffle 1.00-9.20 1.00-21.50 3.78
(2011) Inline, two opposite walls, square channel
BR=0.2
PR=0.5-25
Re = 100-2000
Kwankaomeng and Sonclined baffle 1.00-9.23 1.09-45.31 3.10
Promvonge (2010) One side, square channel
BR =0.1-0.5
PR=1.0-2.0
Re = 100-1000
Promvongeet al (2010a) 30inclined baffle 1.20-11.00 2.00-54.00 4.00
Inline, two opposite walls, square channel
BR =0.1-0.3
PR=1.0-2.0
Re = 100-2000
Promvonge and 45/-baffle 1.00-11.00 2.00-90.00 2.75
Kwankaomeng, (2010) Staggered, two opposite wals= 2 channel
BR = 0.05-0.3
PR=1.0
Re =100-1200
Promvongeet al (2010b) 48inclined baffle 1.50-8.50 2.00-70.00 2.60
Inline-staggered, two opposite walls, square chbnn
BR = 0.05-0.3
PR=1.0
Re = 100-1000
Promvongeet al (2012) 48 V-baffle 1.00-21.00 1.10-225.00 3.80
Inline downstream, two opposite walls, square oean
BR =0.1-0.3
PR=1.0-2.0
Re = 100-2000
Boonloi (2014) 20 V-baffle 1.00-13.00 1.00-52.00 4.20
Inline downstream-upstream, two opposite walls,
square channel
BR =0.1-0.3
PR=1.0
Re = 100-2000
Boonloi and 30V-baffle 1.00-14.49 2.18-313.24 2.44
Jedsadaratanachai (2013) Downstream, one sidaescjuannel
BR =0.1-0.5
PR=1.0-2.0
Re = 100-1200
Jedsadaratanachai and ° Lscrete-V-baffle 1.40-8.10 2.50-36.00 2.50
Boonloi (2013) Downstream, diagonally, square chknne
BR = 0.05-0.20
PR=1.0-1.5
Re = 100-1200
Jedsadaratanachai and Single twisted tape 1.00-10.00 3.00-44.00 3.51
Boonloi (2014) y/W =1.0-6.0
Re = 100-2000

Boundary Conditions and Assumptions « The periodic boundaries are used for inlet and
outlet of the domain

The boundary conditions and the assumptions ofe  The tested fluid is air with a temperature of 300 K
current mathematical models which referred from (Pr = 0.7) and enter to the inlet with constant

Promvongeet al (2012)are as follows: mass flow rate

427



Withada Jedsadaratanachai and Amnart Boonloi hadbef Mathematics and Statistics 2014, 10 (4):-436
DOI: 10.3844/jmssp.2014.426.235

» Theinlet and outlet velocity profiles must be itilead square channel height, H is set equal to 0.05 ns, b

» The physical properties of the air have been defined as the generators height, b/H is knownhas t
assumed to remain constant at average bulkblockage ratio. The spacing of the generators, & an
temperature P/H is identified as the pitch ratio of the generat

* Impermeable boundary and no-slip wall conditions The distance from generators edge to tip is fixed a
have been implemented over the square channeD.5H on both RV and RDV. The case studies are
walls as well as the twisted tape presented as Table 2.

* The constant temperature of the channel walls is The characteristics of three grids; such as 80000
maintained at 310 K while the RV and RDV is 120000 and 180000 cells, are adopted in the

assumed at adiabatic wall conditions simulations for using the Grid Convergence Index
»  Steady three-dimensional fluid flow and heat transf (GCI) (Roache, 1998). The numerical results show
* The flow is laminar and incompressible similar trends and values on both Nu and f whengisi
» Constant fluid properties 120000 and 180000 cells. Therefore, the
» Body forces and viscous dissipation are ignored. computational domain is set 120000 cells of thel gri
* Negligible radiation heat transfer system for this work.

Computational Domains, Grid Independent 1, pe 2. case studies

Test and Validation of the Smooth Channel Case BR PR Re
Figure 1 shows the square channel geometry withRV 0.05-0.30 1.00 100-1200
RV and RDV generators inserted diagonally. The RDV 0.05-0.30 1.00 100-1200
Reformed-V E .
\ generators (RV)

Reformed-Double-V
\ generators (RDV) }EH

\ z

.

Fig. 1. Square channel geometry for RV and RDV geoes
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Table 3. Validation of smooth square channel

Exact solution

Present prediction

Error (%)

Re Nu f Nu f Nu f

100 2.98 0.57000 2.978 0.5710 0.0671 -0.1754
200 2.98 0.28500 2.975 0.2880 0.1678 -1.0526
300 2.98 0.19000 2.981 0.1910 -0.0336 -0.5263
400 2.98 0.14250 2.983 0.1430 -0.1007 0.0000
500 2.98 0.11400 2.983 0.1120 -0.1007 1.7544
600 2.98 0.09500 2.981 0.0950 -0.0336 0.0000
800 2.98 0.07125 2.988 0.0710 -0.2685 0.3509
1000 2.98 0.05700 2.988 0.0570 -0.2685 0.0000
1200 2.98 0.04750 2.988 0.0475 -0.2685 0.0000

The numerical results on both Nu and f are compared
among the present prediction and the exact solutionQUICK scheme,

under similar operating conditions. The resultoigrfd to
be in excellent agreement with exact solution v@&lue
obtained from the open literature (Incropera anavibe
2006) for both the Nu and f, less than +1.75% deia
as shown in Table 3. The exact solutions of Nu fafiod
laminar flow over plain square channel are prestate
Equation 1 and 2, respectively:

Nug = 298 Q)
64

fq = — 2

0 =g 2)

Mathematical Foundation

The mathematical foundations for the current work

are referred from Promvonget al (2012). The

continuity equation, the momentum equation and the Nu, =

energy equation can be written as follows:
Continuity Equation 3:

0
— (ou)=0 3
o (pu,) 3)
Momentum Equation 4:
dlpusy)_ oo, o[ fou ou "
0X; 0% OX; oxj 0%
Energy Equation 5:
0 0 oT
—(ouT)=—|T— 5
o uT) 6xj[ axJ (5)
where,I" is the thermal diffusivity and is given by:
U
r=— 6
Pr ©)
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Except from the energy equation discretized by the
the governing equations were
discretized by the Second Order Upwind (SOU) scheme
decoupling with the SIMPLE algorithm and solved by
using a finite volume approach (Patankar, 1980) Th
solutions are measured to be converged when the
normalized residual values were less than® for all
variables but less than T@nly for the energy equation.

The parameters; Reynolds number, friction factor,
Nusselt number, average Nusselt number and thermal
enhancement factor are presented as Equation Z,to 1
respectively:

Re=puD/u @)
=P ®
S A
h,.D
” 9)
Nu:ijNuaA (10)
A X

The Thermal Enhancement Factor (TEF) is defined
as the ratio of the heat transfer coefficient of an
augmented surfacé, to that of a smooth surfack,, at
an equal pumping power and given by:

TEF =1

ho

== (N (/63

pp pp

where,Nu, andf, stand for Nusselt number and friction
factor for the plain square channel, respectively.

Results and Discussion

Flow Configurations and Heat Transfer

Characteristics

The flow configurations are reported in term of
streamlines in transverse planes as Fig. 2, wihé t
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heat transfer characteristics are presentearimd contours of local Nusselt humber as Fig. 3 and 4,
of contour temperature in transverse planes andrespectively.

(b)

Fig. 2. Streamlines in transverse planes for (a)aRd (b) RDV at Re = 1200 and BR =0.20
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Fig. 3. Temperature contours in transverse planes for (apfRl/(b) RDV at Re = 1200 and BR = 0.20
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Fig. 4.Nu, contours for (a) RV and (b) RDV at Re = 1200 and BR29
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Figure 2a and b present the streamlines in tragsver perform higher heat transfer rate than the smogtia®
planes for RV and RDV, respectively, at Re = 806 an channel. The peak regimes are found similarly.slt i

BR = 0.2. There are found that the inserted RV RBY
can change the flow field in comparison with theosth
square channel. The counter-rotating flow with camm
flow-down is appearing for RV case when considedhg
the lower part of the main vortex. The similar flow
structure with different rotating direction is falim case
RDV. The vortex flows for RV are seen to be fullefd

of the transverse planes while the RDV provide alkn
size, but give the small vortices on both the upged

lower corner of the tested channel.

Figure 3a and b show the heat transfer behavitiran
form of temperature in transverse planes for RV and .
RDV, respectively. As seen, on both the RV and RDV respectively,
help to mixing the fluid flow between core and néz
wall regimes. The RV case performs better mixinghef

fluid flow than the RDV case.

Figure 4a and b display the Neontours on the
square channel walls for RV and RDV, respectivaly,
800. The uses of RV and RDV case but the reverse trends present when BR >0.15.

BR = 0.2 and Re =

noted that the regimes where produce the lower heat
transfer rate are found in case RDV, considerirghtine
contours over the channel walls.

Performance Assessment

The performance evaluations are presented for heat
transfer rate, pressure loss and thermal perforsmanc
forms of Nusselt number ratio, Nu/dUriction factor
ratio, f/f, and thermal enhancement factor, TEF,
respectively. Figure 5a and b present the Ny/Nu
versus Reynolds number and NuiNwersus BR,
for RV and RDV. In general, the
increasing Reynolds number and BR result in the
increasing heat transfer rate for all cases. At B8R
0.30, the RV performs higher heat transfer ratentha
the RDV around 2 times. For 093BR <0.15, the
RDV provides higher heat transfer rate than the RV

[ RV ROV PR=1.0 RV RDV PR=1.0
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Fig. 5.(a) The variation of Nu/Nypwith Reynolds humber and (b) The variation of Nu/Mith BRs
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Fig. 6.(a) The variation of fffwith Reynolds number and (b) The variation of With BRs
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Fig. 7.(a) The variation of TEF with Reynolds number andT(be variation of TEF with BRs
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